Datasets:

License:
KazLLM_Benchmark_Dataset / humaneval_en.csv
rassulya's picture
Upload 24 files
52b2b9f verified
raw
history blame
155 kB
prompt,tests,task_id
"from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
"""""" Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
""""""
","['assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True', 'assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False', 'assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True', 'assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False', 'assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True', 'assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True', 'assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False']",HumanEval/0
"from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
"""""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups('( ) (( )) (( )( ))')
['()', '(())', '(()())']
""""""
","[""assert separate_paren_groups('(()()) ((())) () ((())()())') == [ '(()())', '((()))', '()', '((())()())' ]"", ""assert separate_paren_groups('() (()) ((())) (((())))') == [ '()', '(())', '((()))', '(((())))' ]"", ""assert separate_paren_groups('(()(())((())))') == [ '(()(())((())))' ]"", ""assert separate_paren_groups('( ) (( )) (( )( ))') == ['()', '(())', '(()())']""]",HumanEval/1
"
def truncate_number(number: float) -> float:
"""""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
""""""
","['assert truncate_number(3.5) == 0.5', 'assert abs(truncate_number(1.33) - 0.33) < 1e-6', 'assert abs(truncate_number(123.456) - 0.456) < 1e-6']",HumanEval/2
"from typing import List
def below_zero(operations: List[int]) -> bool:
"""""" You're given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return True. Otherwise it should return False.
>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
""""""
","['assert below_zero([]) == False', 'assert below_zero([1, 2, -3, 1, 2, -3]) == False', 'assert below_zero([1, 2, -4, 5, 6]) == True', 'assert below_zero([1, -1, 2, -2, 5, -5, 4, -4]) == False', 'assert below_zero([1, -1, 2, -2, 5, -5, 4, -5]) == True', 'assert below_zero([1, -2, 2, -2, 5, -5, 4, -4]) == True']",HumanEval/3
"from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
"""""" For a given list of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])
1.0
""""""
","['assert abs(mean_absolute_deviation([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6', 'assert abs(mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6', 'assert abs(mean_absolute_deviation([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6']",HumanEval/4
"from typing import List
def intersperse(numbers: List[int], delimeter: int) -> List[int]:
"""""" Insert a number 'delimeter' between every two consecutive elements of input list `numbers'
>>> intersperse([], 4)
[]
>>> intersperse([1, 2, 3], 4)
[1, 4, 2, 4, 3]
""""""
","['assert intersperse([], 7) == []', 'assert intersperse([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2]', 'assert intersperse([2, 2, 2], 2) == [2, 2, 2, 2, 2]']",HumanEval/5
"from typing import List
def parse_nested_parens(paren_string: str) -> List[int]:
"""""" Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parse_nested_parens('(()()) ((())) () ((())()())')
[2, 3, 1, 3]
""""""
","[""assert parse_nested_parens('(()()) ((())) () ((())()())') == [2, 3, 1, 3]"", ""assert parse_nested_parens('() (()) ((())) (((())))') == [1, 2, 3, 4]"", ""assert parse_nested_parens('(()(())((())))') == [4]""]",HumanEval/6
"from typing import List
def filter_by_substring(strings: List[str], substring: str) -> List[str]:
"""""" Filter an input list of strings only for ones that contain given substring
>>> filter_by_substring([], 'a')
[]
>>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a')
['abc', 'bacd', 'array']
""""""
","[""assert filter_by_substring([], 'john') == []"", ""assert filter_by_substring(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']"", ""assert filter_by_substring(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx']"", ""assert filter_by_substring(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']""]",HumanEval/7
"from typing import List, Tuple
def sum_product(numbers: List[int]) -> Tuple[int, int]:
"""""" For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24)
""""""
","['assert sum_product([]) == (0, 1)', 'assert sum_product([1, 1, 1]) == (3, 1)', 'assert sum_product([100, 0]) == (100, 0)', 'assert sum_product([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7)', 'assert sum_product([10]) == (10, 10)']",HumanEval/8
"from typing import List, Tuple
def rolling_max(numbers: List[int]) -> List[int]:
"""""" From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling_max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
""""""
","['assert rolling_max([]) == []', 'assert rolling_max([1, 2, 3, 4]) == [1, 2, 3, 4]', 'assert rolling_max([4, 3, 2, 1]) == [4, 4, 4, 4]', 'assert rolling_max([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]']",HumanEval/9
"
def is_palindrome(string: str) -> bool:
"""""" Test if given string is a palindrome """"""
return string == string[::-1]
def make_palindrome(string: str) -> str:
"""""" Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
>>> make_palindrome('')
''
>>> make_palindrome('cat')
'catac'
>>> make_palindrome('cata')
'catac'
""""""
","[""assert make_palindrome('') == ''"", ""assert make_palindrome('x') == 'x'"", ""assert make_palindrome('xyz') == 'xyzyx'"", ""assert make_palindrome('xyx') == 'xyx'"", ""assert make_palindrome('jerry') == 'jerryrrej'""]",HumanEval/10
"from typing import List
def string_xor(a: str, b: str) -> str:
"""""" Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor('010', '110')
'100'
""""""
","[""assert string_xor('111000', '101010') == '010010'"", ""assert string_xor('1', '1') == '0'"", ""assert string_xor('0101', '0000') == '0101'""]",HumanEval/11
"from typing import List, Optional
def longest(strings: List[str]) -> Optional[str]:
"""""" Out of list of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input list is empty.
>>> longest([])
>>> longest(['a', 'b', 'c'])
'a'
>>> longest(['a', 'bb', 'ccc'])
'ccc'
""""""
","['assert longest([]) == None', ""assert longest(['x', 'y', 'z']) == 'x'"", ""assert longest(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz'""]",HumanEval/12
"
def greatest_common_divisor(a: int, b: int) -> int:
"""""" Return a greatest common divisor of two integers a and b
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(25, 15)
5
""""""
","['assert greatest_common_divisor(3, 7) == 1', 'assert greatest_common_divisor(10, 15) == 5', 'assert greatest_common_divisor(49, 14) == 7', 'assert greatest_common_divisor(144, 60) == 12']",HumanEval/13
"from typing import List
def all_prefixes(string: str) -> List[str]:
"""""" Return list of all prefixes from shortest to longest of the input string
>>> all_prefixes('abc')
['a', 'ab', 'abc']
""""""
","[""assert all_prefixes('') == []"", ""assert all_prefixes('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']"", ""assert all_prefixes('WWW') == ['W', 'WW', 'WWW']""]",HumanEval/14
"
def string_sequence(n: int) -> str:
"""""" Return a string containing space-delimited numbers starting from 0 upto n inclusive.
>>> string_sequence(0)
'0'
>>> string_sequence(5)
'0 1 2 3 4 5'
""""""
","[""assert string_sequence(0) == '0'"", ""assert string_sequence(3) == '0 1 2 3'"", ""assert string_sequence(10) == '0 1 2 3 4 5 6 7 8 9 10'""]",HumanEval/15
"
def count_distinct_characters(string: str) -> int:
"""""" Given a string, find out how many distinct characters (regardless of case) does it consist of
>>> count_distinct_characters('xyzXYZ')
3
>>> count_distinct_characters('Jerry')
4
""""""
","[""assert count_distinct_characters('') == 0"", ""assert count_distinct_characters('abcde') == 5"", ""assert count_distinct_characters('abcde' + 'cade' + 'CADE') == 5"", ""assert count_distinct_characters('aaaaAAAAaaaa') == 1"", ""assert count_distinct_characters('Jerry jERRY JeRRRY') == 5""]",HumanEval/16
"from typing import List
def parse_music(music_string: str) -> List[int]:
"""""" Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return list of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
>>> parse_music('o o| .| o| o| .| .| .| .| o o')
[4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
""""""
","[""assert parse_music('') == []"", ""assert parse_music('o o o o') == [4, 4, 4, 4]"", ""assert parse_music('.| .| .| .|') == [1, 1, 1, 1]"", ""assert parse_music('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4]"", ""assert parse_music('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2]""]",HumanEval/17
"
def how_many_times(string: str, substring: str) -> int:
"""""" Find how many times a given substring can be found in the original string. Count overlaping cases.
>>> how_many_times('', 'a')
0
>>> how_many_times('aaa', 'a')
3
>>> how_many_times('aaaa', 'aa')
3
""""""
","[""assert how_many_times('', 'x') == 0"", ""assert how_many_times('xyxyxyx', 'x') == 4"", ""assert how_many_times('cacacacac', 'cac') == 4"", ""assert how_many_times('john doe', 'john') == 1""]",HumanEval/18
"from typing import List
def sort_numbers(numbers: str) -> str:
"""""" Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
>>> sort_numbers('three one five')
'one three five'
""""""
","[""assert sort_numbers('') == ''"", ""assert sort_numbers('three') == 'three'"", ""assert sort_numbers('three five nine') == 'three five nine'"", ""assert sort_numbers('five zero four seven nine eight') == 'zero four five seven eight nine'"", ""assert sort_numbers('six five four three two one zero') == 'zero one two three four five six'""]",HumanEval/19
"from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
"""""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
""""""
","['assert find_closest_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)', 'assert find_closest_elements([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)', 'assert find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)', 'assert find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)', 'assert find_closest_elements([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)']",HumanEval/20
"from typing import List
def rescale_to_unit(numbers: List[float]) -> List[float]:
"""""" Given list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 1
>>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 0.25, 0.5, 0.75, 1.0]
""""""
","['assert rescale_to_unit([2.0, 49.9]) == [0.0, 1.0]', 'assert rescale_to_unit([100.0, 49.9]) == [1.0, 0.0]', 'assert rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0]', 'assert rescale_to_unit([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]', 'assert rescale_to_unit([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]']",HumanEval/21
"from typing import List, Any
def filter_integers(values: List[Any]) -> List[int]:
"""""" Filter given list of any python values only for integers
>>> filter_integers(['a', 3.14, 5])
[5]
>>> filter_integers([1, 2, 3, 'abc', {}, []])
[1, 2, 3]
""""""
","['assert filter_integers([]) == []', ""assert filter_integers([4, {}, [], 23.2, 9, 'adasd']) == [4, 9]"", ""assert filter_integers([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3]""]",HumanEval/22
"
def strlen(string: str) -> int:
"""""" Return length of given string
>>> strlen('')
0
>>> strlen('abc')
3
""""""
","[""assert strlen('') == 0"", ""assert strlen('x') == 1"", ""assert strlen('asdasnakj') == 9""]",HumanEval/23
"
def largest_divisor(n: int) -> int:
"""""" For a given number n, find the largest number that divides n evenly, smaller than n
>>> largest_divisor(15)
5
""""""
","['assert largest_divisor(3) == 1', 'assert largest_divisor(7) == 1', 'assert largest_divisor(10) == 5', 'assert largest_divisor(100) == 50', 'assert largest_divisor(49) == 7']",HumanEval/24
"from typing import List
def factorize(n: int) -> List[int]:
"""""" Return list of prime factors of given integer in the order from smallest to largest.
