{"name":"SMRHN.SMNoGrav_cubicACC_toFun","declaration":"theorem SMRHN.SMNoGrav_cubicACC_toFun (n : ℕ) (S : ACCSystemCharges.Charges (SMνCharges n)) : (SMRHN.SMNoGrav n).cubicACC.toFun S =\n Finset.sum Finset.univ fun i =>\n 6 * (S (finProdFinEquiv (0, i)) * S (finProdFinEquiv (0, i)) * S (finProdFinEquiv (0, i))) +\n 3 * (S (finProdFinEquiv (1, i)) * S (finProdFinEquiv (1, i)) * S (finProdFinEquiv (1, i))) +\n 3 * (S (finProdFinEquiv (2, i)) * S (finProdFinEquiv (2, i)) * S (finProdFinEquiv (2, i))) +\n 2 * (S (finProdFinEquiv (3, i)) * S (finProdFinEquiv (3, i)) * S (finProdFinEquiv (3, i))) +\n S (finProdFinEquiv (4, i)) * S (finProdFinEquiv (4, i)) * S (finProdFinEquiv (4, i)) +\n S (finProdFinEquiv (5, i)) * S (finProdFinEquiv (5, i)) * S (finProdFinEquiv (5, i))"} {"name":"SMRHN.SMNoGrav_quadraticACCs","declaration":"theorem SMRHN.SMNoGrav_quadraticACCs (n : ℕ) (i : Fin 0) : (SMRHN.SMNoGrav n).quadraticACCs i = Fin.elim0 i"} {"name":"SMRHN.SMNoGrav_linearACCs","declaration":"theorem SMRHN.SMNoGrav_linearACCs (n : ℕ) (i : Fin 2) : (SMRHN.SMNoGrav n).linearACCs i =\n match i with\n | 0 =>\n {\n toAddHom :=\n { toFun := fun S => Finset.sum Finset.univ fun i => 3 * S (finProdFinEquiv (0, i)) + S (finProdFinEquiv (3, i)),\n map_add' := ⋯ },\n map_smul' := ⋯ }\n | 1 =>\n {\n toAddHom :=\n {\n toFun := fun S =>\n Finset.sum Finset.univ fun i =>\n 2 * S (finProdFinEquiv (0, i)) + S (finProdFinEquiv (1, i)) + S (finProdFinEquiv (2, i)),\n map_add' := ⋯ },\n map_smul' := ⋯ }"} {"name":"SMRHN.SMNoGrav","declaration":"/-- The ACC system for the SM plus RHN with no gravitational anomaly. -/\ndef SMRHN.SMNoGrav (n : ℕ) : ACCSystem"} {"name":"SMRHN.SMNoGrav.chargeToLinear","declaration":"/-- An element of `charges` which satisfies the linear ACCs\ngives us a element of `LinSols`. -/\ndef SMRHN.SMNoGrav.chargeToLinear {n : ℕ} (S : ACCSystemCharges.Charges (SMRHN.SMNoGrav n).toACCSystemCharges) (hSU2 : SMνACCs.accSU2 S = 0) (hSU3 : SMνACCs.accSU3 S = 0) : ACCSystemLinear.LinSols (SMRHN.SMNoGrav n).toACCSystemLinear"} {"name":"SMRHN.SMNoGrav.linearToAF","declaration":"/-- An element of `LinSols` which satisfies the quadratic and cubic ACCs\ngives us a element of `Sols`. -/\ndef SMRHN.SMNoGrav.linearToAF {n : ℕ} (S : ACCSystemLinear.LinSols (SMRHN.SMNoGrav n).toACCSystemLinear) (hc : SMνACCs.accCube S.val = 0) : ACCSystem.Sols (SMRHN.SMNoGrav n)"} {"name":"SMRHN.SMNoGrav_numberQuadratic","declaration":"theorem SMRHN.SMNoGrav_numberQuadratic (n : ℕ) : (SMRHN.SMNoGrav