## Script to sanitize and split AggregatorAdvisor dataset # 1. Load modules pip install rdkit pip install molvs import pandas as pd import numpy as np import urllib.request import tqdm import rdkit from rdkit import Chem import molvs standardizer = molvs.Standardizer() fragment_remover = molvs.fragment.FragmentRemover() # 2. Load the original dataset into a pandas DataFrame # PLEASE download the 'raw_data.csv', which is the dataset from the paper, and run the code # https://huggingface.co/datasets/maomlab/AggregatorAdvisor/blob/main/raw_data.csv AA = pd.read_csv('raw_data.csv') # AA is an abbreviation of Aggregator Advisor #3. Resolve SMILES parse error # Smiles is 'None', found the compound on ChemSpider # Smiles displayed 'Explicit valence for atom # 2 O, 3, is greater than permitted' # https://www.chemspider.com/Chemical-Structure.17588253.html?rid=026abd00-5d7b-4c7a-b279-3ba43ab46203 AA.loc[AA['smiles'] == '[O-][N+](=[O-])C1=CC=CC(=C1)C2=NC(CO2)C3=CC=CC=C3' , 'smiles'] = 'c1ccc(cc1)C2COC(=N2)c3cccc(c3)[N+](=O)[O-]' # Smiles is 'None', found the compound on ChemSpider # Smiles displayed 'Explicit valence for atom # 2 O, 3, is greater than permitted' # https://www.chemspider.com/Chemical-Structure.17588254.html?rid=0f94ced5-dee6-4274-b0c5-796500b40be7 AA.loc[AA['smiles'] == '[O-][N+](=[O-])C1=CC=CC(=C1)C2=NCCC(O2)C3=CC=CC=C3', 'smiles'] = 'c1ccc(cc1)C2CCN=C(O2)c3cccc(c3)[N+](=O)[O-]' #4. Sanitize with MolVS and print problems AA['X'] = [ \ rdkit.Chem.MolToSmiles( fragment_remover.remove( standardizer.standardize( rdkit.Chem.MolFromSmiles( smiles)))) for smiles in AA['smiles']] problems = [] for index, row in tqdm.tqdm(AA.iterrows()): result = molvs.validate_smiles(row['X']) if len(result) == 0: continue problems.append( (row['substance_id'], result) ) # most are because it includes the salt form and/or it is not neutralized for substance_id, alert in problems: print(f"substance_id: {substance_id}, problem: {alert[0]}") # Result interpretation # - Can't kekulize mol: The error message means that kekulization would break the molecules down, so it couldn't proceed # It doesn't mean that the molecules are bad, it just means that normalization failed #5. Select columns and rename the dataset AA.rename(columns={'X': 'new SMILES'}, inplace=True) newAA = AA[['new SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']] #6. Import modules to split the dataset import sys from rdkit import DataStructs from rdkit.Chem import AllChem as Chem from rdkit.Chem import PandasTools import scipy.spatial.distance as ssd from scipy.cluster import hierarchy #7. Split the dataset into test and train #7. Split the dataset into test and train class MolecularFingerprint: def __init__(self, fingerprint): self.fingerprint = fingerprint def __str__(self): return self.fingerprint.__str__() def compute_fingerprint(molecule): try: fingerprint = Chem.GetMorganFingerprintAsBitVect(molecule, 2, nBits=1024) result = np.zeros(len(fingerprint), np.int32) DataStructs.ConvertToNumpyArray(fingerprint, result) return MolecularFingerprint(result) except: print("Fingerprints for a structure cannot be calculated") return None def tanimoto_distances_yield(fingerprints, num_fingerprints): for i in range(1, num_fingerprints): yield [1 - x for x in DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints[:i])] def butina_cluster(fingerprints, num_points, distance_threshold, reordering=False): nbr_lists = [None] * num_points for i in range(num_points): nbr_lists[i] = [] dist_fun = tanimoto_distances_yield(fingerprints, num_points) for i in range(1, num_points): dists = next(dist_fun) for j in range(i): dij = dists[j] if dij <= distance_threshold: nbr_lists[i].append(j) nbr_lists[j].append(i) t_lists = [(len(y), x) for x, y in enumerate(nbr_lists)] t_lists.sort(reverse=True) res = [] seen = [0] * num_points while t_lists: _, idx = t_lists.pop(0) if seen[idx]: continue t_res = [idx] for nbr in nbr_lists[idx]: if not seen[nbr]: t_res.append(nbr) seen[nbr] = 1 if reordering: nbr_nbr = [nbr_lists[t] for t in t_res] nbr_nbr = frozenset().union(*nbr_nbr) for x, y in enumerate(t_lists): y1 = y[1] if seen[y1] or (y1 not in nbr_nbr): continue nbr_lists[y1] = set(nbr_lists[y1]).difference(t_res) t_lists[x] = (len(nbr_lists[y1]), y1) t_lists.sort(reverse=True) res.append(tuple(t_res)) return