import json import os from pathlib import Path import datasets from PIL import Image import pandas as pd logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{Sun2021SpatialDG, title={Spatial Dual-Modality Graph Reasoning for Key Information Extraction}, author={Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang}, journal={ArXiv}, year={2021}, volume={abs/2103.14470} } """ _DESCRIPTION = """\ WildReceipt is a collection of receipts. It contains, for each photo, a list of OCRs - with the bounding box, text, and class. It contains 1765 photos, with 25 classes, and 50000 text boxes. The goal is to benchmark "key information extraction" - extracting key information from documents https://arxiv.org/abs/2103.14470 """ def load_image(image_path): image = Image.open(image_path) w, h = image.size return image, (w,h) def normalize_bbox(bbox, size): return [ int(1000 * bbox[0] / size[0]), int(1000 * bbox[1] / size[1]), int(1000 * bbox[2] / size[0]), int(1000 * bbox[3] / size[1]), ] _URLS = ["https://download.openmmlab.com/mmocr/data/wildreceipt.tar"] class DatasetConfig(datasets.BuilderConfig): """BuilderConfig for WildReceipt Dataset""" def __init__(self, **kwargs): """BuilderConfig for WildReceipt Dataset. Args: **kwargs: keyword arguments forwarded to super. """ super(DatasetConfig, self).__init__(**kwargs) class WildReceipt(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ DatasetConfig(name="WildReceipt", version=datasets.Version("1.0.0"), description="WildReceipt dataset"), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "words": datasets.Sequence(datasets.Value("string")), "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names = ['Ignore', 'Store_name_value', 'Store_name_key', 'Store_addr_value', 'Store_addr_key', 'Tel_value', 'Tel_key', 'Date_value', 'Date_key', 'Time_value', 'Time_key', 'Prod_item_value', 'Prod_item_key', 'Prod_quantity_value', 'Prod_quantity_key', 'Prod_price_value', 'Prod_price_key', 'Subtotal_value', 'Subtotal_key', 'Tax_value', 'Tax_key', 'Tips_value', 'Tips_key', 'Total_value', 'Total_key', 'Others'] ) ), "image_path": datasets.Value("string"), } ), supervised_keys=None, citation=_CITATION, homepage="", ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" """Uses local files located with data_dir""" downloaded_file = dl_manager.download_and_extract(_URLS) dest = Path(downloaded_file[0])/'wildreceipt' return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train.txt", "dest": dest} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test.txt", "dest": dest} ), ] def _generate_examples(self, filepath, dest): df = pd.read_csv(dest/'class_list.txt', delimiter='\s', header=None) id2labels = dict(zip(df[0].tolist(), df[1].tolist())) logger.info("⏳ Generating examples from = %s", filepath) item_list = [] with open(filepath, 'r') as f: for line in f: item_list.append(line.rstrip('\n\r')) for guid, fname in enumerate(item_list): data = json.loads(fname) image_path = dest/data['file_name'] image, size = load_image(image_path) boxes = [[i['box'][6], i['box'][7], i['box'][2], i['box'][3]] for i in data['annotations']] text = [i['text'] for i in data['annotations']] label = [id2labels[i['label']] for i in data['annotations']] #print(boxes) #for i in boxes: # print(i) boxes = [normalize_bbox(box, size) for box in boxes] flag=0 #print(image_path) for i in boxes: #print(i) for j in i: if j>1000: flag+=1 #print(j) pass if flag>0: print(image_path) yield guid, {"id": str(guid), "words": text, "bboxes": boxes, "ner_tags": label, "image_path": image_path}