n).numberQuadratic = 0"} {"name":"SMRHN.SMNoGrav.SU2Sol","declaration":"theorem SMRHN.SMNoGrav.SU2Sol {n : ℕ} (S : ACCSystemLinear.LinSols (SMRHN.SMNoGrav n).toACCSystemLinear) : SMνACCs.accSU2 S.val = 0"} {"name":"SMRHN.SMNoGrav.quadToAF","declaration":"/-- An element of `QuadSols` which satisfies the quadratic ACCs\ngives us a element of `LinSols`. -/\ndef SMRHN.SMNoGrav.quadToAF {n : ℕ} (S : ACCSystemQuad.QuadSols (SMRHN.SMNoGrav n).toACCSystemQuad) (hc : SMνACCs.accCube S.val = 0) : ACCSystem.Sols (SMRHN.SMNoGrav n)"} {"name":"SMRHN.SMNoGrav.chargeToQuad","declaration":"/-- An element of `charges` which satisfies the linear and quadratic ACCs\ngives us a element of `QuadSols`. -/\ndef SMRHN.SMNoGrav.chargeToQuad {n : ℕ} (S : ACCSystemCharges.Charges (SMRHN.SMNoGrav n).toACCSystemCharges) (hSU2 : SMνACCs.accSU2 S = 0) (hSU3 : SMνACCs.accSU3 S = 0) : ACCSystemQuad.QuadSols (SMRHN.SMNoGrav n).toACCSystemQuad"} {"name":"SMRHN.SMNoGrav_numberCharges","declaration":"theorem SMRHN.SMNoGrav_numberCharges (n : ℕ) : (SMRHN.SMNoGrav n).numberCharges = 6 * n"} {"name":"SMRHN.SMNoGrav.linearToQuad","declaration":"/-- An element of `LinSols` which satisfies the quadratic ACCs\ngives us a element of `QuadSols`. -/\ndef SMRHN.SMNoGrav.linearToQuad {n : ℕ} (S : ACCSystemLinear.LinSols (SMRHN.SMNoGrav n).toACCSystemLinear) : ACCSystemQuad.QuadSols (SMRHN.SMNoGrav n).toACCSystemQuad"} {"name":"SMRHN.SMNoGrav.SU3Sol","declaration":"theorem SMRHN.SMNoGrav.SU3Sol {n : ℕ} (S : ACCSystemLinear.LinSols (SMRHN.SMNoGrav n).toACCSystemLinear) : SMνACCs.accSU3 S.val = 0"} {"name":"SMRHN.SMNoGrav.chargeToAF","declaration":"/-- An element of `charges` which satisfies the linear, quadratic and cubic ACCs\ngives us a element of `Sols`. -/\ndef SMRHN.SMNoGrav.chargeToAF {n : ℕ} (S : ACCSystemCharges.Charges (SMRHN.SMNoGrav n).toACCSystemCharges) (hSU2 : SMνACCs.accSU2 S = 0) (hSU3 : SMνACCs.accSU3 S = 0) (hc : SMνACCs.accCube S = 0) : ACCSystem.Sols (SMRHN.SMNoGrav n)"} {"name":"SMRHN.SMNoGrav.perm","declaration":"/-- The permutations acting on the ACC system corresponding to the SM with RHN,\nand no gravitational anomaly. -/\ndef SMRHN.SMNoGrav.perm (n : ℕ) : ACCSystemGroupAction (SMRHN.SMNoGrav n)"} {"name":"SMRHN.SMNoGrav.cubeSol","declaration":"theorem SMRHN.SMNoGrav.cubeSol {n : ℕ} (S : ACCSystem.Sols (SMRHN.SMNoGrav n)) : SMνACCs.accCube S.val = 0"} {"name":"SMRHN.SMNoGrav_numberLinear","declaration":"theorem SMRHN.SMNoGrav_numberLinear (n : ℕ) : (SMRHN.SMNoGrav n).numberLinear = 2"}