Dataset Preview
Go to dataset viewer
LatD (int64) "LatM" (int64) "LatS" (int64) "NS" (string) "LonD" (int64) "LonM" (int64) "LonS" (int64) "EW" (string) "City" (string) "State" (string)
41
5
59
" "N""
80
39
0
" "W""
" "Youngstown""
" OH"
42
52
48
" "N""
97
23
23
" "W""
" "Yankton""
" SD"
46
35
59
" "N""
120
30
36
" "W""
" "Yakima""
" WA"
42
16
12
" "N""
71
48
0
" "W""
" "Worcester""
" MA"
43
37
48
" "N""
89
46
11
" "W""
" "Wisconsin Dells""
" WI"
36
5
59
" "N""
80
15
0
" "W""
" "Winston-Salem""
" NC"
49
52
48
" "N""
97
9
0
" "W""
" "Winnipeg""
" MB"
39
11
23
" "N""
78
9
36
" "W""
" "Winchester""
" VA"
34
14
24
" "N""
77
55
11
" "W""
" "Wilmington""
" NC"
39
45
0
" "N""
75
33
0
" "W""
" "Wilmington""
" DE"
48
9
0
" "N""
103
37
12
" "W""
" "Williston""
" ND"
41
15
0
" "N""
77
0
0
" "W""
" "Williamsport""
" PA"
37
40
48
" "N""
82
16
47
" "W""
" "Williamson""
" WV"
33
54
0
" "N""
98
29
23
" "W""
" "Wichita Falls""
" TX"
37
41
23
" "N""
97
20
23
" "W""
" "Wichita""
" KS"
40
4
11
" "N""
80
43
12
" "W""
" "Wheeling""
" WV"
26
43
11
" "N""
80
3
0
" "W""
" "West Palm Beach""
" FL"
47
25
11
" "N""
120
19
11
" "W""
" "Wenatchee""
" WA"
41
25
11
" "N""
122
23
23
" "W""
" "Weed""
" CA"
31
13
11
" "N""
82
20
59
" "W""
" "Waycross""
" GA"
44
57
35
" "N""
89
38
23
" "W""
" "Wausau""
" WI"
42
21
36
" "N""
87
49
48
" "W""
" "Waukegan""
" IL"
44
54
0
" "N""
97
6
36
" "W""
" "Watertown""
" SD"
43
58
47
" "N""
75
55
11
" "W""
" "Watertown""
" NY"
42
30
0
" "N""
92
20
23
" "W""
" "Waterloo""
" IA"
41
32
59
" "N""
73
3
0
" "W""
" "Waterbury""
" CT"
38
53
23
" "N""
77
1
47
" "W""
" "Washington""
" DC"
41
50
59
" "N""
79
8
23
" "W""
" "Warren""
" PA"
46
4
11
" "N""
118
19
48
" "W""
" "Walla Walla""
" WA"
31
32
59
" "N""
97
8
23
" "W""
" "Waco""
" TX"
38
40
48
" "N""
87
31
47
" "W""
" "Vincennes""
" IN"
28
48
35
" "N""
97
0
36
" "W""
" "Victoria""
" TX"
32
20
59
" "N""
90
52
47
" "W""
" "Vicksburg""
" MS"
49
16
12
" "N""
123
7
12
" "W""
" "Vancouver""
" BC"
46
55
11
" "N""
98
0
36
" "W""
" "Valley City""
" ND"
30
49
47
" "N""
83
16
47
" "W""
" "Valdosta""
" GA"
43
6
36
" "N""
75
13
48
" "W""
" "Utica""
" NY"
39
54
0
" "N""
79
43
48
" "W""
" "Uniontown""
" PA"
32
20
59
" "N""
95
18
0
" "W""
" "Tyler""
" TX"
42
33
36
" "N""
114
28
12
" "W""
" "Twin Falls""
" ID"
33
12
35
" "N""
87
34
11
" "W""
" "Tuscaloosa""
" AL"
34
15
35
" "N""
88
42
35
" "W""
" "Tupelo""
" MS"
36
9
35
" "N""
95
54
36
" "W""
" "Tulsa""
" OK"
32
13
12
" "N""
110
58
12
" "W""
" "Tucson""
" AZ"
37
10
11
" "N""
104
30
36
" "W""
" "Trinidad""
" CO"
40
13
47
" "N""
74
46
11
" "W""
" "Trenton""
" NJ"
44
45
35
" "N""
85
37
47
" "W""
" "Traverse City""
" MI"
43
39
0
" "N""
79
22
47
" "W""
" "Toronto""
" ON"
39
2
59
" "N""
95
40
11
" "W""
" "Topeka""
" KS"
41
39
0
" "N""
83
32
24
" "W""
" "Toledo""
" OH"
33
25
48
" "N""
94
3
0
" "W""
" "Texarkana""
" TX"
