import logging import os import pandas as pd import torch from torch.utils.data import DataLoader from tqdm import tqdm import dataset_lib.multimodal as multimodal from dataset_lib.config import Config from dataset_lib.config import Constants as c from dataset_lib.datasets import get_dataset logger = logging.getLogger(__name__) @torch.no_grad() def encode(config: Config, device=c.DEVICE, workdir=c.WORKDIR): logger.info( f"Encoding dataset {config.data.dataset.lower()} with" f" backbone = {config.data.backbone}" ) datasets = get_dataset(config.data.dataset) encode_image = multimodal.get_image_encoder(config, device=device) for op, dataset in datasets.items(): data = {"embedding": [], "label": []} for image, label in tqdm(dataset, desc=f"Encoding {op}"): embedding = encode_image(image).float() embedding /= torch.linalg.norm(embedding, dim=-1, keepdim=True) embedding = embedding.cpu().numpy() data["embedding"].extend(embedding) data["label"].append(label) df = pd.DataFrame(data) data_path = os.path.join( f"{config.data.dataset.lower()}_{op}_{config.backbone_name()}.parquet" ) df.to_parquet(data_path, index=False)