--- dataset_info: - config_name: a features: - name: original dtype: image - name: augmented dtype: image - name: location dtype: class_label: names: '0': outdoor '1': indoor '2': unknown - name: time dtype: class_label: names: '0': day '1': unknown '2': dusk '3': night - name: light dtype: class_label: names: '0': sun_sky '1': artificial '2': unknown '3': mixed - name: subject dtype: class_label: names: '0': people '1': man_made '2': nature '3': unknown '4': animals '5': abstract - name: license dtype: class_label: names: '0': Adobe '1': AdobeMIT splits: - name: train num_bytes: 83516576303 num_examples: 3500 - name: test num_bytes: 24332706376 num_examples: 1000 - name: validation num_bytes: 11930052394 num_examples: 500 download_size: 119291008509 dataset_size: 119779335073 - config_name: b features: - name: original dtype: image - name: augmented dtype: image - name: location dtype: class_label: names: '0': outdoor '1': indoor '2': unknown - name: time dtype: class_label: names: '0': day '1': unknown '2': dusk '3': night - name: light dtype: class_label: names: '0': sun_sky '1': artificial '2': unknown '3': mixed - name: subject dtype: class_label: names: '0': people '1': man_made '2': nature '3': unknown '4': animals '5': abstract - name: license dtype: class_label: names: '0': Adobe '1': AdobeMIT splits: - name: train num_bytes: 83258395373 num_examples: 3500 - name: test num_bytes: 24212041008 num_examples: 1000 - name: validation num_bytes: 11959397496 num_examples: 500 download_size: 118927071665 dataset_size: 119429833877 - config_name: c features: - name: original dtype: image - name: augmented dtype: image - name: location dtype: class_label: names: '0': outdoor '1': indoor '2': unknown - name: time dtype: class_label: names: '0': day '1': unknown '2': dusk '3': night - name: light dtype: class_label: names: '0': sun_sky '1': artificial '2': unknown '3': mixed - name: subject dtype: class_label: names: '0': people '1': man_made '2': nature '3': unknown '4': animals '5': abstract - name: license dtype: class_label: names: '0': Adobe '1': AdobeMIT splits: - name: train num_bytes: 86634482129 num_examples: 3500 - name: test num_bytes: 25274791938 num_examples: 1000 - name: validation num_bytes: 12458944828 num_examples: 500 download_size: 123806916993 dataset_size: 124368218895 - config_name: d features: - name: original dtype: image - name: augmented dtype: image - name: location dtype: class_label: names: '0': outdoor '1': indoor '2': unknown - name: time dtype: class_label: names: '0': day '1': unknown '2': dusk '3': night - name: light dtype: class_label: names: '0': sun_sky '1': artificial '2': unknown '3': mixed - name: subject dtype: class_label: names: '0': people '1': man_made '2': nature '3': unknown '4': animals '5': abstract - name: license dtype: class_label: names: '0': Adobe '1': AdobeMIT splits: - name: train num_bytes: 84743866913 num_examples: 3500 - name: test num_bytes: 24642491298 num_examples: 1000 - name: validation num_bytes: 12117343580 num_examples: 500 download_size: 120899071301 dataset_size: 121503701791 - config_name: e features: - name: original dtype: image - name: augmented dtype: image - name: location dtype: class_label: names: '0': outdoor '1': indoor '2': unknown - name: time dtype: class_label: names: '0': day '1': unknown '2': dusk '3': night - name: light dtype: class_label: names: '0': sun_sky '1': artificial '2': unknown '3': mixed - name: subject dtype: class_label: names: '0': people '1': man_made '2': nature '3': unknown '4': animals '5': abstract - name: license dtype: class_label: names: '0': Adobe '1': AdobeMIT splits: - name: train num_bytes: 87195145386 num_examples: 3500 - name: test num_bytes: 25341223232 num_examples: 1000 - name: validation num_bytes: 12475902082 num_examples: 500 download_size: 124281756534 dataset_size: 125012270700 configs: - config_name: a data_files: - split: train path: a/train-* - split: test path: a/test-* - split: validation path: a/validation-* - config_name: b data_files: - split: train path: b/train-* - split: test path: b/test-* - split: validation path: b/validation-* - config_name: c data_files: - split: train path: c/train-* - split: test