39
28
12
" "N""
87
24
36
" "W""
" "Terre Haute""
" IN"
27
57
0
" "N""
82
26
59
" "W""
" "Tampa""
" FL"
30
27
0
" "N""
84
16
47
" "W""
" "Tallahassee""
" FL"
47
14
24
" "N""
122
25
48
" "W""
" "Tacoma""
" WA"
43
2
59
" "N""
76
9
0
" "W""
" "Syracuse""
" NY"
32
35
59
" "N""
82
20
23
" "W""
" "Swainsboro""
" GA"
33
55
11
" "N""
80
20
59
" "W""
" "Sumter""
" SC"
40
59
24
" "N""
75
11
24
" "W""
" "Stroudsburg""
" PA"
37
57
35
" "N""
121
17
24
" "W""
" "Stockton""
" CA"
44
31
12
" "N""
89
34
11
" "W""
" "Stevens Point""
" WI"
40
21
36
" "N""
80
37
12
" "W""
" "Steubenville""
" OH"
40
37
11
" "N""
103
13
12
" "W""
" "Sterling""
" CO"
38
9
0
" "N""
79
4
11
" "W""
" "Staunton""
" VA"
39
55
11
" "N""
83
48
35
" "W""
" "Springfield""
" OH"
37
13
12
" "N""
93
17
24
" "W""
" "Springfield""
" MO"
42
5
59
" "N""
72
35
23
" "W""
" "Springfield""
" MA"
39
47
59
" "N""
89
39
0
" "W""
" "Springfield""
" IL"
47
40
11
" "N""
117
24
36
" "W""
" "Spokane""
" WA"
41
40
48
" "N""
86
15
0
" "W""
" "South Bend""
" IN"
43
32
24
" "N""
96
43
48
" "W""
" "Sioux Falls""
" SD"
42
29
24
" "N""
96
23
23
" "W""
" "Sioux City""
" IA"
32
30
35
" "N""
93
45
0
" "W""
" "Shreveport""
" LA"
33
38
23
" "N""
96
36
36
" "W""
" "Sherman""
" TX"
44
47
59
" "N""
106
57
35
" "W""
" "Sheridan""
" WY"
35
13
47
" "N""
96
40
48
" "W""
" "Seminole""
" OK"
32
25
11
" "N""
87
1
11
" "W""
" "Selma""
" AL"
38
42
35
" "N""
93
13
48
" "W""
" "Sedalia""
" MO"
47
35
59
" "N""
122
19
48
" "W""
" "Seattle""
" WA"
41
24
35
" "N""
75
40
11
" "W""
" "Scranton""
" PA"
41
52
11
" "N""
103
39
36
" "W""
" "Scottsbluff""
" NB"
42
49
11
" "N""
73
56
59
" "W""
" "Schenectady""
" NY"
32
4
48
" "N""
81
5
23
" "W""
" "Savannah""
" GA"
46
29
24
" "N""
84
20
59
" "W""
" "Sault Sainte Marie""
" MI"
27
20
24
" "N""
82
31
47
" "W""
" "Sarasota""
" FL"
38
26
23
" "N""
122
43
12
" "W""
" "Santa Rosa""
" CA"
35
40
48
" "N""
105
56
59
" "W""
" "Santa Fe""
" NM"
34
25
11
" "N""
119
41
59
" "W""
" "Santa Barbara""
" CA"
33
45
35
" "N""
117
52
12
" "W""
" "Santa Ana""
" CA"
37
20
24
" "N""
121
52
47
" "W""
" "San Jose""
" CA"
37
46
47
" "N""
122
25
11
" "W""
" "San Francisco""
" CA"
41
27
0
" "N""
82
42
35
" "W""
" "Sandusky""
" OH"
32
42
35
" "N""
117
9
0
" "W""
" "San Diego""
" CA"
34
6
36
" "N""
117
18
35
" "W""
" "San Bernardino""
" CA"
29
25
12
" "N""
98
30
0
" "W""
" "San Antonio""
" TX"
31
27
35
" "N""
100
26
24
" "W""
" "San Angelo""
" TX"
40
45
35
" "N""
111
52
47
" "W""
" "Salt Lake City""
" UT"
38
22
11
" "N""
75
35
59
" "W""
" "Salisbury""
" MD"
36
40
11
" "N""
121
39
0
" "W""
" "Salinas""
" CA"
38
50
24
" "N""
97
36
36
" "W""
" "Salina""
" KS"
End of preview (truncated to 100 rows)

No dataset card yet

New: Create and edit this dataset card directly on the website!

Contribute a Dataset Card
Downloads last month
0
Add dataset card
Evaluate models HF Leaderboard