Each of the factors should be listed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
>>> factorize(8)
[2, 2, 2]
>>> factorize(25)
[5, 5]
>>> factorize(70)
[2, 5, 7]
""""""
","['assert factorize(2) == [2]', 'assert factorize(4) == [2, 2]', 'assert factorize(8) == [2, 2, 2]', 'assert factorize(3 * 19) == [3, 19]', 'assert factorize(3 * 19 * 3 * 19) == [3, 3, 19, 19]', 'assert factorize(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19]', 'assert factorize(3 * 19 * 19 * 19) == [3, 19, 19, 19]', 'assert factorize(3 * 2 * 3) == [2, 3, 3]']",HumanEval/25
"from typing import List
def remove_duplicates(numbers: List[int]) -> List[int]:
"""""" From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> remove_duplicates([1, 2, 3, 2, 4])
[1, 3, 4]
""""""
","['assert remove_duplicates([]) == []', 'assert remove_duplicates([1, 2, 3, 4]) == [1, 2, 3, 4]', 'assert remove_duplicates([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]']",HumanEval/26
"
def flip_case(string: str) -> str:
"""""" For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
>>> flip_case('Hello')
'hELLO'
""""""
","[""assert flip_case('') == ''"", ""assert flip_case('Hello!') == 'hELLO!'"", ""assert flip_case('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'""]",HumanEval/27
"from typing import List
def concatenate(strings: List[str]) -> str:
"""""" Concatenate list of strings into a single string
>>> concatenate([])
''
>>> concatenate(['a', 'b', 'c'])
'abc'
""""""
","[""assert concatenate([]) == ''"", ""assert concatenate(['x', 'y', 'z']) == 'xyz'"", ""assert concatenate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk'""]",HumanEval/28
"from typing import List
def filter_by_prefix(strings: List[str], prefix: str) -> List[str]:
"""""" Filter an input list of strings only for ones that start with a given prefix.
>>> filter_by_prefix([], 'a')
[]
>>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a')
['abc', 'array']
""""""
","[""assert filter_by_prefix([], 'john') == []"", ""assert filter_by_prefix(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']""]",HumanEval/29
"
def get_positive(l: list):
""""""Return only positive numbers in the list.
>>> get_positive([-1, 2, -4, 5, 6])
[2, 5, 6]
>>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
[5, 3, 2, 3, 9, 123, 1]
""""""
","['assert get_positive([-1, -2, 4, 5, 6]) == [4, 5, 6]', 'assert get_positive([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1]', 'assert get_positive([-1, -2]) == []', 'assert get_positive([]) == []']",HumanEval/30
"
def is_prime(n):
""""""Return true if a given number is prime, and false otherwise.
>>> is_prime(6)
False
>>> is_prime(101)
True
>>> is_prime(11)
True
>>> is_prime(13441)
True
>>> is_prime(61)
True
>>> is_prime(4)
False
>>> is_prime(1)
False
""""""
","['assert is_prime(6) == False', 'assert is_prime(101) == True', 'assert is_prime(11) == True', 'assert is_prime(13441) == True', 'assert is_prime(61) == True', 'assert is_prime(4) == False', 'assert is_prime(1) == False', 'assert is_prime(5) == True', 'assert is_prime(11) == True', 'assert is_prime(17) == True', 'assert is_prime(5 * 17) == False', 'assert is_prime(11 * 7) == False', 'assert is_prime(13441 * 19) == False']",HumanEval/31
"import math
def poly(xs: list, x: float):
""""""
Evaluates polynomial with coefficients xs at point x.
return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n
""""""
return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])
def find_zero(xs: list):
"""""" xs are coefficients of a polynomial.
find_zero find x such that poly(x) = 0.
find_zero returns only only zero point, even if there are many.
Moreover, find_zero only takes list xs having even number of coefficients
and largest non zero coefficient as it guarantees
a solution.
>>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x
-0.5
>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3
1.0
""""""
","['assert math.fabs(poly(coeffs, solution)) < 1e-4']",HumanEval/32
"
def sort_third(l: list):
""""""This function takes a list l and returns a list l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
>>> sort_third([1, 2, 3])
[1, 2, 3]
>>> sort_third([5, 6, 3, 4, 8, 9, 2])
[2, 6, 3, 4, 8, 9, 5]
""""""
","['assert tuple(sort_third([1, 2, 3])) == tuple(sort_third([1, 2, 3]))', 'assert tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]))', 'assert tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10]))', 'assert tuple(sort_third([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5])', 'assert tuple(sort_third([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5])', 'assert tuple(sort_third([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5])', 'assert tuple(sort_third([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1])']",HumanEval/33
"
def unique(l: list):
""""""Return sorted unique elements in a list
>>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])
[0, 2, 3, 5, 9, 123]
""""""
","['assert unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]']",HumanEval/34
"
def max_element(l: list):
""""""Return maximum element in the list.
>>> max_element([1, 2, 3])
3
>>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123
""""""
","['assert max_element([1, 2, 3]) == 3', 'assert max_element([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124']",HumanEval/35
"
def fizz_buzz(n: int):
""""""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
>>> fizz_buzz(50)
0
>>> fizz_buzz(78)
2
>>> fizz_buzz(79)
3
""""""
","['assert fizz_buzz(50) == 0', 'assert fizz_buzz(78) == 2', 'assert fizz_buzz(79) == 3', 'assert fizz_buzz(100) == 3', 'assert fizz_buzz(200) == 6', 'assert fizz_buzz(4000) == 192', 'assert fizz_buzz(10000) == 639', 'assert fizz_buzz(100000) == 8026']",HumanEval/36
"
def sort_even(l: list):
""""""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 6, 5, 4]
""""""
","['assert tuple(sort_even([1, 2, 3])) == tuple([1, 2, 3])', 'assert tuple(sort_even([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123])', 'assert tuple(sort_even([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10])']",HumanEval/37
"
def encode_cyclic(s: str):
""""""
returns encoded string by cycling groups of three characters.
""""""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return """".join(groups)
def decode_cyclic(s: str):
""""""
takes as input string encoded with encode_cyclic function. Returns decoded string.
""""""
",['assert decode_cyclic(encoded_str) == str'],HumanEval/38
"
def prime_fib(n: int):
""""""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
>>> prime_fib(1)
2
>>> prime_fib(2)
3
>>> prime_fib(3)
5
>>> prime_fib(4)
13
>>> prime_fib(5)
89
""""""
","['assert prime_fib(1) == 2', 'assert prime_fib(2) == 3', 'assert prime_fib(3) == 5', 'assert prime_fib(4) == 13', 'assert prime_fib(5) == 89', 'assert prime_fib(6) == 233', 'assert prime_fib(7) == 1597', 'assert prime_fib(8) == 28657', 'assert prime_fib(9) == 514229', 'assert prime_fib(10) == 433494437']",HumanEval/39
"
def triples_sum_to_zero(l: list):
""""""
triples_sum_to_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero, and False otherwise.
>>> triples_sum_to_zero([1, 3, 5, 0])
False
>>> triples_sum_to_zero([1, 3, -2, 1])
True
>>> triples_sum_to_zero([1, 2, 3, 7])
False
>>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])
True
>>> triples_sum_to_zero([1])
False
""""""
","['assert triples_sum_to_zero([1, 3, 5, 0]) == False', 'assert triples_sum_to_zero([1, 3, 5, -1]) == False', 'assert triples_sum_to_zero([1, 3, -2, 1]) == True', 'assert triples_sum_to_zero([1, 2, 3, 7]) == False', 'assert triples_sum_to_zero([1, 2, 5, 7]) == False', 'assert triples_sum_to_zero([2, 4, -5, 3, 9, 7]) == True', 'assert triples_sum_to_zero([1]) == False', 'assert triples_sum_to_zero([1, 3, 5, -100]) == False', 'assert triples_sum_to_zero([100, 3, 5, -100]) == False']",HumanEval/40
"
def car_race_collision(n: int):
""""""
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
""""""
","['assert car_race_collision(2) == 4', 'assert car_race_collision(3) == 9', 'assert car_race_collision(4) == 16', 'assert car_race_collision(8) == 64', 'assert car_race_collision(10) == 100']",HumanEval/41
"
def incr_list(l: list):
""""""Return list with elements incremented by 1.
>>> incr_list([1, 2, 3])
[2, 3, 4]
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
[6, 4, 6, 3, 4, 4, 10, 1, 124]
""""""
","['assert incr_list([]) == []', 'assert incr_list([3, 2, 1]) == [4, 3, 2]', 'assert incr_list([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]']",HumanEval/42
"
def pairs_sum_to_zero(l):
""""""
pairs_sum_to_zero takes a list of integers as an input.
it returns True if there are two distinct elements in the list that
sum to zero, and False otherwise.
>>> pairs_sum_to_zero([1, 3, 5, 0])
False
>>> pairs_sum_to_zero([1, 3, -2, 1])
False
>>> pairs_sum_to_zero([1, 2, 3, 7])
False
>>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])
True
>>> pairs_sum_to_zero([1])
False
""""""
","['assert pairs_sum_to_zero([1, 3, 5, 0]) == False', 'assert pairs_sum_to_zero([1, 3, -2, 1]) == False', 'assert pairs_sum_to_zero([1, 2, 3, 7]) == False', 'assert pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) == True', 'assert pairs_sum_to_zero([1]) == False', 'assert pairs_sum_to_zero([-3, 9, -1, 3, 2, 30]) == True', 'assert pairs_sum_to_zero([-3, 9, -1, 3, 2, 31]) == True', 'assert pairs_sum_to_zero([-3, 9, -1, 4, 2, 30]) == False', 'assert pairs_sum_to_zero([-3, 9, -1, 4, 2, 31]) == False']",HumanEval/43
"
def change_base(x: int, base: int):
""""""Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base(8, 3)
'22'
>>> change_base(8, 2)
'1000'
>>> change_base(7, 2)
'111'
""""""
","['assert change_base(8, 3) == ""22""', 'assert change_base(9, 3) == ""100""', 'assert change_base(234, 2) == ""11101010""', 'assert change_base(16, 2) == ""10000""', 'assert change_base(8, 2) == ""1000""', 'assert change_base(7, 2) == ""111"" for x in range(2, 8):', 'assert change_base(x, x + 1) == str(x)']",HumanEval/44
"
def triangle_area(a, h):
""""""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
""""""
","['assert triangle_area(5, 3) == 7.5', 'assert triangle_area(2, 2) == 2.0', 'assert triangle_area(10, 8) == 40.0']",HumanEval/45
"
def fib4(n: int):
""""""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
""""""
","['assert fib4(5) == 4', 'assert fib4(8) == 28', 'assert fib4(10) == 104', 'assert fib4(12) == 386']",HumanEval/46
"
def median(l: list):
""""""Return median of elements in the list l.
>>> median([3, 1, 2, 4, 5])
3
>>> median([-10, 4, 6, 1000, 10, 20])
15.0
""""""
","['assert median([3, 1, 2, 4, 5]) == 3', 'assert median([-10, 4, 6, 1000, 10, 20]) == 8.0', 'assert median([5]) == 5', 'assert median([6, 5]) == 5.5', 'assert median([8, 1, 3, 9, 9, 2, 7]) == 7']",HumanEval/47
"
def is_palindrome(text: str):
""""""
Checks if given string is a palindrome
>>> is_palindrome('')
True
>>> is_palindrome('aba')
True
>>> is_palindrome('aaaaa')
True
>>> is_palindrome('zbcd')
False
""""""
","[""assert is_palindrome('') == True"", ""assert is_palindrome('aba') == True"", ""assert is_palindrome('aaaaa') == True"", ""assert is_palindrome('zbcd') == False"", ""assert is_palindrome('xywyx') == True"", ""assert is_palindrome('xywyz') == False"", ""assert is_palindrome('xywzx') == False""]",HumanEval/48
"
def modp(n: int, p: int):
""""""Return 2^n modulo p (be aware of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1
""""""
","['assert modp(3, 5) == 3', 'assert modp(1101, 101) == 2', 'assert modp(0, 101) == 1', 'assert modp(3, 11) == 8', 'assert modp(100, 101) == 1', 'assert modp(30, 5) == 4', 'assert modp(31, 5) == 3']",HumanEval/49
"
def encode_shift(s: str):
""""""
returns encoded string by shifting every character by 5 in the alphabet.
""""""
return """".join([chr(((ord(ch) + 5 - ord(""a"")) % 26) + ord(""a"")) for ch in s])
def decode_shift(s: str):
""""""
takes as input string encoded with encode_shift function. Returns decoded string.
""""""
",['assert decode_shift(copy.deepcopy(encoded_str)) == str'],HumanEval/50
"
def remove_vowels(text):
""""""
remove_vowels is a function that takes string and returns string without vowels.
