import datasets _DESCRIPTION = """\ Dataset of pre-processed samples from a small portion of the \ Waymo Open Motion Data for our risk-biased prediction task. """ _CITATION = """\ @InProceedings{NiMe:2022, author = {Haruki Nishimura, Jean Mercat, Blake Wulfe, Rowan McAllister}, title = {RAP: Risk-Aware Prediction for Robust Planning}, booktitle = {Proceedings of the 2022 IEEE International Conference on Robot Learning (CoRL)}, month = {December}, year = {2022}, address = {Grafton Road, Auckland CBD, Auckland 1010}, url = {}, } """ class RAPConfig(datasets.BuilderConfig): """BuilderConfig for RiskBiasedDataset.""" def __init__(self, **kwargs): """BuilderConfig for RiskBiasedDataset. Args: **kwargs: keyword arguments forwarded to super. """ super(RAPConfig, self).__init__(version=datasets.Version("0.0.0", ""), **kwargs) class RiskBiasedDataset(datasets.Dataset): """Dataset of pre-processed samples from a portion of the Waymo Open Motion Data for the risk-biased prediction task.""" BUILDER_CONFIGS = [ RAPConfig( name="json_lists", description="JSON lists sample format" ) ] def _info(self): return datasets.DatasetInfo( description= _DESCRIPTION, features=datasets.Features( {"x": datasets.Sequence(datasets.Value("float32")), "mask_x": datasets.Sequence(datasets.Value("bool")), "y": datasets.Sequence(datasets.Value("float32")), "mask_y": datasets.Sequence(datasets.Value("bool")), "mask_loss": datasets.Sequence(datasets.Value("bool")), "map_data": datasets.Sequence(datasets.Value("float32")), "mask_map": datasets.Sequence(datasets.Value("bool")), "offset": datasets.Sequence(datasets.Value("float32")), "x_ego": datasets.Sequence(datasets.Value("float32")), "y_ego": datasets.Sequence(datasets.Value("float32")), } ), supervised_keys=None, homepage="https://sites.google.com/d/1cwohIm9fzTZEPAo7b_Di4h9iNgMiKHRo/p/1nPdTBSee6E40dmUXNyqxzUtb4_NnkI_6/edit", citation=_CITATION, )