{"name":"Submodule.exists_equiv_fst_sndModFst","declaration":"/-- Given a submodule $E$ of $B \\times F$, there is an equivalence $f : E \\to B' \\times F'$\ngiven by the projections $E \\to B$ and $E \\to F$ \"modulo\" $φ : B \\to F$. -/\ntheorem Submodule.exists_equiv_fst_sndModFst {B : Type u_1} {F : Type u_2} {R : Type u_3} [DivisionRing R] [AddCommGroup B] [AddCommGroup F] [Module R B] [Module R F] (E : Submodule R (B × F)) : ∃ B' F' f φ,\n (∀ (x : ↥E), ↑(f x).1 = (↑x).1 ∧ ↑(f x).2 = (↑x).2 - φ (↑x).1) ∧\n ∀ (x₁ : ↥B') (x₂ : ↥F'), ↑((LinearEquiv.symm f) (x₁, x₂)) = (↑x₁, ↑x₂ + φ ↑x₁)"}