--- dataset_info: features: - name: image dtype: image - name: split dtype: string - name: width dtype: int64 - name: height dtype: int64 - name: bboxes dtype: string - name: labels dtype: string - name: gaze_item dtype: int64 - name: gazeIdx dtype: int64 - name: gaze_cx dtype: int64 - name: gaze_cy dtype: int64 - name: hx dtype: int64 - name: hy dtype: int64 - name: seg dtype: string - name: occluded dtype: bool - name: person_num dtype: int64 - name: cam_num dtype: int64 splits: - name: test num_bytes: 6289998121.391 num_examples: 7391 download_size: 6286282416 dataset_size: 6289998121.391 --- The dataset features/columns here are almost similar to the original github instruction (please read the github documentation first to understand the dataset): https://github.com/upeee/GOO-GAZE2021/blob/main/dataset/gooreal-download.txt To download gooreal in huggingface, run the code below (https://huggingface.co/docs/datasets/v1.10.0/loading_datasets.html#from-the-huggingface-hub): from datasets import load_dataset
dataset = load_dataset("markytools/goorealv3") The image datasets will be stored in ""~/.cache/huggingface", so you need to delete the files here if you want to free up space.
The "bboxes" and "labels" features are in string format, so you can use the code below to convert the string into list:
import ast
listOfBboxes = ast.literal_eval(dataset["test"]["bboxes"][0])

The feature "seg" is now in string format instead of numpy ndarray. This is an optional feature, and you can manually download the files here (https://huggingface.co/datasets/markytools/goosegmv3) using wget commandline. The files are in .npy so load it using np.load (https://numpy.org/doc/stable/reference/generated/numpy.load.html).