# Uncompiled variant of airbench94_compiled.py # 3.83s runtime on an A100; 0.36 PFLOPs. # Evidence: 94.01 average accuracy in n=1000 runs. # # We recorded the runtime of 3.83 seconds on an NVIDIA A100-SXM4-80GB with the following nvidia-smi: # NVIDIA-SMI 515.105.01 Driver Version: 515.105.01 CUDA Version: 11.7 # torch.__version__ == '2.1.2+cu118' ############################################# # Setup/Hyperparameters # ############################################# import os import sys import uuid from math import ceil import torch from torch import nn import torch.nn.functional as F import torchvision import torchvision.transforms as T torch.backends.cudnn.benchmark = True # We express the main training hyperparameters (batch size, learning rate, momentum, and weight decay) # in decoupled form, so that each one can be tuned independently. This accomplishes the following: # * Assuming time-constant gradients, the average step size is decoupled from everything but the lr. # * The size of the weight decay update is decoupled from everything but the wd. # In constrast, normally when we increase the (Nesterov) momentum, this also scales up the step size # proportionally to 1 + 1 / (1 - momentum), meaning we cannot change momentum without having to re-tune # the learning rate. Similarly, normally when we increase the learning rate this also increases the size # of the weight decay, requiring a proportional decrease in the wd to maintain the same decay strength. # # The practical impact is that hyperparameter tuning is faster, since this parametrization allows each # one to be tuned independently. See https://myrtle.ai/learn/how-to-train-your-resnet-5-hyperparameters/. hyp = { 'opt': { 'train_epochs': 9.9, 'batch_size': 1024, 'lr': 11.5, # learning rate per 1024 examples 'momentum': 0.85, 'weight_decay': 0.0153, # weight decay per 1024 examples (decoupled from learning rate) 'bias_scaler': 64.0, # scales up learning rate (but not weight decay) for BatchNorm biases 'label_smoothing': 0.2, 'whiten_bias_epochs': 3, # how many epochs to train the whitening layer bias before freezing }, 'aug': { 'flip': True, 'translate': 2, }, 'net': { 'widths': { 'block1': 64, 'block2': 256, 'block3': 256, }, 'batchnorm_momentum': 0.6, 'scaling_factor': 1/9, 'tta_level': 2, # the level of test-time augmentation: 0=none, 1=mirror, 2=mirror+translate }, } ############################################# # DataLoader # ############################################# CIFAR_MEAN = torch.tensor((0.4914, 0.4822, 0.4465)) CIFAR_STD = torch.tensor((0.2470, 0.2435, 0.2616)) def batch_flip_lr(inputs): flip_mask = (torch.rand(len(inputs), device=inputs.device) < 0.5).view(-1, 1, 1, 1) return torch.where(flip_mask, inputs.flip(-1), inputs) def batch_crop(images, crop_size): r = (images.size(-1) - crop_size)//2 shifts = torch.randint(-r, r+1, size=(len(images), 2), device=images.device) images_out = torch.empty((len(images), 3, crop_size, crop_size), device=images.device, dtype=images.dtype) # The two cropping methods in this if-else produce equivalent results, but the second is faster for r > 2. if r <= 2: for sy in range(-r, r+1): for sx in range(-r, r+1): mask = (shifts[:, 0] == sy) & (shifts[:, 1] == sx) images_out[mask] = images[mask, :, r+sy:r+sy+crop_size, r+sx:r+sx+crop_size] else: images_tmp = torch.empty((len(images), 3, crop_size, crop_size+2*r), device=images.device, dtype=images.dtype) for s in range(-r, r+1): mask = (shifts[:, 0] == s) images_tmp[mask] = images[mask, :, r+s:r+s+crop_size, :] for s in range(-r, r+1): mask = (shifts[:, 1] == s) images_out[mask] = images_tmp[mask, :, :, r+s:r+s+crop_size] return images_out class CifarLoader: def __init__(self, path, train=True, batch_size=500, aug=None, drop_last=None, shuffle=None, gpu=0): data_path = os.path.join(path, 'train.pt' if train else 'test.pt') if not os.path.exists(data_path): dset = torchvision.datasets.CIFAR10(path, download=True, train=train) images = torch.tensor(dset.data) labels = torch.tensor(dset.targets) torch.save({'images': images, 'labels': labels, 'classes': dset.classes}, data_path) data = torch.load(data_path, map_location=torch.device(gpu)) self.images, self.labels, self.classes = data['images'], data['labels'], data['classes'] # It's faster to load+process uint8 data than to load preprocessed fp16 data self.images = (self.images.half() / 255).permute(0, 3, 1, 2).to(memory_format=torch.channels_last) self.normalize = T.Normalize(CIFAR_MEAN, CIFAR_STD) self.proc_images = {} # Saved results of image processing to be done on the first epoch self.epoch = 0 self.aug = aug or {} for k in self.aug.keys(): assert k in ['flip', 'translate'], 'Unrecognized key: %s' % k self.batch_size = batch_size self.drop_last = train if drop_last is None else drop_last self.shuffle = train if shuffle is None else shuffle def __len__(self): return len(self.images)//self.batch_size if self.drop_last else ceil(len(self.images)/self.batch_size) def __iter__(self): if self.epoch == 0: images = self.proc_images['norm'] = self.normalize(self.images) # Pre-flip images in order to do every-other epoch flipping scheme if self.aug.get('flip', False): images = self.proc_images['flip'] = batch_flip_lr(images) # Pre-pad images to save time when doing random translation pad = self.aug.get('translate', 0) if pad > 0: self.proc_images['pad'] = F.pad(images, (pad,)*4, 'reflect') if self.aug.get('translate', 0) > 0: images = batch_crop(self.proc_images['pad'], self.images.shape[-2]) elif self.aug.get('flip', False): images = self.proc_images['flip'] else: images = self.proc_images['norm'] # Flip all images together every other epoch. This increases diversity relative to random flipping if self.aug.get('flip', False): if self.epoch % 2 == 1: images = images.flip(-1) self.epoch += 1 indices = (torch.randperm if self.shuffle else torch.arange)(len(images), device=images.device) for i in range(len(self)): idxs = indices[i*self.batch_size:(i+1)*self.batch_size] yield (images[idxs], self.labels[idxs]) ############################################# # Network Components # ############################################# class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class Mul(nn.Module): def __init__(self, scale): super().__init__() self.scale = scale def forward(self, x): return x * self.scale class BatchNorm(nn.BatchNorm2d): def __init__(self, num_features, momentum, eps=1e-12, weight=False, bias=True): super().__init__(num_features, eps=eps, momentum=1-momentum) self.weight.requires_grad = weight self.bias.requires_grad = bias # Note that PyTorch already initializes the weights to one and bias to zero class Conv(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size=3, padding='same', bias=False): super().__init__(in_channels, out_channels, kernel_size=kernel_size, padding=padding, bias=bias) def reset_parameters(self): super().reset_parameters() if self.bias is not None: self.bias.data.zero_() w = self.weight.data torch.nn.init.dirac_(w[:w.size(1)]) class ConvGroup(nn.Module): def __init__(self, channels_in, channels_out, batchnorm_momentum): super().__init__() self.conv1 = Conv(channels_in, channels_out) self.pool = nn.MaxPool2d(2) self.norm1 = BatchNorm(channels_out, batchnorm_momentum) self.conv2 = Conv(channels_out, channels_out) self.norm2 = BatchNorm(channels_out, batchnorm_momentum) self.activ = nn.GELU() def forward(self, x): x = self.conv1(x) x = self.pool(x) x = self.norm1(x) x = self.activ(x) x = self.conv2(x) x = self.norm2(x) x = self.activ(x) return x ############################################# # Network Definition # ############################################# def make_net(): widths = hyp['net']['widths'] batchnorm_momentum = hyp['net']['batchnorm_momentum'] whiten_kernel_size = 2 whiten_width = 2 * 3 * whiten_kernel_size**2 net = nn.Sequential( Conv(3, whiten_width, whiten_kernel_size, padding=0, bias=True), nn.GELU(), ConvGroup(whiten_width, widths['block1'], batchnorm_momentum), ConvGroup(widths['block1'], widths['block2'], batchnorm_momentum), ConvGroup(widths['block2'], widths['block3'], batchnorm_momentum), nn.MaxPool2d(3), Flatten(), nn.Linear(widths['block3'], 10, bias=False), Mul(hyp['net']['scaling_factor']), ) net[0].weight.requires_grad = False net = net.half().cuda() net = net.to(memory_format=torch.channels_last) for mod in net.modules(): if