{"name":"Filter.TendstoAtZero_of_support_in_Icc","declaration":"theorem Filter.TendstoAtZero_of_support_in_Icc {𝕂 : Type u_1} [RCLike 𝕂] {a : ℝ} {b : ℝ} (f : ℝ β†’ 𝕂) (ha : 0 < a) (fSupp : Function.support f βŠ† Set.Icc a b) : Filter.Tendsto f (nhdsWithin 0 (Set.Ioi 0)) (nhds 0)"} {"name":"MellinOfPsi_aux","declaration":"theorem MellinOfPsi_aux {Ξ¨ : ℝ β†’ ℝ} (diffΞ¨ : ContDiff ℝ 1 Ξ¨) (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) {s : β„‚} (hs : s β‰  0) : ∫ (x : ℝ) in Set.Ioi 0, ↑(Ξ¨ x) * ↑x ^ (s - 1) = -(1 / s) * ∫ (x : ℝ) in Set.Ioi 0, ↑(deriv Ξ¨ x) * ↑x ^ s"} {"name":"MellinInversion_aux1","declaration":"theorem MellinInversion_aux1 {f : ℝ β†’ β„‚} {s : β„‚} (s_ne_zero : s β‰  0) (fDiff : DifferentiableOn ℝ f (Set.Ioi 0)) (hfs : Filter.Tendsto (fun x => f x * ↑x ^ s) (nhdsWithin 0 (Set.Ioi 0)) (nhds 0)) (hfinf : Filter.Tendsto (fun x => f x * ↑x ^ s) Filter.atTop (nhds 0)) : ∫ (x : ℝ) in Set.Ioi 0, f x * ↑x ^ s / ↑x = -∫ (x : ℝ) in Set.Ioi 0, deriv f x * ↑x ^ s / s"} {"name":"MellinConvolutionTransform","declaration":"theorem MellinConvolutionTransform (f : ℝ β†’ β„‚) (g : ℝ β†’ β„‚) (s : β„‚) (hf : MeasureTheory.IntegrableOn (Function.uncurry fun x y => f y * g (x / y) / ↑y * ↑x ^ (s - 1)) (Set.Ioi 0 Γ—Λ’ Set.Ioi 0)\n MeasureTheory.volume) : MellinTransform (MellinConvolution f g) s = MellinTransform f s * MellinTransform g s"} {"name":"Function.support_mul_subset_of_subset","declaration":"theorem Function.support_mul_subset_of_subset {𝕂 : Type u_1} [RCLike 𝕂] {s : Set ℝ} {f : ℝ β†’ 𝕂} {g : ℝ β†’ 𝕂} (fSupp : Function.support f βŠ† s) : Function.support (f * g) βŠ† s"} {"name":"Complex.hasDerivAt_ofReal","declaration":"theorem Complex.hasDerivAt_ofReal (x : ℝ) : HasDerivAt Complex.ofReal' 1 x"} {"name":"SetIntegral.integral_eq_integral_inter_of_support_subset_Icc","declaration":"theorem SetIntegral.integral_eq_integral_inter_of_support_subset_Icc {a : ℝ} {b : ℝ} {ΞΌ : MeasureTheory.Measure ℝ} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {s : Set ℝ} {f : ℝ β†’ E} (h : Function.support f βŠ† Set.Icc a b) (hs : Set.Icc a b βŠ† s) : ∫ (x : ℝ) in s, f x βˆ‚ΞΌ = ∫ (x : ℝ) in Set.Icc a b, f x βˆ‚ΞΌ"} {"name":"MellinInverseTransform_eq","declaration":"theorem MellinInverseTransform_eq (Οƒ : ℝ) (f : β„‚ β†’ β„‚) : MellinInverseTransform f Οƒ = mellinInv Οƒ f"} {"name":"intervalIntegral.norm_integral_le_of_norm_le_const'","declaration":"theorem intervalIntegral.norm_integral_le_of_norm_le_const' {a : ℝ} {b : ℝ} {C : ℝ} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {f : ℝ β†’ E} (hab : a ≀ b) (h : βˆ€ x ∈ Set.Icc a b, β€–f xβ€– ≀ C) : β€–βˆ« (x : ℝ) in a..b, f xβ€– ≀ C * |b - a|"} {"name":"MellinOf1","declaration":"theorem MellinOf1 (s : β„‚) (h : s.re > 0) : MellinTransform (fun x => if 0 < x ∧ x ≀ 1 then 1 else 0) s = 1 / s"} {"name":"MellinOfDeltaSpikeAt1","declaration":"theorem MellinOfDeltaSpikeAt1 (Ξ¨ : ℝ β†’ ℝ) {Ξ΅ : ℝ} (Ξ΅pos : Ξ΅ > 0) : MellinTransform (fun x => ↑(DeltaSpike Ξ¨ Ξ΅ x)) 1 = MellinTransform (fun x => ↑(Ξ¨ x)) ↑Ρ"} {"name":"MellinInversion_aux3","declaration":"theorem MellinInversion_aux3 {f : ℝ β†’ β„‚} (Οƒ : ℝ) (Οƒ_ne_zero : Οƒ β‰  0) (Οƒ_ne_negOne : Οƒ β‰  -1) (fInt : MeasureTheory.IntegrableOn (fun x => f x * ↑x ^ ↑σ) (Set.Ioi 0) MeasureTheory.volume) : MeasureTheory.IntegrableOn\n (fun x =>\n match x with\n | (x, t) => f x * ↑x ^ (↑σ + ↑t * Complex.I) / ((↑σ + ↑t * Complex.I) * (↑σ + ↑t * Complex.I + 1)))\n (Set.prod (Set.Ioi 0) Set.univ) MeasureTheory.volume"} {"name":"Function.support_ofReal","declaration":"theorem Function.support_ofReal {f : ℝ β†’ ℝ} : (Function.support fun x => ↑(f x)) = Function.support f"} {"name":"DeltaSpike","declaration":"def DeltaSpike (Ξ¨ : ℝ β†’ ℝ) (Ξ΅ : ℝ) : ℝ β†’ ℝ"} {"name":"Smooth1Properties_above","declaration":"theorem Smooth1Properties_above {Ξ¨ : ℝ β†’ ℝ} (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) {Ξ΅ : ℝ} (hΞ΅ : Ξ΅ ∈ Set.Ioo 0 1) : βˆƒ c, 0 < c ∧ βˆ€ (x : ℝ), 1 + c * Ξ΅ ≀ x β†’ Smooth1 Ξ¨ Ξ΅ x = 0"} {"name":"Smooth1Properties_above_aux2","declaration":"theorem Smooth1Properties_above_aux2 {x : ℝ} {y : ℝ} {Ξ΅ : ℝ} (hΞ΅ : Ξ΅ ∈ Set.Ioo 0 1) (hy : y ∈ Set.Ioc 0 1) (hx2 : 2 ^ Ξ΅ < x) : 2 < (x / y) ^ (1 / Ξ΅)"} {"name":"Smooth1LeOne","declaration":"theorem Smooth1LeOne {Ξ¨ : ℝ β†’ ℝ} (Ξ¨nonneg : βˆ€ x > 0, 0 ≀ Ξ¨ x) (mass_one : ∫ (x : ℝ) in Set.Ioi 0, Ξ¨ x / x = 1) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) (x : ℝ) : 0 < x β†’ Smooth1 Ξ¨ Ξ΅ x ≀ 1"} {"name":"Smooth1Properties_below","declaration":"theorem Smooth1Properties_below {Ξ¨ : ℝ β†’ ℝ} (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) (Ξ΅ : ℝ) (Ξ΅pos : 0 < Ξ΅) (mass_one : ∫ (x : ℝ) in Set.Ioi 0, Ξ¨ x / x = 1) : βˆƒ c, 0 < c ∧ βˆ€ (x : ℝ), 0 < x β†’ x ≀ 1 - c * Ξ΅ β†’ Smooth1 Ξ¨ Ξ΅ x = 1"} {"name":"DifferentiableAt.ofReal_comp_iff","declaration":"theorem DifferentiableAt.ofReal_comp_iff {z : ℝ} {f : ℝ β†’ ℝ} : DifferentiableAt ℝ (fun y => ↑(f y)) z ↔ DifferentiableAt ℝ f z"} {"name":"DifferentiableAt.comp_ofReal","declaration":"theorem DifferentiableAt.comp_ofReal {e : β„‚ β†’ β„‚} {z : ℝ} (hf : DifferentiableAt β„‚ e ↑z) : DifferentiableAt ℝ (fun x => e ↑x) z"} {"name":"DeltaSpikeContinuous","declaration":"theorem DeltaSpikeContinuous {Ξ¨ : ℝ β†’ ℝ} {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) (diffΞ¨ : ContDiff ℝ 1 Ξ¨) : Continuous fun x => DeltaSpike Ξ¨ Ξ΅ x"} {"name":"PartialIntegration_of_support_in_Icc","declaration":"theorem PartialIntegration_of_support_in_Icc {a : ℝ} {b : ℝ} (f : ℝ β†’ β„‚) (g : ℝ β†’ β„‚) (ha : 0 < a) (h : a ≀ b) (fSupp : Function.support f βŠ† Set.Icc a b) (fDiff : DifferentiableOn ℝ f (Set.Ioi 0)) (gDiff : DifferentiableOn ℝ g (Set.Ioi 0)) (fderivCont : ContinuousOn (deriv f) (Set.Ioi 0)) (gderivCont : ContinuousOn (deriv g) (Set.Ioi 0)) : ∫ (x : ℝ) in Set.Ioi 0, f x * deriv g x = -∫ (x : ℝ) in Set.Ioi 0, deriv f x * g x"} {"name":"Smooth1Properties_below_aux","declaration":"theorem Smooth1Properties_below_aux {x : ℝ} {Ξ΅ : ℝ} (hx : x ≀ 1 - Real.log 2 * Ξ΅) (Ξ΅pos : 0 < Ξ΅) : x < 2 ^ (-Ξ΅)"} {"name":"Differentiable.ofReal_comp_iff","declaration":"theorem Differentiable.ofReal_comp_iff {f : ℝ β†’ ℝ} : (Differentiable ℝ fun y => ↑(f y)) ↔ Differentiable ℝ f"} {"name":"MeasureTheory.integral_comp_mul_right_I0i_haar_real","declaration":"theorem MeasureTheory.integral_comp_mul_right_I0i_haar_real (f : ℝ β†’ ℝ) {a : ℝ} (ha : 0 < a) : ∫ (y : ℝ) in Set.Ioi 0, f (y * a) / y = ∫ (y : ℝ) in Set.Ioi 0, f y / y"} {"name":"MeasureTheory.set_integral_integral_swap","declaration":"theorem MeasureTheory.set_integral_integral_swap {Ξ± : Type u_1} {Ξ² : Type u_2} {E : Type u_3} [MeasurableSpace Ξ±] [MeasurableSpace Ξ²] {ΞΌ : MeasureTheory.Measure Ξ±} {Ξ½ : MeasureTheory.Measure Ξ²} [NormedAddCommGroup E] [MeasureTheory.SigmaFinite Ξ½] [NormedSpace ℝ E] [MeasureTheory.SigmaFinite ΞΌ] (f : Ξ± β†’ Ξ² β†’ E) {s : Set Ξ±} {t : Set Ξ²} (hf : MeasureTheory.IntegrableOn (Function.uncurry f) (s Γ—Λ’ t) (MeasureTheory.Measure.prod ΞΌ Ξ½)) : ∫ (x : Ξ±) in s, ∫ (y : Ξ²) in t, f x y βˆ‚Ξ½ βˆ‚ΞΌ = ∫ (y : Ξ²) in t, ∫ (x : Ξ±) in s, f x y βˆ‚ΞΌ βˆ‚Ξ½"} {"name":"MeasureTheory.integral_comp_rpow_I0i_haar_real","declaration":"theorem MeasureTheory.integral_comp_rpow_I0i_haar_real (f : ℝ β†’ ℝ) {p : ℝ} (hp : p β‰  0) : ∫ (y : ℝ) in Set.Ioi 0, |p| * f (y ^ p) / y = ∫ (y : ℝ) in Set.Ioi 0, f y / y"} {"name":"mellintransform","declaration":"def mellintransform : Lean.ParserDescr"} {"name":"MellinInverseTransform","declaration":"def MellinInverseTransform (F : β„‚ β†’ β„‚) (Οƒ : ℝ) (x : ℝ) : β„‚"} {"name":"DeltaSpikeSupport_aux","declaration":"theorem DeltaSpikeSupport_aux {Ξ¨ : ℝ β†’ ℝ} {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) : (Function.support fun x => if x < 0 then 