# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tiny Shakespeare dataset.""" from __future__ import absolute_import, division, print_function import os import datasets _CITATION = """\ @misc{ author={Karpathy, Andrej}, title={char-rnn}, year={2015}, howpublished={\\url{https://github.com/karpathy/char-rnn}} }""" _DESCRIPTION = """\ 40,000 lines of Shakespeare from a variety of Shakespeare's plays. \ Featured in Andrej Karpathy's blog post 'The Unreasonable Effectiveness of \ Recurrent Neural Networks': \ http://karpathy.github.io/2015/05/21/rnn-effectiveness/. To use for e.g. character modelling: ``` d = datasets.load_dataset(name='tiny_shakespeare')['train'] d = d.map(lambda x: datasets.Value('strings').unicode_split(x['text'], 'UTF-8')) # train split includes vocabulary for other splits vocabulary = sorted(set(next(iter(d)).numpy())) d = d.map(lambda x: {'cur_char': x[:-1], 'next_char': x[1:]}) d = d.unbatch() seq_len = 100 batch_size = 2 d = d.batch(seq_len) d = d.batch(batch_size) ``` """ class TinyShakespeare(datasets.GeneratorBasedBuilder): """Tiny Shakespeare dataset builder.""" VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({"text": datasets.Value("string")}), supervised_keys=None, homepage="https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" download_path = dl_manager.download_and_extract( "https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt" ) if os.path.isdir(download_path): # During testing the download manager mock gives us a directory txt_path = os.path.join(download_path, "input.txt") else: txt_path = download_path with open(txt_path, "r", encoding="utf-8") as f: text = f.read() # 90/5/5 split i = int(len(text) * 0.9) train_text, text = text[:i], text[i:] i = int(len(text) * 0.5) validation_text, text = text[:i], text[i:] test_text = text return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"split_key": "train", "split_text": train_text}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"split_key": "validation", "split_text": validation_text}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"split_key": "test", "split_text": test_text}, ), ] def _generate_examples(self, split_key, split_text): """Yields examples.""" data_key = split_key # Should uniquely identify the thing yielded feature_dict = {"text": split_text} yield data_key, feature_dict