import glob import os from datasets import load_dataset _LANGUAGES = ['bg', 'cs', 'da', 'de', 'el', 'en', 'es', 'et', 'fi', 'fr', 'ga', 'hr', 'hu', 'it', 'lt', 'lv', 'mt', 'nl', 'pl', 'pt', 'ro', 'sk', 'sl', 'sv'] ERROR_LANGS = ['et', 'ga'] # 20221101: ga somehow hangs at sample 36715/57711, for et no data is downloaded ERROR_LANGS = [] # 20221120: no errors here FINAL_LANGS = [l for l in _LANGUAGES if l not in ERROR_LANGS] date = "20221120" # every 01 and 20 of the month, just edit this to generate newer data base_dir = 'data' date_dir = os.path.join(base_dir, date) os.makedirs(date_dir, exist_ok=True) max_file_size = 4 # GB def process_language(LANG): print(f'Processing language {LANG}...') # streaming does not work here! dataset = load_dataset("olm/wikipedia", language=LANG, date=date, split='train') size_in_gb = dataset.size_in_bytes / 1e9 print(f'Found {size_in_gb} GB of data ({len(dataset)} documents) for language {LANG}...') if size_in_gb > max_file_size: num_shards = int(size_in_gb / max_file_size) + 1 for shard in range(num_shards): dataset.shard(num_shards, shard).to_json(f'{date_dir}/{LANG}_{shard}.jsonl', lines=True) else: dataset.to_json(f'{date_dir}/{LANG}_0.jsonl', lines=True) if __name__ == '__main__': """ Run with export PYTHONPATH=. && python prepare_wikipedias.py | tee prepare_wikipedias.log """ # it does not work in parallel for LANG in FINAL_LANGS: process_language(LANG) # Compress datasets print(f"Compressing datasets at {date_dir}") # Do this at the end because we use multithreading for path in glob.glob(os.path.join(date_dir, '*.jsonl')): os.system(f'xz -zkf -T0 {path}') # -TO to use multithreading # os.system(f'rm {path}') # remove uncompressed file to save space