0 else DeltaSpike Ξ¨ Ξ΅ x) βŠ† Set.Icc (2 ^ (-Ξ΅)) (2 ^ Ξ΅)"} {"name":"MellinOfDeltaSpike","declaration":"theorem MellinOfDeltaSpike (Ξ¨ : ℝ β†’ ℝ) {Ξ΅ : ℝ} (Ξ΅pos : Ξ΅ > 0) (s : β„‚) : MellinTransform (fun x => ↑(DeltaSpike Ξ¨ Ξ΅ x)) s = MellinTransform (fun x => ↑(Ξ¨ x)) (↑Ρ * s)"} {"name":"DifferentiableAt.ofReal_comp","declaration":"theorem DifferentiableAt.ofReal_comp {z : ℝ} {f : ℝ β†’ ℝ} (hf : DifferentiableAt ℝ f z) : DifferentiableAt ℝ (fun y => ↑(f y)) z"} {"name":"MeasureTheory.integral_comp_div_I0i_haar","declaration":"theorem MeasureTheory.integral_comp_div_I0i_haar {𝕂 : Type u_1} [RCLike 𝕂] (f : ℝ β†’ 𝕂) {a : ℝ} (ha : 0 < a) : ∫ (y : ℝ) in Set.Ioi 0, f (a / y) / ↑y = ∫ (y : ℝ) in Set.Ioi 0, f y / ↑y"} {"name":"Filter.BigO_zero_atZero_of_support_in_Icc","declaration":"theorem Filter.BigO_zero_atZero_of_support_in_Icc {𝕂 : Type u_1} [RCLike 𝕂] {a : ℝ} {b : ℝ} (f : ℝ β†’ 𝕂) (ha : 0 < a) (fSupp : Function.support f βŠ† Set.Icc a b) : f =O[nhdsWithin 0 (Set.Ioi 0)] fun x => 0"} {"name":"MellinOfSmooth1a","declaration":"theorem MellinOfSmooth1a (Ξ¨ : ℝ β†’ ℝ) (diffΞ¨ : ContDiff ℝ 1 Ξ¨) (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) {s : β„‚} (hs : 0 < s.re) : MellinTransform (fun x => ↑(Smooth1 Ξ¨ Ξ΅ x)) s = 1 / s * MellinTransform (fun x => ↑(Ξ¨ x)) (↑Ρ * s)"} {"name":"Function.support_deriv_subset_Icc","declaration":"theorem Function.support_deriv_subset_Icc {𝕂 : Type u_1} [RCLike 𝕂] {a : ℝ} {b : ℝ} {f : ℝ β†’ 𝕂} (fSupp : Function.support f βŠ† Set.Icc a b) : Function.support (deriv f) βŠ† Set.Icc a b"} {"name":"MeasureTheory.integral_comp_mul_left_I0i_haar","declaration":"theorem MeasureTheory.integral_comp_mul_left_I0i_haar {𝕂 : Type u_1} [RCLike 𝕂] (f : ℝ β†’ 𝕂) {a : ℝ} (ha : 0 < a) : ∫ (y : ℝ) in Set.Ioi 0, f (a * y) / ↑y = ∫ (y : ℝ) in Set.Ioi 0, f y / ↑y"} {"name":"Smooth1LeOne_aux","declaration":"theorem Smooth1LeOne_aux {x : ℝ} {Ξ΅ : ℝ} {Ξ¨ : ℝ β†’ ℝ} (xpos : 0 < x) (Ξ΅pos : 0 < Ξ΅) (mass_one : ∫ (x : ℝ) in Set.Ioi 0, Ξ¨ x / x = 1) : ∫ (y : ℝ) in Set.Ioi 0, Ξ¨ ((x / y) ^ (1 / Ξ΅)) / Ξ΅ / y = 1"} {"name":"IntervalIntegral.integral_eq_integral_of_support_subset_Icc","declaration":"theorem IntervalIntegral.integral_eq_integral_of_support_subset_Icc {a : ℝ} {b : ℝ} {ΞΌ : MeasureTheory.Measure ℝ} [MeasureTheory.NoAtoms ΞΌ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] {f : ℝ β†’ E} (h : Function.support f βŠ† Set.Icc a b) : ∫ (x : ℝ) in a..b, f x βˆ‚ΞΌ = ∫ (x : ℝ), f x βˆ‚ΞΌ"} {"name":"DeltaSpikeMass","declaration":"theorem DeltaSpikeMass {Ξ¨ : ℝ β†’ ℝ} (mass_one : ∫ (x : ℝ) in Set.Ioi 