isinstance(mod, BatchNorm): mod.float() return net ############################################# # Whitening Conv Initialization # ############################################# def get_patches(x, patch_shape): c, (h, w) = x.shape[1], patch_shape return x.unfold(2,h,1).unfold(3,w,1).transpose(1,3).reshape(-1,c,h,w).float() def get_whitening_parameters(patches): n,c,h,w = patches.shape patches_flat = patches.view(n, -1) est_patch_covariance = (patches_flat.T @ patches_flat) / n eigenvalues, eigenvectors = torch.linalg.eigh(est_patch_covariance, UPLO='U') return eigenvalues.flip(0).view(-1, 1, 1, 1), eigenvectors.T.reshape(c*h*w,c,h,w).flip(0) def init_whitening_conv(layer, train_set, eps=5e-4): patches = get_patches(train_set, patch_shape=layer.weight.data.shape[2:]) eigenvalues, eigenvectors = get_whitening_parameters(patches) eigenvectors_scaled = eigenvectors / torch.sqrt(eigenvalues + eps) layer.weight.data[:] = torch.cat((eigenvectors_scaled, -eigenvectors_scaled)) ############################################ # Lookahead # ############################################ class LookaheadState: def __init__(self, net): self.net_ema = {k: v.clone() for k, v in net.state_dict().items()} def update(self, net, decay): for ema_param, net_param in zip(self.net_ema.values(), net.state_dict().values()): if net_param.dtype in (torch.half, torch.float): ema_param.lerp_(net_param, 1-decay) net_param.copy_(ema_param) ############################################ # Logging # ############################################ def print_columns(columns_list, is_head=False, is_final_entry=False): print_string = '' for col in columns_list: print_string += '| %s ' % col print_string += '|' if is_head: print('-'*len(print_string)) print(print_string) if is_head or is_final_entry: print('-'*len(print_string)) logging_columns_list = ['run ', 'epoch', 'train_loss', 'train_acc', 'val_acc', 'tta_val_acc', 'total_time_seconds'] def print_training_details(variables, is_final_entry): formatted = [] for col in logging_columns_list: var = variables.get(col.strip(), None) if type(var) in (int, str): res = str(var) elif type(var) is float: res = '{:0.4f}'.format(var) else: assert var is None res = '' formatted.append(res.rjust(len(col))) print_columns(formatted, is_final_entry=is_final_entry) ############################################ # Evaluation # ############################################ def infer(model, loader, tta_level=0): # Test-time augmentation strategy (for tta_level=2): # 1. Flip/mirror the image left-to-right (50% of the time). # 2. Translate the image by one pixel either up-and-left or down-and-right (50% of the time, # i.e. both happen 25% of the time). # # This creates 6 views per image (left/right times the two translations and no-translation), # which we evaluate and then weight according to the given probabilities. def infer_basic(inputs, net): return net(inputs).clone() def infer_mirror(inputs, net): return 0.5 * net(inputs) + 0.5 * net(inputs.flip(-1)) def infer_mirror_translate(inputs, net): logits = infer_mirror(inputs, net) pad = 1 padded_inputs = F.pad(inputs, (pad,)*4, 'reflect') inputs_translate_list = [ padded_inputs[:, :, 0:32, 0:32], padded_inputs[:, :, 2:34, 2:34], ] logits_translate_list = [infer_mirror(inputs_translate, net) for inputs_translate in inputs_translate_list] logits_translate = torch.stack(logits_translate_list).mean(0) return 0.5 * logits + 0.5 * logits_translate model.eval() test_images = loader.normalize(loader.images) infer_fn = [infer_basic, infer_mirror, infer_mirror_translate][tta_level] with torch.no_grad(): return torch.cat([infer_fn(inputs, model) for inputs in test_images.split(2000)]) def evaluate(model, loader, tta_level=0): logits = infer(model, loader, tta_level) return (logits.argmax(1) == loader.labels).float().mean().item() ############################################ # Training # ############################################ def main(run): batch_size = hyp['opt']['batch_size'] epochs = hyp['opt']['train_epochs'] momentum = hyp['opt']['momentum'] # Assuming gradients are constant in time, for Nesterov momentum, the below ratio is how much # larger the default steps will be than the underlying per-example