path: c/test-* - split: validation path: c/validation-* - config_name: d data_files: - split: train path: d/train-* - split: test path: d/test-* - split: validation path: d/validation-* - config_name: e data_files: - split: train path: e/train-* - split: test path: e/test-* - split: validation path: e/validation-* task_categories: - image-to-image - feature-extraction language: - en license: other # Example: apache-2.0 or any license from https://hf.co/docs/hub/repositories-licenses license_name: adobe-mit # If license = other (license not in https://hf.co/docs/hub/repositories-licenses), specify an id for it here, like `my-license-1.0`. license_link: LICENSE.md license_details: A custom license developed for this dataset by Adobe and MIT. # Legacy, textual description of a custom license. tags: - adobe - aesthetic pretty_name: MIT Adobe FiveK size_categories: - 1K This is an upload of the Adobe FiveK dataset. Note that I am not one of the authors of this dataset, if one of the authors would like to take ownership of this repository please reach out to me. The data provided is not in the original format either. Due to the massive size of the dataset >1TB I elected to convert all .tif and .dng files to a standard .webp with lossless compression. Please refer to the dataset homepage for access to the uncompressed versions of the data. ## Dataset Details ### Dataset Description We collected 5,000 photographs taken with SLR cameras by a set of different photographers. They are all in RAW format; that is, all the information recorded by the camera sensor is preserved. We made sure that these photographs cover a broad range of scenes, subjects, and lighting conditions. We then hired five photography students in an art school to adjust the tone of the photos. Each of them retouched all the 5,000 photos using a software dedicated to photo adjustment (Adobe Lightroom) on which they were extensively trained. We asked the retouchers to achieve visually pleasing renditions, akin to a postcard. The retouchers were compensated for their work. This dataset was collected for our project on learning photographic adjustments. - **Acknowledgements:** We are grateful to Katrin Eismann and Jeff Schewe for providing invaluable advice and for introducing us to the community of professional photographers. We thank Todd Carroll, David Mager, Jaime Permuth, LaNola Katheleen Stone, and Damian Wampler for their incredible patience while retouching thousands of photos. Special thanks to everyone who contributed their photos to this dataset: without you this work would not have been possible. - **Funded by:** Foxconn and NSF (0964004) and a gift from Adobe - **License:** You can use these photos for research under the terms of the following licenses: 1. License [LicenseAdobe.txt](https://data.csail.mit.edu/graphics/fivek/legal/LicenseAdobe.txt) covers files listed in [filesAdobe.txt](https://data.csail.mit.edu/graphics/fivek/legal/filesAdobe.txt). 2. License [LicenseAdobeMIT.txt](https://data.csail.mit.edu/graphics/fivek/legal/LicenseAdobeMIT.txt) covers files listed in [filesAdobeMIT.txt](https://data.csail.mit.edu/graphics/fivek/legal/filesAdobeMIT.txt). Each photo is labled with the license it is under. ### Dataset Sources [optional] - **Repository:** https://data.csail.mit.edu/graphics/fivek/ - **Paper:** http://people.csail.mit.edu/vladb/photoadjust/ ## Uses ### Direct Use [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Dataset Structure [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Data Collection and Processing [More Information Needed] #### Who are the source data producers? [More Information Needed] ### Annotations [optional] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] #### Personal and Sensitive Information [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation **BibTeX:** @inproceedings{fivek, author = "Vladimir Bychkovsky and Sylvain Paris and Eric Chan and Fr{\'e}do Durand", title = "Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs", booktitle = "The Twenty-Fourth IEEE Conference on Computer Vision and Pattern Recognition", year = "2011" } ## Dataset Card Authors [optional] @logasja ## Dataset Card Contact @logasja