>>> remove_vowels('')
''
>>> remove_vowels(""abcdef\nghijklm"")
'bcdf\nghjklm'
>>> remove_vowels('abcdef')
'bcdf'
>>> remove_vowels('aaaaa')
''
>>> remove_vowels('aaBAA')
'B'
>>> remove_vowels('zbcd')
'zbcd'
""""""
","[""assert remove_vowels('') == ''"", 'assert remove_vowels(""abcdef\\nghijklm"") == \'bcdf\\nghjklm\'', ""assert remove_vowels('fedcba') == 'fdcb'"", ""assert remove_vowels('eeeee') == ''"", ""assert remove_vowels('acBAA') == 'cB'"", ""assert remove_vowels('EcBOO') == 'cB'"", ""assert remove_vowels('ybcd') == 'ybcd'""]",HumanEval/51
"
def below_threshold(l: list, t: int):
""""""Return True if all numbers in the list l are below threshold t.
>>> below_threshold([1, 2, 4, 10], 100)
True
>>> below_threshold([1, 20, 4, 10], 5)
False
""""""
","['assert below_threshold([1, 2, 4, 10], 100)', 'assert not below_threshold([1, 20, 4, 10], 5)', 'assert below_threshold([1, 20, 4, 10], 21)', 'assert below_threshold([1, 20, 4, 10], 22)', 'assert below_threshold([1, 8, 4, 10], 11)', 'assert not below_threshold([1, 8, 4, 10], 10)']",HumanEval/52
"
def add(x: int, y: int):
""""""Add two numbers x and y
>>> add(2, 3)
5
>>> add(5, 7)
12
""""""
","['assert add(0, 1) == 1', 'assert add(1, 0) == 1', 'assert add(2, 3) == 5', 'assert add(5, 7) == 12', 'assert add(7, 5) == 12 for i in range(100): x, y = random.randint(0, 1000), random.randint(0, 1000)', 'assert add(x, y) == x + y']",HumanEval/53
"
def same_chars(s0: str, s1: str):
""""""
Check if two words have the same characters.
>>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc')
True
>>> same_chars('abcd', 'dddddddabc')
True
>>> same_chars('dddddddabc', 'abcd')
True
>>> same_chars('eabcd', 'dddddddabc')
False
>>> same_chars('abcd', 'dddddddabce')
False
>>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc')
False
""""""
","[""assert same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') == True"", ""assert same_chars('abcd', 'dddddddabc') == True"", ""assert same_chars('dddddddabc', 'abcd') == True"", ""assert same_chars('eabcd', 'dddddddabc') == False"", ""assert same_chars('abcd', 'dddddddabcf') == False"", ""assert same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') == False"", ""assert same_chars('aabb', 'aaccc') == False""]",HumanEval/54
"
def fib(n: int):
""""""Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21
""""""
","['assert fib(10) == 55', 'assert fib(1) == 1', 'assert fib(8) == 21', 'assert fib(11) == 89', 'assert fib(12) == 144']",HumanEval/55
"
def correct_bracketing(brackets: str):
"""""" brackets is a string of ""<"" and "">"".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing(""<"")
False
>>> correct_bracketing(""<>"")
True
>>> correct_bracketing(""<<><>>"")
True
>>> correct_bracketing(""><<>"")
False
""""""
","['assert correct_bracketing(""<>"")', 'assert correct_bracketing(""<<><>>"")', 'assert correct_bracketing(""<><><<><>><>"")', 'assert correct_bracketing(""<><><<<><><>><>><<><><<>>>"")', 'assert not correct_bracketing(""<<<><>>>>"")', 'assert not correct_bracketing(""><<>"")', 'assert not correct_bracketing(""<"")', 'assert not correct_bracketing(""<<<<"")', 'assert not correct_bracketing("">"")', 'assert not correct_bracketing(""<<>"")', 'assert not correct_bracketing(""<><><<><>><>><<>"")', 'assert not correct_bracketing(""<><><<><>><>>><>"")']",HumanEval/56
"
def monotonic(l: list):
""""""Return True is list elements are monotonically increasing or decreasing.
>>> monotonic([1, 2, 4, 20])
True
>>> monotonic([1, 20, 4, 10])
False
>>> monotonic([4, 1, 0, -10])
True
""""""
","['assert monotonic([1, 2, 4, 10]) == True', 'assert monotonic([1, 2, 4, 20]) == True', 'assert monotonic([1, 20, 4, 10]) == False', 'assert monotonic([4, 1, 0, -10]) == True', 'assert monotonic([4, 1, 1, 0]) == True', 'assert monotonic([1, 2, 3, 2, 5, 60]) == False', 'assert monotonic([1, 2, 3, 4, 5, 60]) == True', 'assert monotonic([9, 9, 9, 9]) == True']",HumanEval/57
"
def common(l1: list, l2: list):
""""""Return sorted unique common elements for two lists.
>>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])
[1, 5, 653]
>>> common([5, 3, 2, 8], [3, 2])
[2, 3]
""""""
","['assert common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653]', 'assert common([5, 3, 2, 8], [3, 2]) == [2, 3]', 'assert common([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4]', 'assert common([4, 3, 2, 8], []) == []']",HumanEval/58
"
def largest_prime_factor(n: int):
""""""Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor(13195)
29
>>> largest_prime_factor(2048)
2
""""""
","['assert largest_prime_factor(15) == 5', 'assert largest_prime_factor(27) == 3', 'assert largest_prime_factor(63) == 7', 'assert largest_prime_factor(330) == 11', 'assert largest_prime_factor(13195) == 29']",HumanEval/59
"
def sum_to_n(n: int):
""""""sum_to_n is a function that sums numbers from 1 to n.
>>> sum_to_n(30)
465
>>> sum_to_n(100)
5050
>>> sum_to_n(5)
15
>>> sum_to_n(10)
55
>>> sum_to_n(1)
1
""""""
","['assert sum_to_n(1) == 1', 'assert sum_to_n(6) == 21', 'assert sum_to_n(11) == 66', 'assert sum_to_n(30) == 465', 'assert sum_to_n(100) == 5050']",HumanEval/60
"
def correct_bracketing(brackets: str):
"""""" brackets is a string of ""("" and "")"".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing(""("")
False
>>> correct_bracketing(""()"")
True
>>> correct_bracketing(""(()())"")
True
>>> correct_bracketing("")(()"")
False
""""""
","['assert correct_bracketing(""()"")', 'assert correct_bracketing(""(()())"")', 'assert correct_bracketing(""()()(()())()"")', 'assert correct_bracketing(""()()((()()())())(()()(()))"")', 'assert not correct_bracketing(""((()())))"")', 'assert not correct_bracketing("")(()"")', 'assert not correct_bracketing(""("")', 'assert not correct_bracketing(""(((("")', 'assert not correct_bracketing("")"")', 'assert not correct_bracketing(""(()"")', 'assert not correct_bracketing(""()()(()())())(()"")', 'assert not correct_bracketing(""()()(()())()))()"")']",HumanEval/61
"
def derivative(xs: list):
"""""" xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6]
""""""
","['assert derivative([3, 1, 2, 4, 5]) == [1, 4, 12, 20]', 'assert derivative([1, 2, 3]) == [2, 6]', 'assert derivative([3, 2, 1]) == [2, 2]', 'assert derivative([3, 2, 1, 0, 4]) == [2, 2, 0, 16]', 'assert derivative([1]) == []']",HumanEval/62
"
def fibfib(n: int):
""""""The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
>>> fibfib(1)
0
>>> fibfib(5)
4
>>> fibfib(8)
24
""""""
","['assert fibfib(2) == 1', 'assert fibfib(1) == 0', 'assert fibfib(5) == 4', 'assert fibfib(8) == 24', 'assert fibfib(10) == 81', 'assert fibfib(12) == 274', 'assert fibfib(14) == 927']",HumanEval/63
"
FIX = """"""
Add more test cases.
""""""
def vowels_count(s):
""""""Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
>>> vowels_count(""abcde"")
2
>>> vowels_count(""ACEDY"")
3
""""""
","['assert vowels_count(""abcde"") == 2, ""Test 1""', 'assert vowels_count(""Alone"") == 3, ""Test 2""', 'assert vowels_count(""key"") == 2, ""Test 3""', 'assert vowels_count(""bye"") == 1, ""Test 4""', 'assert vowels_count(""keY"") == 2, ""Test 5""', 'assert vowels_count(""bYe"") == 1, ""Test 6""', 'assert vowels_count(""ACEDY"") == 3, ""Test 7"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/64
"
def circular_shift(x, shift):
""""""Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
>>> circular_shift(12, 1)
""21""
>>> circular_shift(12, 2)
""12""
""""""
","['assert circular_shift(100, 2) == ""001""', 'assert circular_shift(12, 2) == ""12""', 'assert circular_shift(97, 8) == ""79""', 'assert circular_shift(12, 1) == ""21"", ""This prints if this assert fails 1 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert circular_shift(11, 101) == ""11"", ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/65
"
def digitSum(s):
""""""Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum("""") => 0
digitSum(""abAB"") => 131
digitSum(""abcCd"") => 67
digitSum(""helloE"") => 69
digitSum(""woArBld"") => 131
digitSum(""aAaaaXa"") => 153
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert digitSum("""") == 0, ""Error""', 'assert digitSum(""abAB"") == 131, ""Error""', 'assert digitSum(""abcCd"") == 67, ""Error""', 'assert digitSum(""helloE"") == 69, ""Error""', 'assert digitSum(""woArBld"") == 131, ""Error""', 'assert digitSum(""aAaaaXa"") == 153, ""Error"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert digitSum("" How are yOu?"") == 151, ""Error""', 'assert digitSum(""You arE Very Smart"") == 327, ""Error""']",HumanEval/66
"
def fruit_distribution(s,n):
""""""
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruit_distribution(""5 apples and 6 oranges"", 19) ->19 - 5 - 6 = 8
fruit_distribution(""0 apples and 1 oranges"",3) -> 3 - 0 - 1 = 2
fruit_distribution(""2 apples and 3 oranges"", 100) -> 100 - 2 - 3 = 95
fruit_distribution(""100 apples and 1 oranges"",120) -> 120 - 100 - 1 = 19
""""""
","['assert fruit_distribution(""5 apples and 6 oranges"",19) == 8', 'assert fruit_distribution(""5 apples and 6 oranges"",21) == 10', 'assert fruit_distribution(""0 apples and 1 oranges"",3) == 2', 'assert fruit_distribution(""1 apples and 0 oranges"",3) == 2', 'assert fruit_distribution(""2 apples and 3 oranges"",100) == 95', 'assert fruit_distribution(""2 apples and 3 oranges"",5) == 0', 'assert fruit_distribution(""1 apples and 100 oranges"",120) == 19']",HumanEval/67
"
def pluck(arr):
""""""
""Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a list, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Input: [4,2,3]
Output: [2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Input: [1,2,3]
Output: [2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Input: []
Output: []
Example 4:
Input: [5, 0, 3, 0, 4, 2]
Output: [0, 1]
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert pluck([4,2,3]) == [2, 1], ""Error""', 'assert pluck([1,2,3]) == [2, 1], ""Error""', 'assert pluck([]) == [], ""Error""', 'assert pluck([5, 0, 3, 0, 4, 2]) == [0, 1], ""Error"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert pluck([1, 2, 3, 0, 5, 3]) == [0, 3], ""Error""', 'assert pluck([5, 4, 8, 4 ,8]) == [4, 1], ""Error""', 'assert pluck([7, 6, 7, 1]) == [6, 1], ""Error""', 'assert pluck([7, 9, 7, 1]) == [], ""Error""']",HumanEval/68
"
def search(lst):
'''
You are given a non-empty list of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the list.
If no such a value exist, return -1.