tuple(res) def hierarchal_cluster(fingerprints): num_fingerprints = len(fingerprints) av_cluster_size = 8 dists = [] for i in range(0, num_fingerprints): sims = DataStructs.BulkTanimotoSimilarity(fingerprints[i], fingerprints) dists.append([1 - x for x in sims]) dis_array = ssd.squareform(dists) Z = hierarchy.linkage(dis_array) average_cluster_size = av_cluster_size cluster_amount = int(num_fingerprints / average_cluster_size) clusters = hierarchy.cut_tree(Z, n_clusters=cluster_amount) clusters = list(clusters.transpose()[0]) cs = [] for i in range(max(clusters) + 1): cs.append([]) for i in range(len(clusters)): cs[clusters[i]].append(i) return cs def cluster_fingerprints(fingerprints, method="Auto"): num_fingerprints = len(fingerprints) if method == "Auto": method = "TB" if num_fingerprints >= 10000 else "Hierarchy" if method == "TB": cutoff = 0.56 print("Butina clustering is selected. Dataset size is:", num_fingerprints) clusters = butina_cluster(fingerprints, num_fingerprints, cutoff) elif method == "Hierarchy": print("Hierarchical clustering is selected. Dataset size is:", num_fingerprints) clusters = hierarchal_cluster(fingerprints) return clusters def split_dataframe(dataframe, smiles_col_index, fraction_to_train, split_for_exact_fraction=True, cluster_method="Auto"): try: import math smiles_column_name = dataframe.columns[smiles_col_index] molecule = 'molecule' fingerprint = 'fingerprint' group = 'group' testing = 'testing' try: PandasTools.AddMoleculeColumnToFrame(dataframe, smiles_column_name, molecule) except: print("Exception occurred during molecule generation...") dataframe = dataframe.loc[dataframe[molecule].notnull()] dataframe[fingerprint] = [compute_fingerprint(m) for m in dataframe[molecule]] dataframe = dataframe.loc[dataframe[fingerprint].notnull()] fingerprints = [Chem.GetMorganFingerprintAsBitVect(m, 2, nBits=2048) for m in dataframe[molecule]] clusters = cluster_fingerprints(fingerprints, method=cluster_method) dataframe.drop([molecule, fingerprint], axis=1, inplace=True) last_training_index = int(math.ceil(len(dataframe) * fraction_to_train)) clustered = None cluster_no = 0 mol_count = 0 for cluster in clusters: cluster_no = cluster_no + 1 try: one_cluster = dataframe.iloc[list(cluster)].copy() except: print("Wrong indexes in Cluster: %i, Molecules: %i" % (cluster_no, len(cluster))) continue one_cluster.loc[:, 'ClusterNo'] = cluster_no one_cluster.loc[:, 'MolCount'] = len(cluster) if (mol_count < last_training_index) or (cluster_no < 2): one_cluster.loc[:, group] = 'training' else: one_cluster.loc[:, group] = testing mol_count += len(cluster) clustered = pd.concat([clustered, one_cluster], ignore_index=True) if split_for_exact_fraction: print("Adjusting test to train ratio. It may split one cluster") clustered.loc[last_training_index + 1:, group] = testing print("Clustering finished. Training set size is %i, Test set size is %i, Fraction %.2f" % (len(clustered.loc[clustered[group] != testing]), len(clustered.loc[clustered[group] == testing]), len(clustered.loc[clustered[group] == testing]) / len(clustered))) except KeyboardInterrupt: print("Clustering interrupted.") return clustered def realistic_split(df, smile_col_index, frac_train, split_for_exact_frac=True, cluster_method = "Auto"): return split_dataframe(df.copy(), smile_col_index, frac_train, split_for_exact_frac, cluster_method=cluster_method) def split_df_into_train_and_test_sets(df): df['group'] = df['group'].str.replace(' ', '_') df['group'] = df['group'].str.lower() train = df[df['group'] == 'training'] test = df[df['group'] == 'testing'] return train, test # 8. Test and train datasets have been made smiles_index = 0 # Because smiles is in the first column realistic = realistic_split(newAA.copy(), smiles_index, 0.8, split_for_exact_frac=True, cluster_method="Auto") realistic_train, realistic_test = split_df_into_train_and_test_sets(realistic) #9. Select columns and name the datasets selected_columns = realistic_train[['new SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']] selected_columns.to_csv("AggregatorAdvisor_train.csv", index=False) selected_columns = realistic_test[['new SMILES', 'substance_id', 'aggref_index', 'logP', 'reference']] selected_columns.to_csv("AggregatorAdvisor_test.csv", index=False)