{"name":"SciLean.approx_limit_tactic","declaration":"/-- This tactic eliminates `limit` from an expression that you are approximating\n\nFor example, for goal\n\n```\n ⊢ Approx _ (x + limit n → ∞, (1 + x/n)^n)\n```\n\ncalling `approx_limit n := ` produces goal\n\n```\n n : Nat\n ⊢ Approx _ (x + (1 + x/n)^n)\n```\n\nwhere `` is a proof that this approximation is indeed valid\n\nWarning: The validity proof is not completely correct right now\n-/\ndef SciLean.approx_limit_tactic : Lean.ParserDescr"} {"name":"SciLean.approxLimitTactic","declaration":"def SciLean.approxLimitTactic : Lean.Elab.Tactic.Tactic"}