Examples:
search([4, 1, 2, 2, 3, 1]) == 2
search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search([5, 5, 4, 4, 4]) == -1
'''
","['assert search([5, 5, 5, 5, 1]) == 1', 'assert search([4, 1, 4, 1, 4, 4]) == 4', 'assert search([3, 3]) == -1', 'assert search([8, 8, 8, 8, 8, 8, 8, 8]) == 8', 'assert search([2, 3, 3, 2, 2]) == 2 # automatically generated tests', 'assert search([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1', 'assert search([3, 2, 8, 2]) == 2', 'assert search([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1', 'assert search([8, 8, 3, 6, 5, 6, 4]) == -1', 'assert search([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1', 'assert search([1, 9, 10, 1, 3]) == 1', 'assert search([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5', 'assert search([1]) == 1', 'assert search([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4', 'assert search([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2', 'assert search([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1', 'assert search([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4', 'assert search([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4', 'assert search([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2', 'assert search([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1', 'assert search([10]) == -1', 'assert search([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2', 'assert search([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1', 'assert search([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1', 'assert search([3, 10, 10, 9, 2]) == -1']",HumanEval/69
"
def strange_sort_list(lst):
'''
Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3]
strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5]
strange_sort_list([]) == []
'''
","['assert strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3]', 'assert strange_sort_list([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7]', 'assert strange_sort_list([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3]', 'assert strange_sort_list([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7]', 'assert strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5]', 'assert strange_sort_list([]) == []', 'assert strange_sort_list([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5]', 'assert strange_sort_list([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2]', 'assert strange_sort_list([111111]) == [111111] # Check some edge cases that are easy to work out by hand.', 'assert True']",HumanEval/70
"
def triangle_area(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangle_area(3, 4, 5) == 6.00
triangle_area(1, 2, 10) == -1
'''
","['assert triangle_area(3, 4, 5) == 6.00, ""This prints if this assert fails 1 (good for debugging!)""', 'assert triangle_area(1, 2, 10) == -1', 'assert triangle_area(4, 8, 5) == 8.18', 'assert triangle_area(2, 2, 2) == 1.73', 'assert triangle_area(1, 2, 3) == -1', 'assert triangle_area(10, 5, 7) == 16.25', 'assert triangle_area(2, 6, 3) == -1 # Check some edge cases that are easy to work out by hand.', 'assert triangle_area(1, 1, 1) == 0.43, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert triangle_area(2, 2, 10) == -1']",HumanEval/71
"
def will_it_fly(q,w):
'''
Write a function that returns True if the object q will fly, and False otherwise.
The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
will_it_fly([1, 2], 5) ➞ False
# 1+2 is less than the maximum possible weight, but it's unbalanced.
will_it_fly([3, 2, 3], 1) ➞ False
# it's balanced, but 3+2+3 is more than the maximum possible weight.
will_it_fly([3, 2, 3], 9) ➞ True
# 3+2+3 is less than the maximum possible weight, and it's balanced.
will_it_fly([3], 5) ➞ True
# 3 is less than the maximum possible weight, and it's balanced.
'''
","['assert will_it_fly([3, 2, 3], 9) is True', 'assert will_it_fly([1, 2], 5) is False', 'assert will_it_fly([3], 5) is True', 'assert will_it_fly([3, 2, 3], 1) is False # Check some edge cases that are easy to work out by hand.', 'assert will_it_fly([1, 2, 3], 6) is False', 'assert will_it_fly([5], 5) is True']",HumanEval/72
"
def smallest_change(arr):
""""""
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallest_change([1,2,3,5,4,7,9,6]) == 4
smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1
smallest_change([1, 2, 3, 2, 1]) == 0
""""""
","['assert smallest_change([1,2,3,5,4,7,9,6]) == 4', 'assert smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1', 'assert smallest_change([1, 4, 2]) == 1', 'assert smallest_change([1, 4, 4, 2]) == 1 # Check some edge cases that are easy to work out by hand.', 'assert smallest_change([1, 2, 3, 2, 1]) == 0', 'assert smallest_change([3, 1, 1, 3]) == 0', 'assert smallest_change([1]) == 0', 'assert smallest_change([0, 1]) == 1']",HumanEval/73
"
def total_match(lst1, lst2):
'''
Write a function that accepts two lists of strings and returns the list that has
total number of chars in the all strings of the list less than the other list.
if the two lists have the same number of chars, return the first list.
Examples
total_match([], []) ➞ []
total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi']
total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin']
total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi']
total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4']
'''
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert total_match([], []) == []', ""assert total_match(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi']"", ""assert total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin']"", ""assert total_match(['4'], ['1', '2', '3', '4', '5']) == ['4']"", ""assert total_match(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi']"", ""assert total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi']"", ""assert total_match(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin'] # Check some edge cases that are easy to work out by hand."", 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""', ""assert total_match([], ['this']) == []"", ""assert total_match(['this'], []) == []""]",HumanEval/74
"
def is_multiply_prime(a):
""""""Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
is_multiply_prime(30) == True
30 = 2 * 3 * 5
""""""
","['assert is_multiply_prime(5) == False', 'assert is_multiply_prime(30) == True', 'assert is_multiply_prime(8) == True', 'assert is_multiply_prime(10) == False', 'assert is_multiply_prime(125) == True', 'assert is_multiply_prime(3 * 5 * 7) == True', 'assert is_multiply_prime(3 * 6 * 7) == False', 'assert is_multiply_prime(9 * 9 * 9) == False', 'assert is_multiply_prime(11 * 9 * 9) == False', 'assert is_multiply_prime(11 * 13 * 7) == True']",HumanEval/75
"
def is_simple_power(x, n):
""""""Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
is_simple_power(1, 4) => true
is_simple_power(2, 2) => true
is_simple_power(8, 2) => true
is_simple_power(3, 2) => false
is_simple_power(3, 1) => false
is_simple_power(5, 3) => false
""""""
","['assert is_simple_power(16, 2)== True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert is_simple_power(143214, 16)== False, ""This prints if this assert fails 1 (good for debugging!)""', 'assert is_simple_power(4, 2)==True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert is_simple_power(9, 3)==True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert is_simple_power(16, 4)==True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert is_simple_power(24, 2)==False, ""This prints if this assert fails 1 (good for debugging!)""', 'assert is_simple_power(128, 4)==False, ""This prints if this assert fails 1 (good for debugging!)""', 'assert is_simple_power(12, 6)==False, ""This prints if this assert fails 1 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert is_simple_power(1, 1)==True, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert is_simple_power(1, 12)==True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/76
"
def iscube(a):
'''
Write a function that takes an integer a and returns True
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(1) ==> True
iscube(2) ==> False
iscube(-1) ==> True
iscube(64) ==> True
iscube(0) ==> True
iscube(180) ==> False
'''
","['assert iscube(1) == True, ""First test error: "" + str(iscube(1))', 'assert iscube(2) == False, ""Second test error: "" + str(iscube(2))', 'assert iscube(-1) == True, ""Third test error: "" + str(iscube(-1))', 'assert iscube(64) == True, ""Fourth test error: "" + str(iscube(64))', 'assert iscube(180) == False, ""Fifth test error: "" + str(iscube(180))', 'assert iscube(1000) == True, ""Sixth test error: "" + str(iscube(1000)) # Check some edge cases that are easy to work out by hand.', 'assert iscube(0) == True, ""1st edge test error: "" + str(iscube(0))', 'assert iscube(1729) == False, ""2nd edge test error: "" + str(iscube(1728))']",HumanEval/77
"
def hex_key(num):
""""""You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
For num = ""AB"" the output should be 1.
For num = ""1077E"" the output should be 2.
For num = ""ABED1A33"" the output should be 4.
For num = ""123456789ABCDEF0"" the output should be 6.
For num = ""2020"" the output should be 2.
""""""
","['assert hex_key(""AB"") == 1, ""First test error: "" + str(hex_key(""AB""))', 'assert hex_key(""1077E"") == 2, ""Second test error: "" + str(hex_key(""1077E""))', 'assert hex_key(""ABED1A33"") == 4, ""Third test error: "" + str(hex_key(""ABED1A33""))', 'assert hex_key(""2020"") == 2, ""Fourth test error: "" + str(hex_key(""2020""))', 'assert hex_key(""123456789ABCDEF0"") == 6, ""Fifth test error: "" + str(hex_key(""123456789ABCDEF0""))', 'assert hex_key(""112233445566778899AABBCCDDEEFF00"") == 12, ""Sixth test error: "" + str(hex_key(""112233445566778899AABBCCDDEEFF00"")) # Check some edge cases that are easy to work out by hand.', 'assert hex_key([]) == 0']",HumanEval/78
"
def decimal_to_binary(decimal):
""""""You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimal_to_binary(15) # returns ""db1111db""
decimal_to_binary(32) # returns ""db100000db""
""""""
","['assert decimal_to_binary(0) == ""db0db""', 'assert decimal_to_binary(32) == ""db100000db""', 'assert decimal_to_binary(103) == ""db1100111db""', 'assert decimal_to_binary(15) == ""db1111db"", ""This prints if this assert fails 1 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/79
"
def is_happy(s):
""""""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
is_happy(a) => False
is_happy(aa) => False
is_happy(abcd) => True
is_happy(aabb) => False
is_happy(adb) => True
is_happy(xyy) => False
""""""
","['assert is_happy(""a"") == False , ""a""', 'assert is_happy(""aa"") == False , ""aa""', 'assert is_happy(""abcd"") == True , ""abcd""', 'assert is_happy(""aabb"") == False , ""aabb""', 'assert is_happy(""adb"") == True , ""adb""', 'assert is_happy(""xyy"") == False , ""xyy""', 'assert is_happy(""iopaxpoi"") == True , ""iopaxpoi""', 'assert is_happy(""iopaxioi"") == False , ""iopaxioi""']",HumanEval/80
"
def numerical_letter_grade(grades):
""""""It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a list of GPAs for some students and you have to write
a function that can output a list of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-']
""""""
","[""assert numerical_letter_grade([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-']"", ""assert numerical_letter_grade([1.2]) == ['D+']"", ""assert numerical_letter_grade([0.5]) == ['D-']"", ""assert numerical_letter_grade([0.0]) == ['E']"", ""assert numerical_letter_grade([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+']"", ""assert numerical_letter_grade([0, 0.7]) == ['E', 'D-'] # Check some edge cases that are easy to work out by hand."", 'assert True']",HumanEval/81
"
def prime_length(string):
""""""Write a function that takes a string and returns True if the string
length is a prime number or False otherwise
Examples
prime_length('Hello') == True
prime_length('abcdcba') == True
prime_length('kittens') == True
prime_length('orange') == False
""""""
","[""assert prime_length('Hello') == True"", ""assert prime_length('abcdcba') == True"", ""assert prime_length('kittens') == True"", ""assert prime_length('orange') == False"", ""assert prime_length('wow') == True"", ""assert prime_length('world') == True"", ""assert prime_length('MadaM') == True"", ""assert prime_length('Wow') == True"", ""assert prime_length('') == False"", ""assert prime_length('HI') == True"", ""assert prime_length('go') == True"", ""assert prime_length('gogo') == False"", ""assert prime_length('aaaaaaaaaaaaaaa') == False # Check some edge cases that are easy to work out by hand."", ""assert prime_length('Madam') == True"", ""assert prime_length('M') == False"", ""assert prime_length('0') == False""]",HumanEval/82
"
def starts_one_ends(n):
""""""
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert starts_one_ends(1) == 1', 'assert starts_one_ends(2) == 18', 'assert starts_one_ends(3) == 180', 'assert starts_one_ends(4) == 1800', 'assert starts_one_ends(5) == 18000 # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/83
"
def solve(N):
""""""Given a positive integer N, return the total sum of its digits in binary.
Example
For N = 1000, the sum of digits will be 1 the output should be ""1"".
For N = 150, the sum of digits will be 6 the output should be ""110"".
For N = 147, the sum of digits will be 12 the output should be ""1100"".
