# coding=utf-8 # Lint as: python3 """test set""" import csv import os import json import datasets from datasets.utils.py_utils import size_str from tqdm import tqdm _CITATION = """\ @inproceedings{panayotov2015librispeech, title={Librispeech: an ASR corpus based on public domain audio books}, author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev}, booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on}, pages={5206--5210}, year={2015}, organization={IEEE} } """ _DESCRIPTION = """\ Lorem ipsum """ _BASE_URL = "https://huggingface.co/datasets/j-krzywdziak/test/tree/main" _DATA_URL = "https://huggingface.co/datasets/j-krzywdziak/test/resolve/main/test.zip" _PROMPTS_URLS = {"test": "https://huggingface.co/datasets/j-krzywdziak/test/raw/main/test.tsv"} logger = datasets.logging.get_logger(__name__) class TestConfig(datasets.BuilderConfig): """Lorem impsum.""" def __init__(self, name, **kwargs): # self.language = kwargs.pop("language", None) # self.release_date = kwargs.pop("release_date", None) # self.num_clips = kwargs.pop("num_clips", None) # self.num_speakers = kwargs.pop("num_speakers", None) # self.validated_hr = kwargs.pop("validated_hr", None) # self.total_hr = kwargs.pop("total_hr", None) # self.size_bytes = kwargs.pop("size_bytes", None) # self.size_human = size_str(self.size_bytes) description = ( f"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor " f"incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud " f"exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure " f"dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. " f"Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt " f"mollit anim id est laborum." ) super(TestConfig, self).__init__( name=name, description=description, **kwargs, ) class TestASR(datasets.GeneratorBasedBuilder): """Lorem ipsum.""" BUILDER_CONFIGS = [ TestConfig( name="Test Dataset", ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "audio_id": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), "ngram": datasets.Value("string") } ), supervised_keys=None, homepage=_BASE_URL, citation=_CITATION ) def _split_generators(self, dl_manager): audio_path = dl_manager.download(_DATA_URL) local_extracted_archive = dl_manager.extract(audio_path) if not dl_manager.is_streaming else None meta_path = dl_manager.download(_PROMPTS_URLS) return [datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "meta_path": meta_path["test"], "audio_files": dl_manager.iter_archive(audio_path), "local_extracted_archive": local_extracted_archive, } )] def _generate_examples(self, meta_path, audio_files, local_extracted_archive): """Lorem ipsum.""" data_fields = list(self._info().features.keys()) metadata = {} with open(meta_path, encoding="utf-8") as f: next(f) for row in f: print(row) r = row.split("\t") print(r) audio_id = r[0] ngram = r[1] metadata[audio_id] = {"audio_id": audio_id, "ngram": ngram} id_ = 0 for path, f in audio_files: print(path, f) _, audio_name = os.path.split(path) if audio_name in metadata: result = dict(metadata[audio_name]) path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path result["audio"] = {"path": path, "bytes":f.read()} yield id_, result id_ +=1