import torch from torch import Tensor import torch.nn.functional as F from torch.utils.data import Dataset from typing import * from pathlib import Path import re import xarray as xr import numpy as np import h5py IGRA_VARS = ['air_temperature', 'relative_humidity', 'wind_speed', 'geopotential_height', 'air_dewpoint_depression'] CLARA_VARS_D = { 'CFC': ['cfc'], 'CTO': ['ctt', 'cth', 'ctp'], 'IWP': ['iwp', 'cot_ice', 'cre_ice'], 'LWP': ['lwp', 'cot_liq', 'cre_liq'] } CLARA_VARS = [value for values_list in CLARA_VARS_D.values() for value in values_list] class ERA5Dataset(Dataset): def __init__( self, size: Tuple[int] = (720, 1440), window: int = 1, flatten: bool = True, mode: str = 'train' ) -> None: self.size = size self.window = window self.flatten = flatten self.mode = mode self.data_dir = Path('.') / 'era5' self.normalization_dir = Path('.') / 'era5' / 'stats_v0' # Lazily load data self.file_paths = list((self.data_dir / self.mode).glob('*.h5')) self.file_paths.sort() self.sample_indices = [] for file_idx, file_path in enumerate(self.file_paths): h5_file = h5py.File(file_path, 'r') num_samples = h5_file['fields'].shape[0] self.sample_indices.extend([(file_idx, i) for i in range(num_samples)]) h5_file.close() # Retrieve climatology to normalize self.normalization_mean = np.load(self.normalization_dir / 'global_means.npy') self.normalization_sigma = np.load(self.normalization_dir / 'global_stds.npy') def _open_file(self, file_path, sample_idx): h5_file = h5py.File(file_path, 'r') sample = h5_file['fields'][sample_idx] h5_file.close() return sample[:, :self.size[0], :self.size[1]] def __len__(self): return len(self.sample_indices) - self.window + 1 def __getitem__(self, i): step_indices = [target_idx for target_idx in range(i, i + self.window)] x = list() for step_idx in step_indices: file_idx, sample_idx = self.sample_indices[step_idx] x.append(self._open_file(self.file_paths[file_idx], sample_idx)) x = (x - self.normalization_mean) / self.normalization_sigma x = torch.tensor(x).float() if self.flatten: return x.flatten(0, 1), {} else: return x, {} class AuxDataset(Dataset): def __init__( self, data_var: str = '', size: Tuple[int] = (720, 1440), window: int = 1, flatten: bool = True, mode: str = 'train' ) -> None: assert data_var in ['igra', 'clara'], 'Dataset is not implemented, choose one of [igra, clara]' self.data_var = data_var self.size = size self.window = window self.flatten = flatten self.mode = mode self.data_dir = Path('.') / data_var self.normalization_file = Path('.') / 'climatology' / f'climatology_{self.data_var}.zarr' # Check if years specified are within valid bounds if self.mode == 'train': years = [str(year) for year in np.arange(2011,2016)] elif self.mode == 'val': years = [str(year) for year in np.arange(2016,2018)] elif self.mode == 'test': years = [str(year) for year in np.arange(2018,2019)] else: raise NotImplementedError('Mode is invalid, choose one of [train, val, test]') # Subset files that match with patterns (eg. years specified) self.EXTENSION = 'nc' self.ENGINE = 'netcdf4' self.PARAMS = IGRA_VARS if self.data_var == 'igra' else CLARA_VARS file_paths = list() for year in years: pattern = rf'.*{year}\d{{4}}\.{self.EXTENSION}$' curr_files = list(self.data_dir.glob(f'*{year}*.{self.EXTENSION}')) file_paths.extend( [f for f in curr_files if re.match(pattern, str(f.name)) and not self._is_leap(f.name)] ) self.file_paths = file_paths self.file_paths.sort() # Lazily load data (i.e., igra has multiple (4; 6-hourly) timesteps in a daily file, while clara only has 1) self.sample_indices = [] if data_var == 'igra': self.sample_indices = [(file_idx, i) for file_idx in range(len(self.file_paths)) for i in range(4)] else: self.sample_indices = [(file_idx, 0) for file_idx in range(len(self.file_paths)) for i in range(4)] # Retrieve climatology to normalize self.normalization = xr.open_dataset(self.normalization_file, engine='zarr') self.normalization = self.normalization.sel(param=self.PARAMS) self.normalization_mean = self.normalization['mean'].values[np.newaxis, :, np.newaxis, np.newaxis] self.normalization_sigma = self.normalization['sigma'].values[np.newaxis, :, np.newaxis, np.newaxis] def _is_leap(self, filename): """FCN training data for ERA5 ignores leap day""" match = re.search(r'(\d{4})(\d{2})(\d{2})', filename) if match: year, month, day = map(int, match.groups()) return month == 2 and day == 29 return False def _open_file(self, file_path, sample_idx): sample = xr.open_dataset(file_path, engine=self.ENGINE) sample = sample[self.PARAMS] sample = sample.sortby('lat', ascending=False) # aligned with FCN ERA5 sample = sample.roll(lon=len(sample.lon) // 2, roll_coords=True) # aligned with FCN ERA5 if self.data_var == 'igra': # Some daily files do not have some snapshots in time; init an empty np.nan tensor instead try: sample = sample.isel(time=sample_idx).to_array().values except: sample = np.full((len(IGRA_VARS), self.size[0], self.size[1]), np.nan) else: sample = sample.to_array().values return sample def __len__(self): return len(self.sample_indices) - self.window + 1 def __getitem__(self, i): step_indices = [target_idx for target_idx in range(i, i + self.window)] x = list() for step_idx in step_indices: file_idx, sample_idx = self.sample_indices[step_idx] x.append(self._open_file(self.file_paths[file_idx], sample_idx)) x = (x - self.normalization_mean) / self.normalization_sigma x = torch.tensor(x).float() x = torch.nan_to_num(x) if self.flatten: return x.flatten(0, 1), {} else: return x, {} class MultimodalDataset(Dataset): def __init__( self, datasets, background: bool=False ): self.datasets = datasets self.is_flatten = datasets[0].flatten # Handle variable future timestepping to generate background state self.background = background def __len__(self): if self.background: return len(self.datasets[0]) - 1 # lead_time = 1 else: return len(self.datasets[0]) def __getitem__(self, idx): dim = 0 if self.is_flatten else 1 x = [dataset[idx][0] for dataset in self.datasets] x = torch.cat(x, dim=dim).float() if self.background: # Also return future lead_time as target y y = [dataset[idx+1][0] for dataset in self.datasets] y = torch.cat(y, dim=dim).float() return x, y, {} else: return x, {}