Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,127 Bytes
65e803e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b1b25b
65e803e
 
 
 
 
 
 
 
 
 
 
 
 
 
b70be86
 
65e803e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b70be86
65e803e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""GovReport: The Government Report Long Document Summarization Dataset."""


import json

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{huang-etal-2021-efficient,
    title = "Efficient Attentions for Long Document Summarization",
    author = "Huang, Luyang  and
        Cao, Shuyang  and
        Parulian, Nikolaus  and
        Ji, Heng  and
        Wang, Lu",
    booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jun,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.naacl-main.112",
    doi = "10.18653/v1/2021.naacl-main.112",
    pages = "1419--1436",
    abstract = "The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose Hepos, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with Hepos, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GovReport, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.",
}
"""

_DESCRIPTION = """\
GovReport long document summarization dataset.

There are three configs:
  - plain_text: plain text document-to-summary pairs
  - plain_text_with_recommendations: plain text doucment-summary pairs, with "What GAO recommends" included in the summary
  - structure: data with section structure
"""

_URL = "https://huggingface.co/datasets/launch/gov_report/resolve/main/data/"
_URLS = {
    "gao_train": _URL + "gao_train.jsonl",
    "gao_valid": _URL + "gao_valid.jsonl",
    "gao_test": _URL + "gao_test.jsonl",
    "crs_train": _URL + "crs_train.jsonl",
    "crs_valid": _URL + "crs_valid.jsonl",
    "crs_test": _URL + "crs_test.jsonl",
}


def _recursive_load(section, keep_letter=False, depth=0):
    sections = []
    if section["section_title"] != "Letter" or (section["section_title"] == "Letter" and keep_letter):
        sections.append({
            "title": " ".join(section["section_title"].strip().split()),
            "paragraphs": "\n".join([" ".join(paragraph.strip().split()) for paragraph in section["paragraphs"]]),
            "depth": depth
        })
        for subsection in section["subsections"]:
            child_sections = _recursive_load(subsection, keep_letter, depth + 1)
            sections.extend(child_sections)
    else:
        for subsection in section["subsections"]:
            child_sections = _recursive_load(subsection, keep_letter, depth)
            sections.extend(child_sections)

    return sections


class GovReportConfig(datasets.BuilderConfig):
    """BuilderConfig for GovReport."""

    def __init__(self, **kwargs):
        """BuilderConfig for GovReport.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(GovReportConfig, self).__init__(**kwargs)


class GovReport(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.1")

    DEFAULT_CONFIG_NAME = "plain_text"

    BUILDER_CONFIGS = [
        GovReportConfig(
            name="plain_text",
            version=VERSION,
            description="Plain text",
        ),
        GovReportConfig(
            name="plain_text_with_recommendations",
            version=VERSION,
            description="Plain text with GAO recommendations",
        ),
        GovReportConfig(
            name="structure",
            version=VERSION,
            description="structure data",
        )
    ]

    def _info(self):
        if self.config.name in ["plain_text", "plain_text_with_recommendations"]:
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "document": datasets.Value("string"),
                    "summary": datasets.Value("string")
                }
            )
        elif self.config.name == "structure":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "document_sections": datasets.features.Sequence(
                        {
                            "title": datasets.Value("string"),
                            "paragraphs": datasets.Value("string"),
                            "depth": datasets.Value("int32"),
                        }
                    ),
                    "summary_sections": datasets.features.Sequence(
                        {
                            "title": datasets.Value("string"),
                            "paragraphs": datasets.Value("string"),
                        }
                    ),
                }
            )
        else:
            raise ValueError("Unsupported config name {}".format(self.config.name))

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage="",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"gao_filepath": downloaded_files["gao_train"], "crs_filepath": downloaded_files["crs_train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"gao_filepath": downloaded_files["gao_valid"], "crs_filepath": downloaded_files["crs_valid"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"gao_filepath": downloaded_files["gao_test"], "crs_filepath": downloaded_files["crs_test"]}),
        ]

    def _generate_examples(self, gao_filepath, crs_filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info(f"generating examples from = (GAO) {gao_filepath} and (CRS) {crs_filepath}")

        with open(gao_filepath, "r") as f:
            for line in f:
                line = line.strip()
                if not line:
                    continue
                data = json.loads(line)

                _id = 'GAO_' + data["id"]

                document_sections = []
                for lv1_section in data["report"]:
                    document_sections.extend(_recursive_load(lv1_section, keep_letter=False, depth=1))
                summary_sections = [
                    {
                        "title": " ".join(highlight_section["section_title"].strip().split()), 
                        "paragraphs": "\n".join([" ".join(paragraph.strip().split()) for paragraph in highlight_section["paragraphs"]])
                    } for highlight_section in data["highlight"]
                ]

                if self.config.name == "plain_text":
                    yield _id, {
                        "id": _id,
                        "document": " ".join([section["title"] + " " + section["paragraphs"] if section["paragraphs"] else section["title"] for section in document_sections]).replace("\n", " ").strip(),
                        "summary": " ".join([section["paragraphs"] for section in summary_sections if section["title"] != "What GAO Recommends"]).replace("\n", " ").strip(),
                    }
                elif self.config.name == "plain_text_with_recommendations":
                    yield _id, {
                        "id": _id,
                        "document": " ".join([section["title"] + " " + section["paragraphs"] if section["paragraphs"] else section["title"] for section in document_sections]).replace("\n", " ").strip(),
                        "summary": " ".join([section["paragraphs"] for section in summary_sections]).replace("\n", " ").strip(),
                    }
                elif self.config.name == "structure":
                    yield _id, {
                        "id": _id,
                        "document_sections": document_sections,
                        "summary_sections": summary_sections
                    }
                else:
                    raise ValueError("Unsupported config name {}".format(self.config.name))

        with open(crs_filepath, "r") as f:
            for line in f:
                line = line.strip()
                if not line:
                    continue
                data = json.loads(line)

                _id = 'CRS_' + data["id"]

                document_sections = _recursive_load(data["reports"], keep_letter=True, depth=0)
                summary_sections = [{
                    "title": "",
                    "paragraphs": "\n".join([" ".join(paragraph.strip().split()) for paragraph in data["summary"]])
                }]

                if self.config.name in ["plain_text", "plain_text_with_recommendations"]:
                    yield _id, {
                        "id": _id,
                        "document": " ".join([section["title"] + " " + section["paragraphs"] if section["paragraphs"] else section["title"] for section in document_sections]).replace("\n", " ").strip(),
                        "summary": " ".join([section["paragraphs"] for section in summary_sections]).replace("\n", " ").strip(),
                    }
                elif self.config.name == "structure":
                    yield _id, {
                        "id": _id,
                        "document_sections": document_sections,
                        "summary_sections": summary_sections
                    }
                else:
                    raise ValueError("Unsupported config name {}".format(self.config.name))