# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """CVIT IIIT-H PIB Multilingual Corpus""" from __future__ import absolute_import, division, print_function import os import datasets _CITATION = """\ @InProceedings{cvit-pib:multilingual-corpus, title = {Revisiting Low Resource Status of Indian Languages in Machine Translation}, authors={Jerin Philip, Shashank Siripragada, Vinay P. Namboodiri, C.V. Jawahar }, year={2020} } """ _DESCRIPTION = """\ This new dataset is the large scale sentence aligned corpus in 11 Indian languages, viz. CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages. """ _URL = "http://preon.iiit.ac.in/~jerin/resources/datasets/pib-v0.tar" _LanguagePairs = [ "or-ur", "ml-or", "bn-ta", "gu-mr", "hi-or", "en-or", "mr-ur", "en-ta", "hi-ta", "bn-en", "bn-or", "ml-ta", "gu-ur", "bn-ml", "ml-pa", "en-pa", "bn-hi", "hi-pa", "gu-te", "pa-ta", "hi-ml", "or-te", "en-ml", "en-hi", "bn-pa", "mr-te", "mr-pa", "bn-te", "gu-hi", "ta-ur", "te-ur", "or-pa", "gu-ml", "gu-pa", "hi-te", "en-te", "ml-te", "pa-ur", "hi-ur", "mr-or", "en-ur", "ml-ur", "bn-mr", "gu-ta", "pa-te", "bn-gu", "bn-ur", "ml-mr", "or-ta", "ta-te", "gu-or", "en-gu", "hi-mr", "mr-ta", "en-mr", ] class PibConfig(datasets.BuilderConfig): """BuilderConfig for PIB""" def __init__(self, language_pair, **kwargs): super().__init__(**kwargs) """ Args: language_pair: language pair, you want to load **kwargs: keyword arguments forwarded to super. """ self.src, self.tgt = language_pair.split("-") class Pib(datasets.GeneratorBasedBuilder): """This new dataset is the large scale sentence aligned corpus in 11 Indian languages, viz. CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages. """ BUILDER_CONFIG_CLASS = PibConfig BUILDER_CONFIGS = [PibConfig(name=pair, description=_DESCRIPTION, language_pair=pair) for pair in _LanguagePairs] def _info(self): # TODO: Specifies the datasets.DatasetInfo object return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( {"translation": datasets.features.Translation(languages=(self.config.src, self.config.tgt))} ), supervised_keys=(self.config.src, self.config.tgt), homepage="http://preon.iiit.ac.in/~jerin/bhasha/", citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URL) data_dir = os.path.join(dl_dir, f"pib/{self.config.src}-{self.config.tgt}") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(data_dir, f"train.{self.config.src}"), "labelpath": os.path.join(data_dir, f"train.{self.config.tgt}"), }, ), ] def _generate_examples(self, filepath, labelpath): """ Yields examples. """ with open(filepath, encoding="utf-8") as f1, open(labelpath, encoding="utf-8") as f2: src = f1.read().split("\n")[:-1] tgt = f2.read().split("\n")[:-1] for idx, (s, t) in enumerate(zip(src, tgt)): yield idx, {"translation": {self.config.src: s, self.config.tgt: t}}