# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datasets from datasets.tasks import TextClassification _CITATION = """\ @author tianjie fdRE Chinese } """ _DESCRIPTION = """\ fdRE是一个中文的轴承故障诊断领域的关系抽取数据集 该数据集主要包含正向从属、反向从属以及无关三类标签 """ _URL = "https://huggingface.co/datasets/leonadase/fdRE/resolve/main/fdRE.zip" class SemEval2010Task8(datasets.GeneratorBasedBuilder): """The SemEval-2010 Task 8 focuses on Multi-way classification of semantic relations between pairs of nominals. The task was designed to compare different approaches to semantic relation classification and to provide a standard testbed for future research.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=datasets.Features( { "sentence": datasets.Value("string"), "relation": datasets.ClassLabel( names=[ "Part_Of(E1,E2)", "Part_Of(E2,E1)", "Other", ] ), } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=datasets.info.SupervisedKeysData(input="sentence", output="relation"), # Homepage of the dataset for documentation citation=_CITATION, task_templates=[TextClassification(text_column="sentence", label_column="relation")], ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs dl_dir = dl_manager.download_and_extract(_URL) # data_dir = os.path.join(dl_dir, "fdRE") data_dir = dl_dir return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, "train.txt"), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(data_dir, "test.txt"), }, ), ] def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as file: lines = file.readlines() num_lines_per_sample = 4 for i in range(0, len(lines), num_lines_per_sample): idx = int(lines[i].split("\t")[0]) sentence = lines[i].split("\t")[1][1:-2] # remove " at the start and "\n at the end relation = lines[i + 1][:-1] # remove \n at the end yield idx, { "sentence": sentence, "relation": relation, }