import os from pdb import set_trace import datasets _CITATION = """\ Put your dataset citation here. """ _DESCRIPTION = """\ Description of your dataset goes here. """ _HOMEPAGE = "https://your-dataset-homepage.com" _LICENSE = "License information goes here." class Test(datasets.GeneratorBasedBuilder): """Your dataset description""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="customers", data_dir="./", data_files=["train.csv", "val.csv", "test.csv"], version=datasets.Version("1.0.0"), description="This is subset A"), datasets.BuilderConfig( name="products", data_dir="./", data_files=["train.csv", "val.csv", "test.csv"], version=datasets.Version("1.0.0"), description="This is subset B"), ] def _info(self): if self.config.name == "customers": features = datasets.Features( { "customer_id": datasets.Value("string"), "name": datasets.Value("string"), "age": datasets.Value("int32"), } ) elif self.config.name == "products": features = datasets.Features( { "product_id": datasets.Value("float32"), "name": datasets.Value("string"), "price": datasets.Value("float32"), } ) else: raise ValueError(f"Unknown subset: {self.config.name}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = os.path.join(self.config.data_dir, self.config.name) set_trace() return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "train.csv")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "val.csv")}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "test.csv")}, ), ] def _generate_examples(self, filepath): with open(filepath, encoding="utf-8") as f: for id_, line in enumerate(f): # Example: Parsing CSV file based on the subset name if self.config.name == "customers": # Subset A expects three columns: feature_a1, feature_a2, label feature_a1, feature_a2, label = line.strip().split(",") yield id_, { "customer_id": feature_a1, "name": feature_a2, "age": int(label), } elif self.config.name == "products": # Subset B expects four columns: feature_b1, feature_b2, additional_info, label feature_b1, feature_b2, additional_info = line.strip().split(",") yield id_, { "product_id": feature_b1, "name": feature_b2, "price": float(additional_info), }