import json import datasets from datasets.tasks import QuestionAnsweringExtractive logger = datasets.logging.get_logger(__name__) _VERSION = "0.0.0" _NAME = "qa_squad" _DESCRIPTION = """SQuAD with the train/validation/test split used in SQuAD QG""" _CITATION = """ @article{2016arXiv160605250R, author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, Konstantin and {Liang}, Percy}, title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", journal = {arXiv e-prints}, year = 2016, eid = {arXiv:1606.05250}, pages = {arXiv:1606.05250}, archivePrefix = {arXiv}, eprint = {1606.05250}, } """ _BASE_URL = "https://huggingface.co/datasets/lmqg/qa_squad/resolve/main/datasets" _URLS = {k: f'{_BASE_URL}/{k}.jsonl' for k in [str(datasets.Split.TEST), str(datasets.Split.TRAIN), str(datasets.Split.VALIDATION)]} class QASquadConfig(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig Args: **kwargs: keyword arguments forwarded to super. """ super(QASquadConfig, self).__init__(**kwargs) class QASquad(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ QASquadConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), } ), supervised_keys=None, homepage="https://github.com/asahi417/lm-question-generation", task_templates=[ QuestionAnsweringExtractive( question_column="question", context_column="context", answers_column="answers" ) ], ) def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLS) return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_file[str(i)]}) for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) key = 0 with open(filepath, encoding="utf-8") as f: squad = json.load(f) for article in squad["data"]: title = article.get("title", "") for paragraph in article["paragraphs"]: context = paragraph["context"] # do not strip leading blank spaces GH-2585 for qa in paragraph["qas"]: answer_starts = [answer["answer_start"] for answer in qa["answers"]] answers = [answer["text"] for answer in qa["answers"]] # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield key, { "title": title, "context": context, "question": qa["question"], "id": qa["id"], "answers": { "answer_start": answer_starts, "text": answers, }, } key += 1