Variables:
@N integer
Constraints: 0 ≤ N ≤ 10000.
Output:
a string of binary number
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert solve(1000) == ""1"", ""Error""', 'assert solve(150) == ""110"", ""Error""', 'assert solve(147) == ""1100"", ""Error"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert solve(333) == ""1001"", ""Error""', 'assert solve(963) == ""10010"", ""Error""']",HumanEval/84
"
def add(lst):
""""""Given a non-empty list of integers lst. add the even elements that are at odd indices..
Examples:
add([4, 2, 6, 7]) ==> 2
""""""
","['assert add([4, 88]) == 88', 'assert add([4, 5, 6, 7, 2, 122]) == 122', 'assert add([4, 0, 6, 7]) == 0', 'assert add([4, 4, 6, 8]) == 12 # Check some edge cases that are easy to work out by hand.']",HumanEval/85
"
def anti_shuffle(s):
""""""
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
anti_shuffle('Hi') returns 'Hi'
anti_shuffle('hello') returns 'ehllo'
anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor'
""""""
","[""assert anti_shuffle('Hi') == 'Hi'"", ""assert anti_shuffle('hello') == 'ehllo'"", ""assert anti_shuffle('number') == 'bemnru'"", ""assert anti_shuffle('abcd') == 'abcd'"", ""assert anti_shuffle('Hello World!!!') == 'Hello !!!Wdlor'"", ""assert anti_shuffle('') == ''"", ""assert anti_shuffle('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy' # Check some edge cases that are easy to work out by hand."", 'assert True']",HumanEval/86
"
def get_row(lst, x):
""""""
You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
get_row([
[1,2,3,4,5,6],
[1,2,3,4,1,6],
[1,2,3,4,5,1]
], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
get_row([], 1) == []
get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)]
""""""
","['assert get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]', 'assert get_row([ [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6] ], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]', 'assert get_row([ [1,2,3,4,5,6], [1,2,3,4,5,6], [1,1,3,4,5,6], [1,2,1,4,5,6], [1,2,3,1,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]', 'assert get_row([], 1) == []', 'assert get_row([[1]], 2) == []', 'assert get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] # Check some edge cases that are easy to work out by hand.', 'assert True']",HumanEval/87
"
def sort_array(array):
""""""
Given an array of non-negative integers, return a copy of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
* sort_array([]) => []
* sort_array([5]) => [5]
* sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5]
* sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0]
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert sort_array([]) == [], ""Error""', 'assert sort_array([5]) == [5], ""Error""', 'assert sort_array([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], ""Error""', 'assert sort_array([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], ""Error"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert sort_array([2, 1]) == [1, 2], ""Error""', 'assert sort_array([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], ""Error""', 'assert sort_array([21, 14, 23, 11]) == [23, 21, 14, 11], ""Error""']",HumanEval/88
"
def encrypt(s):
""""""Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt('hi') returns 'lm'
encrypt('asdfghjkl') returns 'ewhjklnop'
encrypt('gf') returns 'kj'
encrypt('et') returns 'ix'
""""""
","['assert encrypt(\'hi\') == \'lm\', ""This prints if this assert fails 1 (good for debugging!)""', 'assert encrypt(\'asdfghjkl\') == \'ewhjklnop\', ""This prints if this assert fails 1 (good for debugging!)""', 'assert encrypt(\'gf\') == \'kj\', ""This prints if this assert fails 1 (good for debugging!)""', 'assert encrypt(\'et\') == \'ix\', ""This prints if this assert fails 1 (good for debugging!)""', 'assert encrypt(\'faewfawefaewg\')==\'jeiajeaijeiak\', ""This prints if this assert fails 1 (good for debugging!)""', 'assert encrypt(\'hellomyfriend\')==\'lippsqcjvmirh\', ""This prints if this assert fails 2 (good for debugging!)""', 'assert encrypt(\'dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh\')==\'hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl\', ""This prints if this assert fails 3 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert encrypt(\'a\')==\'e\', ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/89
"
def next_smallest(lst):
""""""
You are given a list of integers.
Write a function next_smallest() that returns the 2nd smallest element of the list.
Return None if there is no such element.
next_smallest([1, 2, 3, 4, 5]) == 2
next_smallest([5, 1, 4, 3, 2]) == 2
next_smallest([]) == None
next_smallest([1, 1]) == None
""""""
","['assert next_smallest([1, 2, 3, 4, 5]) == 2', 'assert next_smallest([5, 1, 4, 3, 2]) == 2', 'assert next_smallest([]) == None', 'assert next_smallest([1, 1]) == None', 'assert next_smallest([1,1,1,1,0]) == 1', 'assert next_smallest([1, 0**0]) == None', 'assert next_smallest([-35, 34, 12, -45]) == -35 # Check some edge cases that are easy to work out by hand.', 'assert True']",HumanEval/90
"
def is_bored(S):
""""""
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word ""I"".
Sentences are delimited by '.', '?' or '!'.
For example:
>>> is_bored(""Hello world"")
0
>>> is_bored(""The sky is blue. The sun is shining. I love this weather"")
1
""""""
","['assert is_bored(""Hello world"") == 0, ""Test 1""', 'assert is_bored(""Is the sky blue?"") == 0, ""Test 2""', 'assert is_bored(""I love It !"") == 1, ""Test 3""', 'assert is_bored(""bIt"") == 0, ""Test 4""', 'assert is_bored(""I feel good today. I will be productive. will kill It"") == 2, ""Test 5""', 'assert is_bored(""You and I are going for a walk"") == 0, ""Test 6"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/91
"
def any_int(x, y, z):
'''
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
any_int(5, 2, 7) ➞ True
any_int(3, 2, 2) ➞ False
any_int(3, -2, 1) ➞ True
any_int(3.6, -2.2, 2) ➞ False
'''
","['assert any_int(2, 3, 1)==True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert any_int(2.5, 2, 3)==False, ""This prints if this assert fails 2 (good for debugging!)""', 'assert any_int(1.5, 5, 3.5)==False, ""This prints if this assert fails 3 (good for debugging!)""', 'assert any_int(2, 6, 2)==False, ""This prints if this assert fails 4 (good for debugging!)""', 'assert any_int(4, 2, 2)==True, ""This prints if this assert fails 5 (good for debugging!)""', 'assert any_int(2.2, 2.2, 2.2)==False, ""This prints if this assert fails 6 (good for debugging!)""', 'assert any_int(-4, 6, 2)==True, ""This prints if this assert fails 7 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert any_int(2,1,1)==True, ""This prints if this assert fails 8 (also good for debugging!)""', 'assert any_int(3,4,7)==True, ""This prints if this assert fails 9 (also good for debugging!)""', 'assert any_int(3.0,4,7)==False, ""This prints if this assert fails 10 (also good for debugging!)""']",HumanEval/92
"
def encode(message):
""""""
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
>>> encode('test')
'TGST'
>>> encode('This is a message')
'tHKS KS C MGSSCGG'
""""""
","['assert encode(\'TEST\') == \'tgst\', ""This prints if this assert fails 1 (good for debugging!)""', 'assert encode(\'Mudasir\') == \'mWDCSKR\', ""This prints if this assert fails 2 (good for debugging!)""', 'assert encode(\'YES\') == \'ygs\', ""This prints if this assert fails 3 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert encode(\'This is a message\') == \'tHKS KS C MGSSCGG\', ""This prints if this assert fails 2 (also good for debugging!)""', 'assert encode(""I DoNt KnOw WhAt tO WrItE"") == \'k dQnT kNqW wHcT Tq wRkTg\', ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/93
"
def skjkasdkd(lst):
""""""You are given a list of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10
For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25
For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13
For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11
For lst = [0,81,12,3,1,21] the output should be 3
For lst = [0,8,1,2,1,7] the output should be 7
""""""
","['assert skjkasdkd([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, ""This prints if this assert fails 1 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert skjkasdkd([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, ""This prints if this assert fails 2 (also good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert skjkasdkd([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, ""This prints if this assert fails 3 (also good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert skjkasdkd([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, ""This prints if this assert fails 4 (also good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert skjkasdkd([0,81,12,3,1,21]) == 3, ""This prints if this assert fails 5 (also good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert skjkasdkd([0,8,1,2,1,7]) == 7, ""This prints if this assert fails 6 (also good for debugging!)""', 'assert skjkasdkd([8191]) == 19, ""This prints if this assert fails 7 (also good for debugging!)""', 'assert skjkasdkd([8191, 123456, 127, 7]) == 19, ""This prints if this assert fails 8 (also good for debugging!)""', 'assert skjkasdkd([127, 97, 8192]) == 10, ""This prints if this assert fails 9 (also good for debugging!)""']",HumanEval/94
"
def check_dict_case(dict):
""""""
Given a dictionary, return True if all keys are strings in lower
case or all keys are strings in upper case, else return False.
The function should return False is the given dictionary is empty.
Examples:
check_dict_case({""a"":""apple"", ""b"":""banana""}) should return True.
check_dict_case({""a"":""apple"", ""A"":""banana"", ""B"":""banana""}) should return False.
check_dict_case({""a"":""apple"", 8:""banana"", ""a"":""apple""}) should return False.
check_dict_case({""Name"":""John"", ""Age"":""36"", ""City"":""Houston""}) should return False.
check_dict_case({""STATE"":""NC"", ""ZIP"":""12345"" }) should return True.
""""""
","['assert check_dict_case({""p"":""pineapple"", ""b"":""banana""}) == True, ""First test error: "" + str(check_dict_case({""p"":""pineapple"", ""b"":""banana""}))', 'assert check_dict_case({""p"":""pineapple"", ""A"":""banana"", ""B"":""banana""}) == False, ""Second test error: "" + str(check_dict_case({""p"":""pineapple"", ""A"":""banana"", ""B"":""banana""}))', 'assert check_dict_case({""p"":""pineapple"", 5:""banana"", ""a"":""apple""}) == False, ""Third test error: "" + str(check_dict_case({""p"":""pineapple"", 5:""banana"", ""a"":""apple""}))', 'assert check_dict_case({""Name"":""John"", ""Age"":""36"", ""City"":""Houston""}) == False, ""Fourth test error: "" + str(check_dict_case({""Name"":""John"", ""Age"":""36"", ""City"":""Houston""}))', 'assert check_dict_case({""STATE"":""NC"", ""ZIP"":""12345"" }) == True, ""Fifth test error: "" + str(check_dict_case({""STATE"":""NC"", ""ZIP"":""12345"" }))', 'assert check_dict_case({""fruit"":""Orange"", ""taste"":""Sweet"" }) == True, ""Fourth test error: "" + str(check_dict_case({""fruit"":""Orange"", ""taste"":""Sweet"" })) # Check some edge cases that are easy to work out by hand.', 'assert check_dict_case({}) == False, ""1st edge test error: "" + str(check_dict_case({}))']",HumanEval/95
"
def count_up_to(n):
""""""Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
count_up_to(5) => [2,3]
count_up_to(11) => [2,3,5,7]
count_up_to(0) => []
count_up_to(20) => [2,3,5,7,11,13,17,19]
count_up_to(1) => []
count_up_to(18) => [2,3,5,7,11,13,17]
""""""
","['assert count_up_to(5) == [2,3]', 'assert count_up_to(6) == [2,3,5]', 'assert count_up_to(7) == [2,3,5]', 'assert count_up_to(10) == [2,3,5,7]', 'assert count_up_to(0) == []', 'assert count_up_to(22) == [2,3,5,7,11,13,17,19]', 'assert count_up_to(1) == []', 'assert count_up_to(18) == [2,3,5,7,11,13,17]', 'assert count_up_to(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]', 'assert count_up_to(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]']",HumanEval/96
"
def multiply(a, b):
""""""Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(148, 412) should return 16.
multiply(19, 28) should return 72.
multiply(2020, 1851) should return 0.
multiply(14,-15) should return 20.
