import os import torch from torch.utils.data import Dataset, DataLoader import numpy as np import cv2 from PIL import Image import json import openmesh as om import pdb from utils import * class BiCarDataset(Dataset): def __init__(self, dataset_folder,input_size=512): self.dataset_folder = dataset_folder self.data_index_list = os.listdir(dataset_folder) self.input_size = input_size def __getitem__(self, index): instance_index = self.data_index_list[index] instance_folder = os.path.join(self.dataset_folder,instance_index) input_kps= np.zeros(1) # image/mask/annotation #processed images and mask #input_image = cv2.imread(os.path.join(instance_folder,'image','image_reshape512.jpeg')) #input_mask = cv2.imread(os.path.join(instance_folder,'image','mask512.png')) #processed image in dataloader image = Image.open(os.path.join(instance_folder,'image','raw_image.jpeg')).convert('RGB') polygon,kps,bbox = readjson(os.path.join(instance_folder,'image','annotation.json')) mask = polygon2seg(image,polygon) input_image,input_mask,input_kps = reshape_image_and_anno(image,mask,kps,bbox,self.input_size) # this two function can be used to visualize #utils.show_seg(nimage,nmask) #utils.show_kps(nimage,nkps) #params: shape and pose beta = np.load(os.path.join(instance_folder,'params','beta.npy'))[:100] theta = np.load(os.path.join(instance_folder,'params','pose.npy')).reshape(3,24) #mesh: Here we only read points and uvmap of body only. #Tbody: T-pose body; Pbody: Posed body. tmesh = om.read_polymesh(os.path.join(instance_folder,'tpose','m.obj')) tbody_points = tmesh.points() tbody_uv = cv2.imread(os.path.join(instance_folder,'tpose','m.BMP')) pmesh = om.read_polymesh(os.path.join(instance_folder,'pose','m.obj')) pbody_points = pmesh.points() pbody_uv = cv2.imread(os.path.join(instance_folder,'pose','m.BMP')) return {'input_image':input_image, 'input_mask':input_mask, 'input_kps':input_kps, #'json_annotation':annotation, 'beta':beta, 'theta':theta, 'Tbody_points':tbody_points, 'Tbody_uv':tbody_uv, 'Pbody_points':pbody_points, 'Pbody_uv':pbody_uv } def __len__(self): return len(self.data_index_list) dataset = BiCarDataset('./3DBiCar') batch_size = 2 dataset.__getitem__(1) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) for batch in dataloader: for item in batch: print(item,batch[item].shape) break