import datasets import json import json import os import datasets _DESCRIPTION = """\ Dataset to perform Aesthetic evaluation from Table 2 in ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation. @misc{xu2023imagereward, title={ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation}, author={Jiazheng Xu and Xiao Liu and Yuchen Wu and Yuxuan Tong and Qinkai Li and Ming Ding and Jie Tang and Yuxiao Dong}, year={2023}, eprint={2304.05977}, archivePrefix={arXiv}, primaryClass={cs.CV} } """ class ImagerewardEvaluation(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "id": datasets.Value("string"), "prompt": datasets.Value("string"), "generations": datasets.Sequence(datasets.Image()), "ranking": datasets.Sequence(datasets.Value("int32")), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract("./test.json") images = dl_manager.download_and_extract("./images.zip") print(downloaded_files, images) return [ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"metadata_path": downloaded_files, "images_path": os.path.join(images, "test_images")}), ] def _generate_examples(self, metadata_path, images_path): with open(metadata_path, encoding="utf-8") as f: data = json.load(f) for item in data: yield item["id"], { "id": item["id"], "prompt": item["prompt"], "generations": [os.path.join(images_path, x) for x in item["generations"]], "ranking": item["ranking"], }