""""""
","['assert multiply(148, 412) == 16, ""First test error: "" + str(multiply(148, 412))', 'assert multiply(19, 28) == 72, ""Second test error: "" + str(multiply(19, 28))', 'assert multiply(2020, 1851) == 0, ""Third test error: "" + str(multiply(2020, 1851))', 'assert multiply(14,-15) == 20, ""Fourth test error: "" + str(multiply(14,-15))', 'assert multiply(76, 67) == 42, ""Fifth test error: "" + str(multiply(76, 67))', 'assert multiply(17, 27) == 49, ""Sixth test error: "" + str(multiply(17, 27)) # Check some edge cases that are easy to work out by hand.', 'assert multiply(0, 1) == 0, ""1st edge test error: "" + str(multiply(0, 1))', 'assert multiply(0, 0) == 0, ""2nd edge test error: "" + str(multiply(0, 0))']",HumanEval/97
"
def count_upper(s):
""""""
Given a string s, count the number of uppercase vowels in even indices.
For example:
count_upper('aBCdEf') returns 1
count_upper('abcdefg') returns 0
count_upper('dBBE') returns 0
""""""
","[""assert count_upper('aBCdEf') == 1"", ""assert count_upper('abcdefg') == 0"", ""assert count_upper('dBBE') == 0"", ""assert count_upper('B') == 0"", ""assert count_upper('U') == 1"", ""assert count_upper('') == 0"", ""assert count_upper('EEEE') == 2 # Check some edge cases that are easy to work out by hand."", 'assert True']",HumanEval/98
"
def closest_integer(value):
'''
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
>>> closest_integer(""10"")
10
>>> closest_integer(""15.3"")
15
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer(""14.5"") should
return 15 and closest_integer(""-14.5"") should return -15.
'''
","['assert closest_integer(""10"") == 10, ""Test 1""', 'assert closest_integer(""14.5"") == 15, ""Test 2""', 'assert closest_integer(""-15.5"") == -16, ""Test 3""', 'assert closest_integer(""15.3"") == 15, ""Test 3"" # Check some edge cases that are easy to work out by hand.', 'assert closest_integer(""0"") == 0, ""Test 0""']",HumanEval/99
"
def make_a_pile(n):
""""""
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
[3, 5, 7]
""""""
","['assert make_a_pile(3) == [3, 5, 7], ""Test 3""', 'assert make_a_pile(4) == [4,6,8,10], ""Test 4""', 'assert make_a_pile(5) == [5, 7, 9, 11, 13]', 'assert make_a_pile(6) == [6, 8, 10, 12, 14, 16]', 'assert make_a_pile(8) == [8, 10, 12, 14, 16, 18, 20, 22] # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/100
"
def words_string(s):
""""""
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
words_string(""Hi, my name is John"") == [""Hi"", ""my"", ""name"", ""is"", ""John""]
words_string(""One, two, three, four, five, six"") == [""One"", ""two"", ""three"", ""four"", ""five"", ""six""]
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert words_string(""Hi, my name is John"") == [""Hi"", ""my"", ""name"", ""is"", ""John""]', 'assert words_string(""One, two, three, four, five, six"") == [""One"", ""two"", ""three"", ""four"", ""five"", ""six""]', 'assert words_string(""Hi, my name"") == [""Hi"", ""my"", ""name""]', 'assert words_string(""One,, two, three, four, five, six,"") == [""One"", ""two"", ""three"", ""four"", ""five"", ""six""] # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert words_string("""") == []', 'assert words_string(""ahmed , gamal"") == [""ahmed"", ""gamal""]']",HumanEval/101
"
def choose_num(x, y):
""""""This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1
""""""
","['assert choose_num(12, 15) == 14', 'assert choose_num(13, 12) == -1', 'assert choose_num(33, 12354) == 12354', 'assert choose_num(5234, 5233) == -1', 'assert choose_num(6, 29) == 28', 'assert choose_num(27, 10) == -1 # Check some edge cases that are easy to work out by hand.', 'assert choose_num(7, 7) == -1', 'assert choose_num(546, 546) == 546']",HumanEval/102
"
def rounded_avg(n, m):
""""""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
rounded_avg(1, 5) => ""0b11""
rounded_avg(7, 5) => -1
rounded_avg(10, 20) => ""0b1111""
rounded_avg(20, 33) => ""0b11010""
""""""
","['assert rounded_avg(1, 5) == ""0b11""', 'assert rounded_avg(7, 13) == ""0b1010""', 'assert rounded_avg(964,977) == ""0b1111001010""', 'assert rounded_avg(996,997) == ""0b1111100100""', 'assert rounded_avg(560,851) == ""0b1011000010""', 'assert rounded_avg(185,546) == ""0b101101110""', 'assert rounded_avg(362,496) == ""0b110101101""', 'assert rounded_avg(350,902) == ""0b1001110010""', 'assert rounded_avg(197,233) == ""0b11010111"" # Check some edge cases that are easy to work out by hand.', 'assert rounded_avg(7, 5) == -1', 'assert rounded_avg(5, 1) == -1', 'assert rounded_avg(5, 5) == ""0b101""']",HumanEval/103
"
def unique_digits(x):
""""""Given a list of positive integers x. return a sorted list of all
elements that hasn't any even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]
""""""
","['assert unique_digits([15, 33, 1422, 1]) == [1, 15, 33]', 'assert unique_digits([152, 323, 1422, 10]) == []', 'assert unique_digits([12345, 2033, 111, 151]) == [111, 151]', 'assert unique_digits([135, 103, 31]) == [31, 135] # Check some edge cases that are easy to work out by hand.', 'assert True']",HumanEval/104
"
def by_length(arr):
""""""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
""One"", ""Two"", ""Three"", ""Four"", ""Five"", ""Six"", ""Seven"", ""Eight"", ""Nine"".
For example:
arr = [2, 1, 1, 4, 5, 8, 2, 3]
-> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8]
-> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1]
return [""Eight"", ""Five"", ""Four"", ""Three"", ""Two"", ""Two"", ""One"", ""One""]
If the array is empty, return an empty array:
arr = []
return []
If the array has any strange number ignore it:
arr = [1, -1 , 55]
-> sort arr -> [-1, 1, 55]
-> reverse arr -> [55, 1, -1]
return = ['One']
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert by_length([2, 1, 1, 4, 5, 8, 2, 3]) == [""Eight"", ""Five"", ""Four"", ""Three"", ""Two"", ""Two"", ""One"", ""One""], ""Error""', 'assert by_length([]) == [], ""Error""', 'assert by_length([1, -1 , 55]) == [\'One\'], ""Error"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert by_length([1, -1, 3, 2]) == [""Three"", ""Two"", ""One""]', 'assert by_length([9, 4, 8]) == [""Nine"", ""Eight"", ""Four""]']",HumanEval/105
"
def f(n):
"""""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == [1, 2, 6, 24, 15]
""""""
","['assert f(5) == [1, 2, 6, 24, 15]', 'assert f(7) == [1, 2, 6, 24, 15, 720, 28]', 'assert f(1) == [1]', 'assert f(3) == [1, 2, 6]']",HumanEval/106
"
def even_odd_palindrome(n):
""""""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
""""""
","['assert even_odd_palindrome(123) == (8, 13)', 'assert even_odd_palindrome(12) == (4, 6)', 'assert even_odd_palindrome(3) == (1, 2)', 'assert even_odd_palindrome(63) == (6, 8)', 'assert even_odd_palindrome(25) == (5, 6)', 'assert even_odd_palindrome(19) == (4, 6)', 'assert even_odd_palindrome(9) == (4, 5), ""This prints if this assert fails 1 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert even_odd_palindrome(1) == (0, 1), ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/107
"
def count_nums(arr):
""""""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([]) == 0
>>> count_nums([-1, 11, -11]) == 1
>>> count_nums([1, 1, 2]) == 3
""""""
","['assert count_nums([]) == 0', 'assert count_nums([-1, -2, 0]) == 0', 'assert count_nums([1, 1, 2, -2, 3, 4, 5]) == 6', 'assert count_nums([1, 6, 9, -6, 0, 1, 5]) == 5', 'assert count_nums([1, 100, 98, -7, 1, -1]) == 4', 'assert count_nums([12, 23, 34, -45, -56, 0]) == 5', 'assert count_nums([-0, 1**0]) == 1', 'assert count_nums([1]) == 1 # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/108
"
def move_one_ball(arr):
""""""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
move_one_ball([3, 4, 5, 1, 2])==>True
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
move_one_ball([3, 5, 4, 1, 2])==>False
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
""""""
","['assert move_one_ball([3, 4, 5, 1, 2])==True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert move_one_ball([3, 5, 10, 1, 2])==True', 'assert move_one_ball([4, 3, 1, 2])==False # Check some edge cases that are easy to work out by hand.', 'assert move_one_ball([3, 5, 4, 1, 2])==False, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert move_one_ball([])==True']",HumanEval/109
"
def exchange(lst1, lst2):
""""""In this problem, you will implement a function that takes two lists of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a list of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return ""YES"".
Otherwise, return ""NO"".
For example:
exchange([1, 2, 3, 4], [1, 2, 3, 4]) => ""YES""
exchange([1, 2, 3, 4], [1, 5, 3, 4]) => ""NO""
It is assumed that the input lists will be non-empty.
""""""
","['assert exchange([1, 2, 3, 4], [1, 2, 3, 4]) == ""YES""', 'assert exchange([1, 2, 3, 4], [1, 5, 3, 4]) == ""NO""', 'assert exchange([1, 2, 3, 4], [2, 1, 4, 3]) == ""YES""', 'assert exchange([5, 7, 3], [2, 6, 4]) == ""YES""', 'assert exchange([5, 7, 3], [2, 6, 3]) == ""NO""', 'assert exchange([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == ""NO"" # Check some edge cases that are easy to work out by hand.', 'assert exchange([100, 200], [200, 200]) == ""YES""']",HumanEval/110
"
def histogram(test):
""""""Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram('a b c') == {'a': 1, 'b': 1, 'c': 1}
histogram('a b b a') == {'a': 2, 'b': 2}
histogram('a b c a b') == {'a': 2, 'b': 2}
histogram('b b b b a') == {'b': 4}
histogram('') == {}
""""""
","['assert histogram(\'a b b a\') == {\'a\':2,\'b\': 2}, ""This prints if this assert fails 1 (good for debugging!)""', 'assert histogram(\'a b c a b\') == {\'a\': 2, \'b\': 2}, ""This prints if this assert fails 2 (good for debugging!)""', 'assert histogram(\'a b c d g\') == {\'a\': 1, \'b\': 1, \'c\': 1, \'d\': 1, \'g\': 1}, ""This prints if this assert fails 3 (good for debugging!)""', 'assert histogram(\'r t g\') == {\'r\': 1,\'t\': 1,\'g\': 1}, ""This prints if this assert fails 4 (good for debugging!)""', 'assert histogram(\'b b b b a\') == {\'b\': 4}, ""This prints if this assert fails 5 (good for debugging!)""', 'assert histogram(\'r t g\') == {\'r\': 1,\'t\': 1,\'g\': 1}, ""This prints if this assert fails 6 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert histogram(\'\') == {}, ""This prints if this assert fails 7 (also good for debugging!)""', 'assert histogram(\'a\') == {\'a\': 1}, ""This prints if this assert fails 8 (also good for debugging!)""']",HumanEval/111
"
def reverse_delete(s,c):
""""""Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and True/False for the check.
