import torch import torch.nn as nn from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, LogitsProcessor from configs.hyperparametric import Reward_config,Tree_config from utils.warp import Warp from utils.model_generate import extra_span_from_tokens #from model.logitsprocessor import RewardControlLogitsProcessor config = Reward_config().to_dict() def reinforced_loss(W,V,I_a,I_s,p,lower=1e-3,upper=1-1e-3): prob = I_a / I_s * p #c = W - V W = torch.where(W > lower, W, lower) W = torch.where(W < upper, W, upper) return - torch.log(torch.mean(W * prob)) class PRGTrainer(Trainer): def __init__(self,tokenizer,logits_processor=None,**kwargs): super(PRGTrainer,self).__init__(**kwargs) self.loss_tokenizer = tokenizer self.logits_processor = logits_processor if logits_processor else LogitsProcessor self.ce = nn.CrossEntropyLoss(ignore_index=-100) self.open_tag = tokenizer.encode('',add_special_tokens=False) self.close_tag = tokenizer.encode('',add_special_tokens=False) self.state = 'ref' ## 'ref' or 'sft' def compute_loss(self, model, inputs, return_outputs=False,num_items_in_batch=None): V,I_a,I_s,prob = inputs.pop('reward'),inputs.pop('I-all'),inputs.pop('I-sample'),inputs.pop('prob') input_ids,attention_mask = inputs.pop('input_ids'),inputs.pop('attention_mask') labels,label_mask = inputs.pop('labels'),inputs.pop('label_mask') outputs = model(input_ids=input_ids, attention_mask=attention_mask, return_dict=config['return_dict_in_generate'], ) logits = outputs.logits logits = torch.softmax(logits,dim=-1) shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() shift_label_mask = label_mask[..., 1:].contiguous() batch_label_prob = shift_logits * shift_label_mask.unsqueeze(-1) shift_label_mask = (batch_label_prob != 0).any(dim=-1).any(dim=0) shift_logits = shift_logits[:,shift_label_mask,:] shift_labels = shift_labels[:,shift_label_mask] W = torch.max(shift_logits,dim=-1)[0] W = torch.mean(W,dim=-1) loss_ce = self.ce(shift_logits.view(-1, shift_logits.size(-1)),shift_labels.view(-1)) loss_fb = reinforced_loss(W=W,V=V,I_a=I_a,I_s=I_s,p=prob) loss = loss_ce + loss_fb return (loss, outputs) if return_outputs else loss