import datasets import os from datasets import load_dataset import gzip import json logger = datasets.logging.get_logger(__name__) CITATION = """ """ DESCRIPTION = """ The Open License Corpus """ OLC_SUBSET_NAMES = [ "ccby_law", "ccby_s2orc", "ccby_stackexchange", "ccby_stackoverflow", "ccby_wikinews", "ccby_wikipedia", "pd_arxiv_abstracts", "pd_books", "pd_law", "pd_news", "pd_s2orc", "sw_amps_math", "sw_dm_math", "sw_github", "sw_hackernews", "sw_ubuntu_irc" ] URL = "https://huggingface.co/datasets/kernelmachine/open-license-corpus/" N_SHARDS_PER_SPLIT = { "ccby_s2orc": {"train": 5000}, "ccby_law": {"train": 50}, "ccby_stackexchange": {"train": 1500}, "ccby_stackoverflow": {"train": 750}, "ccby_wikinews": {"train": 42}, "ccby_wikipedia": {"train": 3000}, "pd_arxiv_abstracts": {"train": 1}, "pd_books": {"train": 150}, "pd_law": {"train": 2000}, "pd_news": {"train": 10}, "pd_s2orc": {"train": 30}, "sw_amps_math": {"train": 2}, "sw_dm_math": {"train": 239}, "sw_github": {"train": 2500}, "sw_hackernews": {"train": 16}, "sw_ubuntu_irc": {"train": 27} } #DATA_URL = 'https://huggingface.co/datasets/kernelmachine/open-license-corpus/blob/main/data/{name}/{split}-{index:05d}-of-{n_shards:05d}.jsonl.gz' DATA_URL = 'https://huggingface.co/datasets/kernelmachine/open-license-corpus/resolve/main/data/{name}/{split}-{index:05d}-of-{n_shards:05d}.jsonl.gz' class OpenLicenseCorpusConfig(datasets.BuilderConfig): def __init__(self, features, citation, **kwargs): super().__init__(**kwargs) class OpenLicenseCorpus(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig(name=name) for name in OLC_SUBSET_NAMES ] def _info(self): return datasets.DatasetInfo( description=DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), } ), supervised_keys=None, homepage=URL, citation=CITATION, ) def _split_generators(self, dl_manager): data_urls = {} for split in ["train"]: n_shards = N_SHARDS_PER_SPLIT[self.config.name][split] - 1 data_urls[split] = [ DATA_URL.format(name=self.config.name, split=split, index=index, n_shards=n_shards) for index in range(n_shards) ] train_downloaded_files = dl_manager.download(data_urls["train"]) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files})] def _generate_examples(self, filepaths): """This function returns the examples in the raw (text) form by iterating on all the files.""" id_ = 0 for filepath in filepaths: logger.info("generating examples from = %s", filepath) with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: for line in f: if line: example = json.loads(line) yield id_, example id_ += 1