0, Ξ¨ x / x = 1) {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) : ∫ (x : ℝ) in Set.Ioi 0, DeltaSpike Ξ¨ Ξ΅ x / x = 1"} {"name":"MellinTransform","declaration":"def MellinTransform (f : ℝ β†’ β„‚) (s : β„‚) : β„‚"} {"name":"deriv.comp_ofReal","declaration":"theorem deriv.comp_ofReal {e : β„‚ β†’ β„‚} {z : ℝ} (hf : DifferentiableAt β„‚ e ↑z) : deriv (fun x => e ↑x) z = deriv e ↑z"} {"name":"MellinInversion_aux2","declaration":"theorem MellinInversion_aux2 {f : ℝ β†’ β„‚} (s : β„‚) (fDiff : DifferentiableOn ℝ f (Set.Ioi 0)) (fDiff2 : DifferentiableOn ℝ (deriv f) (Set.Ioi 0)) (hfs : Filter.Tendsto (fun x => deriv f x * ↑x ^ s) (nhdsWithin 0 (Set.Ioi 0)) (nhds 0)) (hfinf : Filter.Tendsto (fun x => deriv f x * ↑x ^ s) Filter.atTop (nhds 0)) : ∫ (x : ℝ) in Set.Ioi 0, deriv f x * ↑x ^ s = -∫ (x : ℝ) in Set.Ioi 0, deriv (deriv f) x * ↑x ^ (s + 1) / (s + 1)"} {"name":"PerronInverseMellin_lt","declaration":"theorem PerronInverseMellin_lt {t : ℝ} {x : ℝ} (tpos : 0 < t) (t_lt_x : t < x) {Οƒ : ℝ} (Οƒpos : 0 < Οƒ) : MellinInverseTransform (Perron.f t) Οƒ x = 0"} {"name":"Complex.differentiable_ofReal","declaration":"theorem Complex.differentiable_ofReal : Differentiable ℝ Complex.ofReal'"} {"name":"Differentiable.ofReal_comp","declaration":"theorem Differentiable.ofReal_comp {f : ℝ β†’ ℝ} (hf : Differentiable ℝ f) : Differentiable ℝ fun y => ↑(f y)"} {"name":"MellinOfSmooth1b","declaration":"theorem MellinOfSmooth1b {Ξ¨ : ℝ β†’ ℝ} (diffΞ¨ : ContDiff ℝ 1 Ξ¨) (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) {σ₁ : ℝ} {Οƒβ‚‚ : ℝ} (σ₁pos : 0 < σ₁) (Ξ΅ : ℝ) (Ξ΅pos : 0 < Ξ΅) : (fun s => β€–MellinTransform (fun x => ↑(Smooth1 Ξ¨ Ξ΅ x)) sβ€–) =O[Filter.principal {s | σ₁ ≀ s.re ∧ s.re ≀ Οƒβ‚‚}] fun s =>\n 1 / (Ξ΅ * β€–sβ€– ^ 2)"} {"name":"MellinInversion_aux4","declaration":"theorem MellinInversion_aux4 {f : ℝ β†’ β„‚} (Οƒ : ℝ) (Οƒ_ne_zero : Οƒ β‰  0) (Οƒ_ne_negOne : Οƒ β‰  -1) (fInt : MeasureTheory.IntegrableOn (fun x => f x * ↑x ^ ↑σ) (Set.Ioi 0) MeasureTheory.volume) : VerticalIntegral (fun s => ∫ (x : ℝ) in Set.Ioi 0, f x * ↑x ^ (s + 1) / (s * (s + 1))) Οƒ =\n ∫ (x : ℝ) in Set.Ioi 0, VerticalIntegral (fun s => f x * ↑x ^ (s + 1) / (s * (s + 1))) Οƒ"} {"name":"MellinOfSmooth1c","declaration":"theorem MellinOfSmooth1c {Ξ¨ : ℝ β†’ ℝ} (diffΞ¨ : ContDiff ℝ 1 Ξ¨) (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) (mass_one : ∫ (x : ℝ) in Set.Ioi 0, Ξ¨ x / x = 1) : (fun Ξ΅ => MellinTransform (fun x => ↑(Smooth1 Ξ¨ Ξ΅ x)) 1 - 1) =O[nhdsWithin 0 (Set.Ioi 0)] id"} {"name":"Function.support_id","declaration":"theorem Function.support_id : (Function.support fun x => x) = Set.Iio 0 βˆͺ Set.Ioi 0"} {"name":"Smooth1","declaration":"def Smooth1 (Ξ¨ : ℝ β†’ ℝ) (Ξ΅ : ℝ) : ℝ β†’ ℝ"} {"name":"PartialIntegration","declaration":"/-- *Need differentiability, and decay at `0` and `∞`* -/\ntheorem PartialIntegration (f : ℝ β†’ β„‚) (g : ℝ β†’ β„‚) (fDiff : DifferentiableOn ℝ f (Set.Ioi 0)) (gDiff : DifferentiableOn ℝ g (Set.Ioi 0)) (fDerivgInt : MeasureTheory.IntegrableOn (f * deriv g) (Set.Ioi 0) MeasureTheory.volume) (gDerivfInt : MeasureTheory.IntegrableOn (deriv f * g) (Set.Ioi 0) MeasureTheory.volume) (lim_at_zero : Filter.Tendsto (f * g) (nhdsWithin 0 (Set.Ioi 0)) (nhds 0)) (lim_at_inf : Filter.Tendsto (f * g) Filter.atTop (nhds 0)) : ∫ (x : ℝ) in Set.Ioi 0, f x * deriv g x = -∫ (x : ℝ) in Set.Ioi 0, deriv f x * g x"} {"name":"MellinConvNonNeg_of_NonNeg","declaration":"theorem MellinConvNonNeg_of_NonNeg {f : ℝ β†’ ℝ} {g : ℝ β†’ ℝ} (f_nonneg : βˆ€ x > 0, 0 ≀ f x) (g_nonneg : βˆ€ x > 0, 0 ≀ g x) {x : ℝ} (xpos : 0 < x) : 0 ≀ MellinConvolution f g x"} {"name":"DeltaSpikeSupport'","declaration":"theorem DeltaSpikeSupport' {Ξ¨ : ℝ β†’ ℝ} {Ξ΅ : ℝ} {x : ℝ} (Ξ΅pos : 0 < Ξ΅) (xnonneg : 0 ≀ x) (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) : DeltaSpike Ξ¨ Ξ΅ x β‰  0 β†’ x ∈ Set.Icc (2 ^ (-Ξ΅)) (2 ^ Ξ΅)"} {"name":"MellinConvolutionSymmetric","declaration":"theorem MellinConvolutionSymmetric {𝕂 : Type u_1} [RCLike 𝕂] (f : ℝ β†’ 𝕂) (g : ℝ β†’ 𝕂) {x : ℝ} (xpos : 0 < x) : MellinConvolution f g x = MellinConvolution g f x"} {"name":"deriv.ofReal_comp","declaration":"theorem deriv.ofReal_comp {z : ℝ} {f : ℝ β†’ ℝ} : deriv (fun y => ↑(f y)) z = ↑(deriv f z)"} {"name":"SetIntegral.integral_eq_integral_inter_of_support_subset","declaration":"theorem SetIntegral.integral_eq_integral_inter_of_support_subset {ΞΌ : MeasureTheory.Measure ℝ} {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ℝ E] {s : Set ℝ} {t : Set ℝ} {f : ℝ β†’ E} (h : Function.support f βŠ† t) (ht : MeasurableSet t) : ∫ (x : ℝ) in s, f x βˆ‚ΞΌ = ∫ (x : ℝ) in s ∩ t, f x βˆ‚ΞΌ"} {"name":"Filter.TendstoAtTop_of_support_in_Icc","declaration":"theorem Filter.TendstoAtTop_of_support_in_Icc {𝕂 : Type u_1} [RCLike 𝕂] {a : ℝ} {b : ℝ} (f : ℝ β†’ 𝕂) (fSupp : Function.support f βŠ† Set.Icc a b) : Filter.Tendsto f Filter.atTop (nhds 0)"} {"name":"HasDerivAt.of_hasDerivAt_ofReal_comp","declaration":"theorem HasDerivAt.of_hasDerivAt_ofReal_comp {z : ℝ} {f : ℝ β†’ ℝ} {u : β„‚} (hf : HasDerivAt (fun y => ↑(f y)) u z) : βˆƒ u', u = ↑u' ∧ HasDerivAt f u' z"} {"name":"Filter.BigO_zero_atTop_of_support_in_Icc","declaration":"theorem