import os import datasets import pandas as pd class WalmartAmazonConfig(datasets.BuilderConfig): def __init__(self, features, data_url, **kwargs): super(WalmartAmazonConfig, self).__init__(**kwargs) self.features = features self.data_url = data_url class WalmartAmazon(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ WalmartAmazonConfig( name="pairs", features={ "ltable_id":datasets.Value("string"), "rtable_id":datasets.Value("string"), "label":datasets.Value("string"), }, data_url="https://huggingface.co/datasets/matchbench/Walmart-Amazon/resolve/main/", ), WalmartAmazonConfig( name="source", features={ "id":datasets.Value("string"), "title":datasets.Value("string"), "category":datasets.Value("string"), "brand":datasets.Value("string"), "modelno":datasets.Value("string"), "price":datasets.Value("string"), }, data_url="https://huggingface.co/datasets/matchbench/Walmart-Amazon/resolve/main/tableA.csv", ), WalmartAmazonConfig( name="target", features={ "id":datasets.Value("string"), "title":datasets.Value("string"), "category":datasets.Value("string"), "brand":datasets.Value("string"), "modelno":datasets.Value("string"), "price":datasets.Value("string"), }, data_url="https://huggingface.co/datasets/matchbench/Walmart-Amazon/resolve/main/tableB.csv", ), ] def _info(self): return datasets.DatasetInfo( features=datasets.Features(self.config.features) ) def _split_generators(self, dl_manager): if self.config.name == "pairs": return [ datasets.SplitGenerator( name=split, gen_kwargs={ "path_file": dl_manager.download_and_extract(os.path.join(self.config.data_url, f"{split}.csv")), "split":split, } ) for split in ["train", "valid", "test"] ] if self.config.name == "source": return [ datasets.SplitGenerator(name="source",gen_kwargs={"path_file":dl_manager.download_and_extract(self.config.data_url), "split":"source",})] if self.config.name == "target": return [ datasets.SplitGenerator(name="target",gen_kwargs={"path_file":dl_manager.download_and_extract(self.config.data_url), "split":"target",})] def _generate_examples(self, path_file, split): file = pd.read_csv(path_file) for i, row in file.iterrows(): if split not in ['source', 'target']: yield i, { "ltable_id": row["ltable_id"], "rtable_id": row["rtable_id"], "label": row["label"], } else: yield i, { "id": row["id"], "title": row["title"], "category": row["category"], "brand": row["brand"], "modelno": row["modelno"], "price": row["price"], }