|
"""GovReport: The Government Report Long Document Summarization Dataset.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{huang-etal-2021-efficient, |
|
title = "Efficient Attentions for Long Document Summarization", |
|
author = "Huang, Luyang and |
|
Cao, Shuyang and |
|
Parulian, Nikolaus and |
|
Ji, Heng and |
|
Wang, Lu", |
|
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", |
|
month = jun, |
|
year = "2021", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.naacl-main.112", |
|
doi = "10.18653/v1/2021.naacl-main.112", |
|
pages = "1419--1436", |
|
abstract = "The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose Hepos, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with Hepos, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GovReport, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
GovReport long document summarization dataset. |
|
|
|
There are three configs: |
|
- plain_text: plain text document-to-summary pairs |
|
- plain_text_with_recommendations: plain text doucment-summary pairs, with "What GAO recommends" included in the summary |
|
- structure: data with section structure |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/launch/gov_report/resolve/main/data/" |
|
_URLS = { |
|
"gao_train": _URL + "gao_train.jsonl", |
|
"gao_valid": _URL + "gao_valid.jsonl", |
|
"gao_test": _URL + "gao_test.jsonl", |
|
"crs_train": _URL + "crs_train.jsonl", |
|
"crs_valid": _URL + "crs_valid.jsonl", |
|
"crs_test": _URL + "crs_test.jsonl", |
|
} |
|
|
|
|
|
def _recursive_load(section, keep_letter=False, depth=0): |
|
sections = [] |
|
if section["section_title"] != "Letter" or (section["section_title"] == "Letter" and keep_letter): |
|
sections.append({ |
|
"title": " ".join(section["section_title"].strip().split()), |
|
"paragraphs": "\n".join([" ".join(paragraph.strip().split()) for paragraph in section["paragraphs"]]), |
|
"depth": depth |
|
}) |
|
for subsection in section["subsections"]: |
|
child_sections = _recursive_load(subsection, keep_letter, depth + 1) |
|
sections.extend(child_sections) |
|
else: |
|
for subsection in section["subsections"]: |
|
child_sections = _recursive_load(subsection, keep_letter, depth) |
|
sections.extend(child_sections) |
|
|
|
return sections |
|
|
|
|
|
class GovReportConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for GovReport.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for GovReport. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(GovReportConfig, self).__init__(**kwargs) |
|
|
|
|
|
class GovReport(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.1") |
|
|
|
DEFAULT_CONFIG_NAME = "plain_text" |
|
|
|
BUILDER_CONFIGS = [ |
|
GovReportConfig( |
|
name="plain_text", |
|
version=VERSION, |
|
description="Plain text", |
|
), |
|
GovReportConfig( |
|
name="plain_text_with_recommendations", |
|
version=VERSION, |
|
description="Plain text with GAO recommendations", |
|
), |
|
GovReportConfig( |
|
name="structure", |
|
version=VERSION, |
|
description="structure data", |
|
) |
|
] |
|
|
|
def _info(self): |
|
if self.config.name in ["plain_text", "plain_text_with_recommendations"]: |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document": datasets.Value("string"), |
|
"summary": datasets.Value("string") |
|
} |
|
) |
|
elif self.config.name == "structure": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_sections": datasets.features.Sequence( |
|
{ |
|
"title": datasets.Value("string"), |
|
"paragraphs": datasets.Value("string"), |
|
"depth": datasets.Value("int32"), |
|
} |
|
), |
|
"summary_sections": datasets.features.Sequence( |
|
{ |
|
"title": datasets.Value("string"), |
|
"paragraphs": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
else: |
|
raise ValueError("Unsupported config name {}".format(self.config.name)) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"gao_filepath": downloaded_files["gao_train"], "crs_filepath": downloaded_files["crs_train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"gao_filepath": downloaded_files["gao_valid"], "crs_filepath": downloaded_files["crs_valid"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"gao_filepath": downloaded_files["gao_test"], "crs_filepath": downloaded_files["crs_test"]}), |
|
] |
|
|
|
def _generate_examples(self, gao_filepath, crs_filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info(f"generating examples from = (GAO) {gao_filepath} and (CRS) {crs_filepath}") |
|
|
|
with open(gao_filepath, "r") as f: |
|
for line in f: |
|
line = line.strip() |
|
if not line: |
|
continue |
|
data = json.loads(line) |
|
|
|
_id = 'GAO_' + data["id"] |
|
|
|
document_sections = [] |
|
for lv1_section in data["report"]: |
|
document_sections.extend(_recursive_load(lv1_section, keep_letter=False, depth=1)) |
|
summary_sections = [ |
|
{ |
|
"title": " ".join(highlight_section["section_title"].strip().split()), |
|
"paragraphs": "\n".join([" ".join(paragraph.strip().split()) for paragraph in highlight_section["paragraphs"]]) |
|
} for highlight_section in data["highlight"] |
|
] |
|
|
|
if self.config.name == "plain_text": |
|
yield _id, { |
|
"id": _id, |
|
"document": " ".join([section["title"] + " " + section["paragraphs"] if section["paragraphs"] else section["title"] for section in document_sections]).replace("\n", " ").strip(), |
|
"summary": " ".join([section["paragraphs"] for section in summary_sections if section["title"] != "What GAO Recommends"]).replace("\n", " ").strip(), |
|
} |
|
elif self.config.name == "plain_text_with_recommendations": |
|
yield _id, { |
|
"id": _id, |
|
"document": " ".join([section["title"] + " " + section["paragraphs"] if section["paragraphs"] else section["title"] for section in document_sections]).replace("\n", " ").strip(), |
|
"summary": " ".join([section["paragraphs"] for section in summary_sections]).replace("\n", " ").strip(), |
|
} |
|
elif self.config.name == "structure": |
|
yield _id, { |
|
"id": _id, |
|
"document_sections": document_sections, |
|
"summary_sections": summary_sections |
|
} |
|
else: |
|
raise ValueError("Unsupported config name {}".format(self.config.name)) |
|
|
|
with open(crs_filepath, "r") as f: |
|
for line in f: |
|
line = line.strip() |
|
if not line: |
|
continue |
|
data = json.loads(line) |
|
|
|
_id = 'CRS_' + data["id"] |
|
|
|
document_sections = _recursive_load(data["reports"], keep_letter=True, depth=0) |
|
summary_sections = [{ |
|
"title": "", |
|
"paragraphs": "\n".join([" ".join(paragraph.strip().split()) for paragraph in data["summary"]]) |
|
}] |
|
|
|
if self.config.name in ["plain_text", "plain_text_with_recommendations"]: |
|
yield _id, { |
|
"id": _id, |
|
"document": " ".join([section["title"] + " " + section["paragraphs"] if section["paragraphs"] else section["title"] for section in document_sections]).replace("\n", " ").strip(), |
|
"summary": " ".join([section["paragraphs"] for section in summary_sections]).replace("\n", " ").strip(), |
|
} |
|
elif self.config.name == "structure": |
|
yield _id, { |
|
"id": _id, |
|
"document_sections": document_sections, |
|
"summary_sections": summary_sections |
|
} |
|
else: |
|
raise ValueError("Unsupported config name {}".format(self.config.name)) |
|
|