Filter.BigO_zero_atTop_of_support_in_Icc {𝕂 : Type u_1} [RCLike 𝕂] {a : ℝ} {b : ℝ} (f : ℝ β†’ 𝕂) (fSupp : Function.support f βŠ† Set.Icc a b) : f =O[Filter.atTop] fun x => 0"} {"name":"Complex.differentiableAt_ofReal","declaration":"theorem Complex.differentiableAt_ofReal (x : ℝ) : DifferentiableAt ℝ Complex.ofReal' x"} {"name":"MellinConvolution","declaration":"def MellinConvolution {𝕂 : Type u_1} [RCLike 𝕂] (f : ℝ β†’ 𝕂) (g : ℝ β†’ 𝕂) (x : ℝ) : 𝕂"} {"name":"MellinInversion","declaration":"theorem MellinInversion (Οƒ : ℝ) {f : ℝ β†’ β„‚} {x : ℝ} (hx : 0 < x) (hf : MellinConvergent f ↑σ) (hFf : Complex.VerticalIntegrable (mellin f) Οƒ MeasureTheory.volume) (hfx : ContinuousAt f x) : MellinInverseTransform (MellinTransform f) Οƒ x = f x"} {"name":"MellinOfPsi","declaration":"theorem MellinOfPsi {Ξ¨ : ℝ β†’ ℝ} (diffΞ¨ : ContDiff ℝ 1 Ξ¨) (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) {σ₁ : ℝ} {Οƒβ‚‚ : ℝ} (σ₁pos : 0 < σ₁) : (fun s => β€–MellinTransform (fun x => ↑(Ξ¨ x)) sβ€–) =O[Filter.principal {s | σ₁ ≀ s.re ∧ s.re ≀ Οƒβ‚‚}] fun s => 1 / β€–sβ€–"} {"name":"Function.support_of_along_fiber_subset_subset","declaration":"theorem Function.support_of_along_fiber_subset_subset {Ξ± : Type u_2} {Ξ² : Type u_3} {M : Type u_4} [Zero M] {f : Ξ± Γ— Ξ² β†’ M} {s : Set Ξ±} {t : Set Ξ²} (hx : βˆ€ (y : Ξ²), (Function.support fun x => f (x, y)) βŠ† s) (hy : βˆ€ (x : Ξ±), (Function.support fun y => f (x, y)) βŠ† t) : Function.support f βŠ† s Γ—Λ’ t"} {"name":"SmoothExistence","declaration":"theorem SmoothExistence : βˆƒ Ξ¨,\n ContDiff ℝ ⊀ Ξ¨ ∧ (βˆ€ (x : ℝ), 0 ≀ Ξ¨ x) ∧ Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2 ∧ ∫ (x : ℝ) in Set.Ici 0, Ξ¨ x / x = 1"} {"name":"Smooth1Nonneg","declaration":"theorem Smooth1Nonneg {Ξ¨ : ℝ β†’ ℝ} (Ξ¨nonneg : βˆ€ x > 0, 0 ≀ Ξ¨ x) {Ξ΅ : ℝ} {x : ℝ} (xpos : 0 < x) (Ξ΅pos : 0 < Ξ΅) : 0 ≀ Smooth1 Ξ¨ Ξ΅ x"} {"name":"Smooth1Properties_above_aux","declaration":"theorem Smooth1Properties_above_aux {x : ℝ} {Ξ΅ : ℝ} (hx : 1 + 2 * Real.log 2 * Ξ΅ ≀ x) (hΞ΅ : Ξ΅ ∈ Set.Ioo 0 1) : 2 ^ Ξ΅ < x"} {"name":"DeltaSpikeSupport","declaration":"theorem DeltaSpikeSupport {Ξ¨ : ℝ β†’ ℝ} {Ξ΅ : ℝ} {x : ℝ} (Ξ΅pos : 0 < Ξ΅) (xnonneg : 0 ≀ x) (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) : x βˆ‰ Set.Icc (2 ^ (-Ξ΅)) (2 ^ Ξ΅) β†’ DeltaSpike Ξ¨ Ξ΅ x = 0"} {"name":"MeasureTheory.integral_comp_mul_right_I0i_haar","declaration":"theorem MeasureTheory.integral_comp_mul_right_I0i_haar {𝕂 : Type u_1} [RCLike 𝕂] (f : ℝ β†’ 𝕂) {a : ℝ} (ha : 0 < a) : ∫ (y : ℝ) in Set.Ioi 0, f (y * a) / ↑y = ∫ (y : ℝ) in