import datasets import json import os from datasets import Value, Sequence _CITATION = """\ @inproceedings{chalkidis-etal-2019-neural, title = "Neural Legal Judgment Prediction in {E}nglish", author = "Chalkidis, Ilias and Androutsopoulos, Ion and Aletras, Nikolaos", booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2019", address = "Florence, Italy", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P19-1424", doi = "10.18653/v1/P19-1424", pages = "4317--4323", } """ _HOMEPAGE = "https://archive.org/details/ECHR-ACL2019" _DESCRIPTION = """\ The ECHR Cases dataset is designed for experimentation of neural judgment prediction, as in the original 2019 ACL paper "Neural Legal Judgment Prediction in English". """ ARTICLES = { "2": "Right to life", "3": "Prohibition of torture", "4": "Prohibition of slavery and forced labour", "5": "Right to liberty and security", "6": "Right to a fair trial", "7": "No punishment without law", "8": "Right to respect for private and family life", "9": "Freedom of thought, conscience and religion", "10": "Freedom of expression", "11": "Freedom of assembly and association", "12": "Right to marry", "13": "Right to an effective remedy", "14": "Prohibition of discrimination", "15": "Derogation in time of emergency", "16": "Restrictions on political activity of aliens", "17": "Prohibition of abuse of rights", "18": "Limitation on use of restrictions on rights", "34": "Individual applications", "38": "Examination of the case", "39": "Friendly settlements", "46": "Binding force and execution of judgments", "P1-1": "Protection of property", "P1-2": "Right to education", "P1-3": "Right to free elections", "P3-1": "Right to free elections", "P4-1": "Prohibition of imprisonment for debt", "P4-2": "Freedom of movement", "P4-3": "Prohibition of expulsion of nationals", "P4-4": "Prohibition of collective expulsion of aliens", "P6-1": "Abolition of the death penalty", "P6-2": "Death penalty in time of war", "P6-3": "Prohibition of derogations", "P7-1": "Procedural safeguards relating to expulsion of aliens", "P7-2": "Right of appeal in criminal matters", "P7-3": "Compensation for wrongful conviction", "P7-4": "Right not to be tried or punished twice", "P7-5": "Equality between spouses", "P12-1": "General prohibition of discrimination", "P13-1": "Abolition of the death penalty", "P13-2": "Prohibition of derogations", "P13-3": "Prohibition of reservations", } class Echr(datasets.GeneratorBasedBuilder): """ECHR dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig(name="non-anon", data_dir="data"), datasets.BuilderConfig(name="anon", data_dir="data_anon"), ] def _info(self): features = datasets.Features( { "itemid": Value(dtype="string"), "languageisocode": Value(dtype="string"), "respondent": Value(dtype="string"), "branch": Value(dtype="string"), "date": Value(dtype="int64"), "docname": Value(dtype="string"), "importance": Value(dtype="int64"), "conclusion": Value(dtype="string"), "judges": Value(dtype="string"), "text": Sequence(feature=Value(dtype="string")), "violated_articles": Sequence(feature=Value(dtype="string")), "violated_paragraphs": Sequence(feature=Value(dtype="string")), "violated_bulletpoints": Sequence(feature=Value(dtype="string")), "non_violated_articles": Sequence(feature=Value(dtype="string")), "non_violated_paragraphs": Sequence(feature=Value(dtype="string")), "non_violated_bulletpoints": Sequence(feature=Value(dtype="string")), "violated": Value(dtype="bool"), } ) return datasets.DatasetInfo( features=features, homepage=_HOMEPAGE, description=_DESCRIPTION, citation=_CITATION, ) def _split_generators(self, dl_manager): path_prefix = self.config.data_dir data_dir = dl_manager.download([os.path.join(path_prefix, f"{f}.jsonl") for f in ["train", "test", "dev"]]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": data_dir[0], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": data_dir[1], "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": data_dir[2], "split": "dev", }, ), ] def _generate_examples(self, filepath, split): with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) yield id_, data