import random from pathlib import Path import datasets from datasets import Value, Sequence, ClassLabel, Features _CITATION = """\ coming soon """ _DESCRIPTION = """\ German Legal Sentences (GLS) is an automatically generated training dataset for semantic sentence matching in the domain in german legal documents. It follows the concept of weak supervision, where imperfect labels are generated using multiple heuristics. For this purpose we use a combination of legal citation matching and BM25 similarity. The contained sentences and their citations are parsed from real judicial decisions provided by [Open Legal Data](http://openlegaldata.io/) """ _VERSION = "0.0.2" _DATA_URL = f"http://lavis.cs.hs-rm.de/storage/german-legal-sentences/GermanLegalSentences_v{_VERSION}.zip" class GLSConfig(datasets.BuilderConfig): """BuilderConfig.""" def __init__( self, load_collection, load_es_neighbors=None, n_es_neighbors=None, **kwargs, ): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(GLSConfig, self).__init__(**kwargs) self.load_collection = load_collection self.load_es_neighbors = load_es_neighbors self.n_es_neighbors = n_es_neighbors class GermanLegalSentences(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ GLSConfig( name="sentences", load_es_neighbors=False, load_collection=False, version=datasets.Version(_VERSION, ""), description="Just the sentences and their masked references", ), GLSConfig( name="pairs", load_es_neighbors=False, load_collection=True, version=datasets.Version(_VERSION, ""), description="Sentence pairs sharing references", ), GLSConfig( name="pairs+es", load_es_neighbors=True, load_collection=True, n_es_neighbors=5, version=datasets.Version(_VERSION, ""), description="Sentence pairs sharing references plus ES neighbors", ), ] def _features(self): if self.config.name == "sentences": return datasets.Features( { "sent_id": Value("uint32"), "doc_id": Value("uint32"), "text": Value("string"), "references": Sequence( { "ref_id": Value("uint32"), "name": Value("string"), "type": ClassLabel(names=["AZ", "LAW"]), } ), } ) elif self.config.name == "pairs": return Features( { "query.sent_id": Value("uint32"), "query.doc_id": Value("uint32"), "query.text": Value("string"), "query.ref_ids": Sequence(Value("uint32")), "related.sent_id": Value("uint32"), "related.doc_id": Value("uint32"), "related.text": Value("string"), "related.ref_ids": Sequence(Value("uint32")), } ) elif self.config.name == "pairs+es": return Features( { "query.sent_id": Value("uint32"), "query.doc_id": Value("uint32"), "query.text": Value("string"), "query.ref_ids": Sequence(Value("uint32")), "related.sent_id": Value("uint32"), "related.doc_id": Value("uint32"), "related.text": Value("string"), "related.ref_ids": Sequence(Value("uint32")), "es_neighbors.text": Sequence(Value("string")), "es_neighbors.sent_id": Sequence(Value("uint32")), "es_neighbors.doc_id": Sequence(Value("uint32")), "es_neighbors.ref_ids": Sequence( Sequence(datasets.Value("uint32")) ), } ) assert True def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=self._features(), supervised_keys=None, homepage="", citation=_CITATION, ) def _split_generators(self, dl_manager): if dl_manager.manual_dir: data_dir = Path(dl_manager.manual_dir) else: data_dir = Path(dl_manager.download_and_extract(_DATA_URL)) collection = _load_collection(data_dir) if self.config.load_collection else None sent_ref_map = _load_sent_references(data_dir) references = ( _load_reference_info(data_dir) if self.config.name == "sentences" else None ) es_neighbors = ( _load_es_neighbors(data_dir) if self.config.load_es_neighbors else None ) gen_kwargs = dict() for split in ("train", "valid", "test"): gen_kwargs[split] = { "collection": collection, "pair_id_file": data_dir / f"{split}.pairs.tsv", "sentence_file": data_dir / f"{split}.sentences.tsv", "references": references, "sent_ref_map": sent_ref_map, "es_neighbors": es_neighbors, } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs=gen_kwargs["train"] ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs=gen_kwargs["valid"] ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs=gen_kwargs["test"] ), ] def _generate_examples(self, **kwargs): if self.config.name.startswith("pairs"): yield from self._generate_pairs(**kwargs) elif self.config.name == "sentences": yield from self._generate_sentences(**kwargs) else: assert True def _generate_pairs( self, pair_id_file, collection, sent_ref_map, es_neighbors, **kwargs ): random.seed(17) with open(pair_id_file, encoding="utf-8") as r: idx = 0 for line in r: stripped = line.rstrip() if stripped: a, b = stripped.split("\t") features = { "query.sent_id": int(a), "query.doc_id": int(collection[a]["doc_id"]), "query.text": collection[a]["text"], "query.ref_ids": sent_ref_map[a], "related.sent_id": int(b), "related.doc_id": int(collection[b]["doc_id"]), "related.text": collection[b]["text"], "related.ref_ids": sent_ref_map[b], } if self.config.name == "pairs+es": curr_es_neighbors = es_neighbors.get(a) or [] if len(curr_es_neighbors) < self.config.n_es_neighbors: continue es_sent_ids = random.sample( curr_es_neighbors, k=self.config.n_es_neighbors ) additional_features = { "es_neighbors.sent_id": [int(i) for i in es_sent_ids], "es_neighbors.doc_id": [ int(collection[i]["doc_id"]) for i in es_sent_ids ], "es_neighbors.text": [ collection[i]["text"] for i in es_sent_ids ], "es_neighbors.ref_ids": [ sent_ref_map[i] for i in es_sent_ids ], } features.update(additional_features) yield idx, features idx += 1 def _generate_sentences( self, sentence_file, references, sent_ref_map, **kwargs, ): with open(sentence_file, encoding="utf-8") as r: for idx, line in enumerate(r): stripped = line.rstrip() if stripped == "": continue s_id, doc_id, text = stripped.split("\t", maxsplit=2) yield idx, { "sent_id": int(s_id), "doc_id": int(doc_id), "text": text, "references": [ { "ref_id": int(r_id), "name": references[r_id][1], "type": references[r_id][0], } for r_id in sent_ref_map[s_id] ], } def _load_collection(data_dir): collection = dict() for split in ("train", "valid", "test"): with open(data_dir / f"{split}.sentences.tsv", encoding="utf-8") as r: for line in r: s_id, d_id, sent = line.strip().split("\t", maxsplit=2) collection[s_id] = {"doc_id": d_id, "text": sent} return collection def _load_reference_info(data_dir): with open(data_dir / "refs.tsv", encoding="utf-8") as r: references = { r_id: (r_type, r_name.rstrip()) for r_id, r_type, r_name in ( line.split("\t", maxsplit=2) for line in r if len(line) > 2 ) } return references def _load_sent_references(data_dir): with open(data_dir / "sent_ref_map.tsv", encoding="utf-8") as r: sent_ref_map = { s_id: r_ids.rstrip().split() for s_id, r_ids in ( line.split("\t", maxsplit=1) for line in r if len(line) > 2 ) } return sent_ref_map def _load_es_neighbors(data_dir): with open(data_dir / "es_neighbors.tsv", encoding="utf-8") as r: es_neighbors = { s_id: other_s_ids.rstrip().split() for s_id, other_s_ids in ( line.split("\t", maxsplit=1) for line in r if len(line) > 2 ) } return es_neighbors