Set.Ioi 0, f y / ↑y"} {"name":"Differentiable.comp_ofReal","declaration":"theorem Differentiable.comp_ofReal {e : β„‚ β†’ β„‚} (h : Differentiable β„‚ e) : Differentiable ℝ fun x => e ↑x"} {"name":"Complex.deriv_ofReal","declaration":"theorem Complex.deriv_ofReal (x : ℝ) : deriv Complex.ofReal' x = 1"} {"name":"Complex.ofReal_rpow","declaration":"theorem Complex.ofReal_rpow {x : ℝ} (h : x > 0) (y : ℝ) : ↑(x ^ y) = ↑x ^ ↑y"} {"name":"MellinOfDeltaSpikeAt1_asymp","declaration":"theorem MellinOfDeltaSpikeAt1_asymp {Ξ¨ : ℝ β†’ ℝ} (diffΞ¨ : ContDiff ℝ 1 Ξ¨) (suppΞ¨ : Function.support Ξ¨ βŠ† Set.Icc (1 / 2) 2) (mass_one : ∫ (x : ℝ) in Set.Ioi 0, Ξ¨ x / x = 1) : (fun Ξ΅ => MellinTransform (fun x => ↑(Ξ¨ x)) ↑Ρ - 1) =O[nhdsWithin 0 (Set.Ioi 0)] id"} {"name":"Smooth1Properties_estimate","declaration":"theorem Smooth1Properties_estimate {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) : (1 - 2 ^ (-Ξ΅)) / Ξ΅ < Real.log 2"} {"name":"deriv.ofReal_comp'","declaration":"theorem deriv.ofReal_comp' {f : ℝ β†’ ℝ} : (deriv fun x => ↑(f x)) = fun x => ↑(deriv f x)"} {"name":"MeasureTheory.integral_comp_inv_I0i_haar","declaration":"theorem MeasureTheory.integral_comp_inv_I0i_haar {𝕂 : Type u_1} [RCLike 𝕂] (f : ℝ β†’ 𝕂) : ∫ (y : ℝ) in Set.Ioi 0, f (1 / y) / ↑y = ∫ (y : ℝ) in Set.Ioi 0, f y / ↑y"} {"name":"DeltaSpikeNonNeg_of_NonNeg","declaration":"theorem DeltaSpikeNonNeg_of_NonNeg {Ξ¨ : ℝ β†’ ℝ} (Ξ¨nonneg : βˆ€ x > 0, 0 ≀ Ξ¨ x) {x : ℝ} {Ξ΅ : ℝ} (xpos : 0 < x) (Ξ΅pos : 0 < Ξ΅) : 0 ≀ DeltaSpike Ξ¨ Ξ΅ x"} {"name":"PerronInverseMellin_gt","declaration":"theorem PerronInverseMellin_gt {t : ℝ} {x : ℝ} (xpos : 0 < x) (x_lt_t : x < t) {Οƒ : ℝ} (Οƒpos : 0 < Οƒ) : MellinInverseTransform (Perron.f t) Οƒ x = 1 - ↑x / ↑t"} {"name":"mem_within_strip","declaration":"theorem mem_within_strip (σ₁ : ℝ) (Οƒβ‚‚ : ℝ) : {s | σ₁ ≀ s.re ∧ s.re ≀ Οƒβ‚‚} ∈ Filter.principal {s | σ₁ ≀ s.re ∧ s.re ≀ Οƒβ‚‚}"} {"name":"Function.support_abs","declaration":"theorem Function.support_abs {𝕂 : Type u_1} [RCLike 𝕂] {Ξ± : Type u_2} (f : Ξ± β†’ 𝕂) : (Function.support fun x => β€–f xβ€–) = Function.support f"} {"name":"deriv.comp_ofReal'","declaration":"theorem deriv.comp_ofReal' {e : β„‚ β†’ β„‚} (hf : Differentiable β„‚ e) : (deriv fun x => e ↑x) = fun x => deriv e ↑x"} {"name":"MellinTransform_eq","declaration":"theorem MellinTransform_eq : MellinTransform = mellin"} {"name":"DeltaSpikeOfRealContinuous","declaration":"theorem DeltaSpikeOfRealContinuous {Ξ¨ : ℝ β†’ ℝ} {Ξ΅ : ℝ} (Ξ΅pos : 0 < Ξ΅) (diffΞ¨ : ContDiff ℝ 1 Ξ¨) : Continuous fun x => ↑(DeltaSpike Ξ¨ Ξ΅ x)"}