# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Hate Speech Text Classification Dataset in Filipino.""" import csv import os import datasets _DESCRIPTION = """\ Contains 10k tweets (training set) that are labeled as hate speech or non-hate speech. Released with 4,232 validation and 4,232 testing samples. Collected during the 2016 Philippine Presidential Elections. """ _CITATION = """\ @article{Cabasag-2019-hate-speech, title={Hate speech in Philippine election-related tweets: Automatic detection and classification using natural language processing.}, author={Neil Vicente Cabasag, Vicente Raphael Chan, Sean Christian Lim, Mark Edward Gonzales, and Charibeth Cheng}, journal={Philippine Computing Journal}, volume={XIV}, number={1}, month={August}, year={2019} } """ _HOMEPAGE = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" _URL = "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/hatenonhate/hatespeech_raw.zip" class HateSpeechFilipino(datasets.GeneratorBasedBuilder): """Hate Speech Text Classification Dataset in Filipino.""" VERSION = datasets.Version("1.0.0") def _info(self): # Labels: 0="Non-hate Speech", 1="Hate Speech" features = datasets.Features( {"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["0", "1"])} ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URL) train_path = os.path.join(data_dir, "hatespeech", "train.csv") test_path = os.path.join(data_dir, "hatespeech", "train.csv") validation_path = os.path.join(data_dir, "hatespeech", "valid.csv") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_path, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": test_path, "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": validation_path, "split": "dev", }, ), ] def _generate_examples(self, filepath, split): """ Yields examples. """ with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True ) next(csv_reader) for id_, row in enumerate(csv_reader): try: text, label = row yield id_, {"text": text, "label": label} except ValueError: pass