Example
For s = ""abcde"", c = ""ae"", the result should be ('bcd',False)
For s = ""abcdef"", c = ""b"" the result should be ('acdef',False)
For s = ""abcdedcba"", c = ""ab"", the result should be ('cdedc',True)
""""""
","['assert reverse_delete(""abcde"",""ae"") == (\'bcd\',False)', 'assert reverse_delete(""abcdef"", ""b"") == (\'acdef\',False)', 'assert reverse_delete(""abcdedcba"",""ab"") == (\'cdedc\',True)', 'assert reverse_delete(""dwik"",""w"") == (\'dik\',False)', 'assert reverse_delete(""a"",""a"") == (\'\',True)', 'assert reverse_delete(""abcdedcba"","""") == (\'abcdedcba\',True)', 'assert reverse_delete(""abcdedcba"",""v"") == (\'abcdedcba\',True)', 'assert reverse_delete(""vabba"",""v"") == (\'abba\',True)', 'assert reverse_delete(""mamma"", ""mia"") == ("""", True)']",HumanEval/112
"
def odd_count(lst):
""""""Given a list of strings, where each string consists of only digits, return a list.
Each element i of the output should be ""the number of odd elements in the
string i of the input."" where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
>>> odd_count(['1234567'])
[""the number of odd elements 4n the str4ng 4 of the 4nput.""]
>>> odd_count(['3',""11111111""])
[""the number of odd elements 1n the str1ng 1 of the 1nput."",
""the number of odd elements 8n the str8ng 8 of the 8nput.""]
""""""
","['assert odd_count([\'1234567\']) == [""the number of odd elements 4n the str4ng 4 of the 4nput.""], ""Test 1""', 'assert odd_count([\'3\',""11111111""]) == [""the number of odd elements 1n the str1ng 1 of the 1nput."", ""the number of odd elements 8n the str8ng 8 of the 8nput.""], ""Test 2""', ""assert odd_count(['271', '137', '314']) == [ 'the number of odd elements 2n the str2ng 2 of the 2nput.', 'the number of odd elements 3n the str3ng 3 of the 3nput.', 'the number of odd elements 2n the str2ng 2 of the 2nput.' ] # Check some edge cases that are easy to work out by hand."", 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/113
"
def minSubArraySum(nums):
""""""
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum([2, 3, 4, 1, 2, 4]) == 1
minSubArraySum([-1, -2, -3]) == -6
""""""
","['assert minSubArraySum([2, 3, 4, 1, 2, 4]) == 1, ""This prints if this assert fails 1 (good for debugging!)""', 'assert minSubArraySum([-1, -2, -3]) == -6', 'assert minSubArraySum([-1, -2, -3, 2, -10]) == -14', 'assert minSubArraySum([-9999999999999999]) == -9999999999999999', 'assert minSubArraySum([0, 10, 20, 1000000]) == 0', 'assert minSubArraySum([-1, -2, -3, 10, -5]) == -6', 'assert minSubArraySum([100, -1, -2, -3, 10, -5]) == -6', 'assert minSubArraySum([10, 11, 13, 8, 3, 4]) == 3', 'assert minSubArraySum([100, -33, 32, -1, 0, -2]) == -33 # Check some edge cases that are easy to work out by hand.', 'assert minSubArraySum([-10]) == -10, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert minSubArraySum([7]) == 7', 'assert minSubArraySum([1, -1]) == -1']",HumanEval/114
"
def max_fill(grid, capacity):
import math
""""""
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Input:
grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]]
bucket_capacity : 1
Output: 6
Example 2:
Input:
grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]]
bucket_capacity : 2
Output: 5
Example 3:
Input:
grid : [[0,0,0], [0,0,0]]
bucket_capacity : 5
Output: 0
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert max_fill([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6, ""Error""', 'assert max_fill([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5, ""Error""', 'assert max_fill([[0,0,0], [0,0,0]], 5) == 0, ""Error"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert max_fill([[1,1,1,1], [1,1,1,1]], 2) == 4, ""Error""', 'assert max_fill([[1,1,1,1], [1,1,1,1]], 9) == 2, ""Error""']",HumanEval/115
"
def sort_array(arr):
""""""
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
>>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
>>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert sort_array([1,5,2,3,4]) == [1, 2, 4, 3, 5]', 'assert sort_array([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3]', 'assert sort_array([1,0,2,3,4]) == [0, 1, 2, 4, 3]', 'assert sort_array([]) == []', 'assert sort_array([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]', 'assert sort_array([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44]', 'assert sort_array([2,4,8,16,32]) == [2, 4, 8, 16, 32]', 'assert sort_array([2,4,8,16,32]) == [2, 4, 8, 16, 32] # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/116
"
def select_words(s, n):
""""""Given a string s and a natural number n, you have been tasked to implement
a function that returns a list of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty list.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words(""Mary had a little lamb"", 4) ==> [""little""]
select_words(""Mary had a little lamb"", 3) ==> [""Mary"", ""lamb""]
select_words(""simple white space"", 2) ==> []
select_words(""Hello world"", 4) ==> [""world""]
select_words(""Uncle sam"", 3) ==> [""Uncle""]
""""""
","['assert select_words(""Mary had a little lamb"", 4) == [""little""], ""First test error: "" + str(select_words(""Mary had a little lamb"", 4))', 'assert select_words(""Mary had a little lamb"", 3) == [""Mary"", ""lamb""], ""Second test error: "" + str(select_words(""Mary had a little lamb"", 3))', 'assert select_words(""simple white space"", 2) == [], ""Third test error: "" + str(select_words(""simple white space"", 2))', 'assert select_words(""Hello world"", 4) == [""world""], ""Fourth test error: "" + str(select_words(""Hello world"", 4))', 'assert select_words(""Uncle sam"", 3) == [""Uncle""], ""Fifth test error: "" + str(select_words(""Uncle sam"", 3)) # Check some edge cases that are easy to work out by hand.', 'assert select_words("""", 4) == [], ""1st edge test error: "" + str(select_words("""", 4))', 'assert select_words(""a b c d e f"", 1) == [""b"", ""c"", ""d"", ""f""], ""2nd edge test error: "" + str(select_words(""a b c d e f"", 1))']",HumanEval/117
"
def get_closest_vowel(word):
""""""You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
get_closest_vowel(""yogurt"") ==> ""u""
get_closest_vowel(""FULL"") ==> ""U""
get_closest_vowel(""quick"") ==> """"
get_closest_vowel(""ab"") ==> """"
""""""
","['assert get_closest_vowel(""yogurt"") == ""u""', 'assert get_closest_vowel(""full"") == ""u""', 'assert get_closest_vowel(""easy"") == """"', 'assert get_closest_vowel(""eAsy"") == """"', 'assert get_closest_vowel(""ali"") == """"', 'assert get_closest_vowel(""bad"") == ""a""', 'assert get_closest_vowel(""most"") == ""o""', 'assert get_closest_vowel(""ab"") == """"', 'assert get_closest_vowel(""ba"") == """"', 'assert get_closest_vowel(""quick"") == """"', 'assert get_closest_vowel(""anime"") == ""i""', 'assert get_closest_vowel(""Asia"") == """"', 'assert get_closest_vowel(""Above"") == ""o"" # Check some edge cases that are easy to work out by hand.', 'assert True']",HumanEval/118
"
def match_parens(lst):
'''
You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
match_parens(['()(', ')']) == 'Yes'
match_parens([')', ')']) == 'No'
'''
","[""assert match_parens(['()(', ')']) == 'Yes'"", ""assert match_parens([')', ')']) == 'No'"", ""assert match_parens(['(()(())', '())())']) == 'No'"", ""assert match_parens([')())', '(()()(']) == 'Yes'"", ""assert match_parens(['(())))', '(()())((']) == 'Yes'"", ""assert match_parens(['()', '())']) == 'No'"", ""assert match_parens(['(()(', '()))()']) == 'Yes'"", ""assert match_parens(['((((', '((())']) == 'No'"", ""assert match_parens([')(()', '(()(']) == 'No'"", ""assert match_parens([')(', ')(']) == 'No' # Check some edge cases that are easy to work out by hand."", ""assert match_parens(['(', ')']) == 'Yes'"", ""assert match_parens([')', '(']) == 'Yes'""]",HumanEval/119
"
def maximum(arr, k):
""""""
Given an array arr of integers and a positive integer k, return a sorted list
of length k with the maximum k numbers in arr.
Example 1:
Input: arr = [-3, -4, 5], k = 3
Output: [-4, -3, 5]
Example 2:
Input: arr = [4, -4, 4], k = 2
Output: [4, 4]
Example 3:
Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1
Output: [2]
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
""""""
","['assert maximum([-3, -4, 5], 3) == [-4, -3, 5]', 'assert maximum([4, -4, 4], 2) == [4, 4]', 'assert maximum([-3, 2, 1, 2, -1, -2, 1], 1) == [2]', 'assert maximum([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123]', 'assert maximum([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20]', 'assert maximum([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15]', 'assert maximum([-1, 0, 2, 5, 3, -10], 2) == [3, 5]', 'assert maximum([1, 0, 5, -7], 1) == [5]', 'assert maximum([4, -4], 2) == [-4, 4]', 'assert maximum([-10, 10], 2) == [-10, 10] # Check some edge cases that are easy to work out by hand.', 'assert maximum([1, 2, 3, -23, 243, -400, 0], 0) == []']",HumanEval/120
"
def solution(lst):
""""""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution([5, 8, 7, 1]) ==> 12
solution([3, 3, 3, 3, 3]) ==> 9
solution([30, 13, 24, 321]) ==>0
""""""
","['assert solution([5, 8, 7, 1]) == 12', 'assert solution([3, 3, 3, 3, 3]) == 9', 'assert solution([30, 13, 24, 321]) == 0', 'assert solution([5, 9]) == 5', 'assert solution([2, 4, 8]) == 0', 'assert solution([30, 13, 23, 32]) == 23', 'assert solution([3, 13, 2, 9]) == 3 # Check some edge cases that are easy to work out by hand.']",HumanEval/121
"
def add_elements(arr, k):
""""""
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4
Output: 24 # sum of 21 + 3
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
""""""
","['assert add_elements([1,-2,-3,41,57,76,87,88,99], 3) == -4', 'assert add_elements([111,121,3,4000,5,6], 2) == 0', 'assert add_elements([11,21,3,90,5,6,7,8,9], 4) == 125', 'assert add_elements([111,21,3,4000,5,6,7,8,9], 4) == 24, ""This prints if this assert fails 1 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert add_elements([1], 1) == 1, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/122
"
def get_odd_collatz(n):
""""""
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned list sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
""""""
","['assert get_odd_collatz(14) == [1, 5, 7, 11, 13, 17]', 'assert get_odd_collatz(5) == [1, 5]', 'assert get_odd_collatz(12) == [1, 3, 5], ""This prints if this assert fails 1 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert get_odd_collatz(1) == [1], ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/123
"
def valid_date(date):
""""""You have to write a function which validates a given date string and
returns True if the date is valid otherwise False.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
for example:
valid_date('03-11-2000') => True
valid_date('15-01-2012') => False
valid_date('04-0-2040') => False
valid_date('06-04-2020') => True
valid_date('06/04/2020') => False
""""""
","[""assert valid_date('03-11-2000') == True"", ""assert valid_date('15-01-2012') == False"", ""assert valid_date('04-0-2040') == False"", ""assert valid_date('06-04-2020') == True"", ""assert valid_date('01-01-2007') == True"", ""assert valid_date('03-32-2011') == False"", ""assert valid_date('') == False"", ""assert valid_date('04-31-3000') == False"", ""assert valid_date('06-06-2005') == True"", ""assert valid_date('21-31-2000') == False"", ""assert valid_date('04-12-2003') == True"", ""assert valid_date('04122003') == False"", ""assert valid_date('20030412') == False"", ""assert valid_date('2003-04') == False"", ""assert valid_date('2003-04-12') == False"", ""assert valid_date('04-2003') == False""]",HumanEval/124
"
def split_words(txt):
'''
Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
split_words(""Hello world!"") ➞ [""Hello"", ""world!""]
split_words(""Hello,world!"") ➞ [""Hello"", ""world!""]
