--- license: mit dataset_info: features: - name: input dtype: string - name: output dtype: string - name: instruction dtype: string splits: - name: train num_bytes: 1906560 num_examples: 9543 - name: validation num_bytes: 479540 num_examples: 2388 download_size: 728648 dataset_size: 2386100 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* --- [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment) prepared for LLM fine-tuning by adding an `instruction` column and mapping the label from numeric to string (`{0:"negative", 1:'positive', 2:'neutral'}`). [Source](https://github.com/AI4Finance-Foundation/FinGPT/blob/master/fingpt/FinGPT-v3/data/making_data.ipynb) ```python from datasets import load_dataset import datasets from huggingface_hub import notebook_login notebook_login() ds = load_dataset('zeroshot/twitter-financial-news-sentiment') num_to_label = { 0: 'negative', 1: 'positive', 2: 'neutral', } instruction = 'What is the sentiment of this tweet? Please choose an answer from {negative/neutral/positive}.' # Training split ds_train = ds['train'] ds_train = ds_train.to_pandas() ds_train['label'] = ds_train['label'].apply(num_to_label.get) ds_train['instruction'] = instruction ds_train.columns = ['input', 'output', 'instruction'] ds_train = datasets.Dataset.from_pandas(ds_train) ds_train.push_to_hub("twitter-financial-news-sentiment") # Validation split ds_valid = ds['validation'] ds_valid = ds_valid.to_pandas() ds_valid['label'] = ds_valid['label'].apply(num_to_label.get) ds_valid['instruction'] = instruction ds_valid.columns = ['input', 'output', 'instruction'] ds_valid = datasets.Dataset.from_pandas(ds_valid, split='validation') ds_valid.push_to_hub("twitter-financial-news-sentiment", split='validation') ```