gradients. We divide the # learning rate by this ratio in order to ensure steps are the same scale as gradients, regardless # of the choice of momentum. kilostep_scale = 1024 * (1 + 1 / (1 - momentum)) lr = hyp['opt']['lr'] / kilostep_scale # un-decoupled learning rate for PyTorch SGD wd = hyp['opt']['weight_decay'] * batch_size / kilostep_scale lr_biases = lr * hyp['opt']['bias_scaler'] loss_fn = nn.CrossEntropyLoss(label_smoothing=hyp['opt']['label_smoothing'], reduction='none') test_loader = CifarLoader('cifar10', train=False, batch_size=2000) train_loader = CifarLoader('cifar10', train=True, batch_size=batch_size, aug=hyp['aug']) if run == 'warmup': # The only purpose of the first run is to warmup, so we can use dummy data train_loader.labels = torch.randint(0, 10, size=(len(train_loader.labels),), device=train_loader.labels.device) total_train_steps = ceil(len(train_loader) * epochs) model = make_net() current_steps = 0 norm_biases = [p for k, p in model.named_parameters() if 'norm' in k and p.requires_grad] other_params = [p for k, p in model.named_parameters() if 'norm' not in k and p.requires_grad] param_configs = [dict(params=norm_biases, lr=lr_biases, weight_decay=wd/lr_biases), dict(params=other_params, lr=lr, weight_decay=wd/lr)] optimizer = torch.optim.SGD(param_configs, momentum=momentum, nesterov=True) def get_lr(step): warmup_steps = int(total_train_steps * 0.23) warmdown_steps = total_train_steps - warmup_steps if step < warmup_steps: frac = step / warmup_steps return 0.2 * (1 - frac) + 1.0 * frac else: frac = (step - warmup_steps) / warmdown_steps return 1.0 * (1 - frac) + 0.07 * frac scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, get_lr) alpha_schedule = 0.95**5 * (torch.arange(total_train_steps+1) / total_train_steps)**3 lookahead_state = LookaheadState(model) # For accurately timing GPU code starter = torch.cuda.Event(enable_timing=True) ender = torch.cuda.Event(enable_timing=True) total_time_seconds = 0.0 # Initialize the whitening layer using training images starter.record() train_images = train_loader.normalize(train_loader.images[:5000]) init_whitening_conv(model[0], train_images) ender.record() torch.cuda.synchronize() total_time_seconds += 1e-3 * starter.elapsed_time(ender) for epoch in range(ceil(epochs)): model[0].bias.requires_grad = (epoch < hyp['opt']['whiten_bias_epochs']) #################### # Training # #################### starter.record() model.train() for inputs, labels in train_loader: outputs = model(inputs) loss = loss_fn(outputs, labels).sum() optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() scheduler.step() current_steps += 1 if current_steps % 5 == 0: lookahead_state.update(model, decay=alpha_schedule[current_steps].item()) if current_steps >= total_train_steps: if lookahead_state is not None: lookahead_state.update(model, decay=1.0) break ender.record() torch.cuda.synchronize() total_time_seconds += 1e-3 * starter.elapsed_time(ender) #################### # Evaluation # #################### # Save the accuracy and loss from the last training batch of the epoch train_acc = (outputs.detach().argmax(1) == labels).float().mean().item() train_loss = loss.item() / batch_size val_acc = evaluate(model, test_loader, tta_level=0) print_training_details(locals(), is_final_entry=False) run = None # Only print the run number once #################### # TTA Evaluation # #################### starter.record() tta_val_acc = evaluate(model, test_loader, tta_level=hyp['net']['tta_level']) ender.record() torch.cuda.synchronize() total_time_seconds += 1e-3 * starter.elapsed_time(ender) epoch = 'eval' print_training_details(locals(), is_final_entry=True) return tta_val_acc if __name__ == "__main__": with open(sys.argv[0]) as f: code = f.read() print_columns(logging_columns_list, is_head=True) #main('warmup') accs = torch.tensor([main(run) for run in range(25)]) print('Mean: %.4f Std: %.4f' % (accs.mean(), accs.std())) log = {'code': code, 'accs': accs} log_dir = os.path.join('logs', str(uuid.uuid4())) os.makedirs(log_dir, exist_ok=True) log_path = os.path.join(log_dir, 'log.pt') print(os.path.abspath(log_path)) torch.save(log, os.path.join(log_dir, 'log.pt'))