split_words(""abcdef"") == 3
'''
","['assert split_words(""Hello world!"") == [""Hello"",""world!""]', 'assert split_words(""Hello,world!"") == [""Hello"",""world!""]', 'assert split_words(""Hello world,!"") == [""Hello"",""world,!""]', 'assert split_words(""Hello,Hello,world !"") == [""Hello,Hello,world"",""!""]', 'assert split_words(""abcdef"") == 3', 'assert split_words(""aaabb"") == 2', 'assert split_words(""aaaBb"") == 1', 'assert split_words("""") == 0']",HumanEval/125
"
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) ➞ True
is_sorted([1, 2, 3, 4, 5]) ➞ True
is_sorted([1, 3, 2, 4, 5]) ➞ False
is_sorted([1, 2, 3, 4, 5, 6]) ➞ True
is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True
is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False
is_sorted([1, 2, 2, 3, 3, 4]) ➞ True
is_sorted([1, 2, 2, 2, 3, 4]) ➞ False
'''
","['assert is_sorted([5]) == True', 'assert is_sorted([1, 2, 3, 4, 5]) == True', 'assert is_sorted([1, 3, 2, 4, 5]) == False', 'assert is_sorted([1, 2, 3, 4, 5, 6]) == True', 'assert is_sorted([1, 2, 3, 4, 5, 6, 7]) == True', 'assert is_sorted([1, 3, 2, 4, 5, 6, 7]) == False, ""This prints if this assert fails 1 (good for debugging!)""', 'assert is_sorted([]) == True, ""This prints if this assert fails 2 (good for debugging!)""', 'assert is_sorted([1]) == True, ""This prints if this assert fails 3 (good for debugging!)""', 'assert is_sorted([3, 2, 1]) == False, ""This prints if this assert fails 4 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert is_sorted([1, 2, 2, 2, 3, 4]) == False, ""This prints if this assert fails 5 (good for debugging!)""', 'assert is_sorted([1, 2, 3, 3, 3, 4]) == False, ""This prints if this assert fails 6 (good for debugging!)""', 'assert is_sorted([1, 2, 2, 3, 3, 4]) == True, ""This prints if this assert fails 7 (good for debugging!)""', 'assert is_sorted([1, 2, 3, 4]) == True, ""This prints if this assert fails 8 (good for debugging!)""']",HumanEval/126
"
def intersection(interval1, interval2):
""""""You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return ""YES"",
otherwise, return ""NO"".
If the two intervals don't intersect, return ""NO"".
[input/output] samples:
intersection((1, 2), (2, 3)) ==> ""NO""
intersection((-1, 1), (0, 4)) ==> ""NO""
intersection((-3, -1), (-5, 5)) ==> ""YES""
""""""
","['assert intersection((1, 2), (2, 3)) == ""NO""', 'assert intersection((-1, 1), (0, 4)) == ""NO""', 'assert intersection((-3, -1), (-5, 5)) == ""YES""', 'assert intersection((-2, 2), (-4, 0)) == ""YES"" # Check some edge cases that are easy to work out by hand.', 'assert intersection((-11, 2), (-1, -1)) == ""NO""', 'assert intersection((1, 2), (3, 5)) == ""NO""', 'assert intersection((1, 2), (1, 2)) == ""NO""', 'assert intersection((-2, -2), (-3, -2)) == ""NO""']",HumanEval/127
"
def prod_signs(arr):
""""""
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return None for empty arr.
Example:
>>> prod_signs([1, 2, 2, -4]) == -9
>>> prod_signs([0, 1]) == 0
>>> prod_signs([]) == None
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert prod_signs([1, 2, 2, -4]) == -9', 'assert prod_signs([0, 1]) == 0', 'assert prod_signs([1, 1, 1, 2, 3, -1, 1]) == -10', 'assert prod_signs([]) == None', 'assert prod_signs([2, 4,1, 2, -1, -1, 9]) == 20', 'assert prod_signs([-1, 1, -1, 1]) == 4', 'assert prod_signs([-1, 1, 1, 1]) == -4', 'assert prod_signs([-1, 1, 1, 0]) == 0 # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/128
"
def minPath(grid, k):
""""""
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the minimum path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [1, 2, 1]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [1]
""""""
","['assert minPath([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1]', 'assert minPath([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1]', 'assert minPath([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2]', 'assert minPath([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1]', 'assert minPath([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1]', 'assert minPath([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1]', 'assert minPath([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]', 'assert minPath([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3]', 'assert minPath([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5] # Check some edge cases that are easy to work out by hand.', 'assert minPath([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2]', 'assert minPath([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]']",HumanEval/129
"
def tri(n):
""""""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a list of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 3, 2, 8]
""""""
","['assert tri(3) == [1, 3, 2.0, 8.0]', 'assert tri(4) == [1, 3, 2.0, 8.0, 3.0]', 'assert tri(5) == [1, 3, 2.0, 8.0, 3.0, 15.0]', 'assert tri(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0]', 'assert tri(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0]', 'assert tri(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0]', 'assert tri(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0]', 'assert tri(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0] # Check some edge cases that are easy to work out by hand.', 'assert tri(0) == [1]', 'assert tri(1) == [1, 3]']",HumanEval/130
"
def digits(n):
""""""Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 0
digits(235) == 15
""""""
","['assert digits(5) == 5', 'assert digits(54) == 5', 'assert digits(120) ==1', 'assert digits(5014) == 5', 'assert digits(98765) == 315', 'assert digits(5576543) == 2625 # Check some edge cases that are easy to work out by hand.', 'assert digits(2468) == 0']",HumanEval/131
"
def is_nested(string):
'''
Create a function that takes a string as input which contains only square brackets.
The function should return True if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
is_nested('[[]]') ➞ True
is_nested('[]]]]]]][[[[[]') ➞ False
is_nested('[][]') ➞ False
is_nested('[]') ➞ False
is_nested('[[][]]') ➞ True
is_nested('[[]][[') ➞ True
'''
","['assert is_nested(\'[[]]\') == True, ""This prints if this assert fails 1 (good for debugging!)""', ""assert is_nested('[]]]]]]][[[[[]') == False"", ""assert is_nested('[][]') == False"", ""assert is_nested(('[]')) == False"", ""assert is_nested('[[[[]]]]') == True"", ""assert is_nested('[]]]]]]]]]]') == False"", ""assert is_nested('[][][[]]') == True"", ""assert is_nested('[[]') == False"", ""assert is_nested('[]]') == False"", ""assert is_nested('[[]][[') == True"", ""assert is_nested('[[][]]') == True # Check some edge cases that are easy to work out by hand."", 'assert is_nested(\'\') == False, ""This prints if this assert fails 2 (also good for debugging!)""', ""assert is_nested('[[[[[[[[') == False"", ""assert is_nested(']]]]]]]]') == False""]",HumanEval/132
"
def sum_squares(lst):
""""""You are given a list of numbers.
You need to return the sum of squared numbers in the given list,
round each element in the list to the upper int(Ceiling) first.
Examples:
For lst = [1,2,3] the output should be 14
For lst = [1,4,9] the output should be 98
For lst = [1,3,5,7] the output should be 84
For lst = [1.4,4.2,0] the output should be 29
For lst = [-2.4,1,1] the output should be 6
""""""
","['assert sum_squares([1,2,3])==14, ""This prints if this assert fails 1 (good for debugging!)""', 'assert sum_squares([1.0,2,3])==14, ""This prints if this assert fails 1 (good for debugging!)""', 'assert sum_squares([1,3,5,7])==84, ""This prints if this assert fails 1 (good for debugging!)""', 'assert sum_squares([1.4,4.2,0])==29, ""This prints if this assert fails 1 (good for debugging!)""', 'assert sum_squares([-2.4,1,1])==6, ""This prints if this assert fails 1 (good for debugging!)""', 'assert sum_squares([100,1,15,2])==10230, ""This prints if this assert fails 1 (good for debugging!)""', 'assert sum_squares([10000,10000])==200000000, ""This prints if this assert fails 1 (good for debugging!)""', 'assert sum_squares([-1.4,4.6,6.3])==75, ""This prints if this assert fails 1 (good for debugging!)""', 'assert sum_squares([-1.4,17.9,18.9,19.9])==1086, ""This prints if this assert fails 1 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert sum_squares([0])==0, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert sum_squares([-1])==1, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert sum_squares([-1,1,0])==2, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/133
"
def check_if_last_char_is_a_letter(txt):
'''
Create a function that returns True if the last character
of a given string is an alphabetical character and is not
a part of a word, and False otherwise.
Note: ""word"" is a group of characters separated by space.
Examples:
check_if_last_char_is_a_letter(""apple pie"") ➞ False
check_if_last_char_is_a_letter(""apple pi e"") ➞ True
check_if_last_char_is_a_letter(""apple pi e "") ➞ False
check_if_last_char_is_a_letter("""") ➞ False
'''
","['assert check_if_last_char_is_a_letter(""apple"") == False', 'assert check_if_last_char_is_a_letter(""apple pi e"") == True', 'assert check_if_last_char_is_a_letter(""eeeee"") == False', 'assert check_if_last_char_is_a_letter(""A"") == True', 'assert check_if_last_char_is_a_letter(""Pumpkin pie "") == False', 'assert check_if_last_char_is_a_letter(""Pumpkin pie 1"") == False', 'assert check_if_last_char_is_a_letter("""") == False', 'assert check_if_last_char_is_a_letter(""eeeee e "") == False', 'assert check_if_last_char_is_a_letter(""apple pie"") == False', 'assert check_if_last_char_is_a_letter(""apple pi e "") == False # Check some edge cases that are easy to work out by hand.', 'assert True']",HumanEval/134
"
def can_arrange(arr):
""""""Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
can_arrange([1,2,4,3,5]) = 3
can_arrange([1,2,3]) = -1
""""""
","['assert can_arrange([1,2,4,3,5])==3', 'assert can_arrange([1,2,4,5])==-1', 'assert can_arrange([1,4,2,5,6,7,8,9,10])==2', 'assert can_arrange([4,8,5,7,3])==4 # Check some edge cases that are easy to work out by hand.', 'assert can_arrange([])==-1']",HumanEval/135
"
def largest_smallest_integers(lst):
'''
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in a list.
If there is no negative or positive integers, return them as None.
Examples:
largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (None, 1)
largest_smallest_integers([]) == (None, None)
largest_smallest_integers([0]) == (None, None)
'''
","['assert largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (None, 1)', 'assert largest_smallest_integers([2, 4, 1, 3, 5, 7, 0]) == (None, 1)', 'assert largest_smallest_integers([1, 3, 2, 4, 5, 6, -2]) == (-2, 1)', 'assert largest_smallest_integers([4, 5, 3, 6, 2, 7, -7]) == (-7, 2)', 'assert largest_smallest_integers([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2)', 'assert largest_smallest_integers([]) == (None, None)', 'assert largest_smallest_integers([0]) == (None, None)', 'assert largest_smallest_integers([-1, -3, -5, -6]) == (-1, None)', 'assert largest_smallest_integers([-1, -3, -5, -6, 0]) == (-1, None)', 'assert largest_smallest_integers([-6, -4, -4, -3, 1]) == (-3, 1)', 'assert largest_smallest_integers([-6, -4, -4, -3, -100, 1]) == (-3, 1) # Check some edge cases that are easy to work out by hand.', 'assert True']",HumanEval/136
"
def compare_one(a, b):
""""""
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return None if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compare_one(1, 2.5) ➞ 2.5
compare_one(1, ""2,3"") ➞ ""2,3""
compare_one(""5,1"", ""6"") ➞ ""6""
compare_one(""1"", 1) ➞ None
""""""
","['assert compare_one(1, 2) == 2', 'assert compare_one(1, 2.5) == 2.5', 'assert compare_one(2, 3) == 3', 'assert compare_one(5, 6) == 6', 'assert compare_one(1, ""2,3"") == ""2,3""', 'assert compare_one(""5,1"", ""6"") == ""6""', 'assert compare_one(""1"", ""2"") == ""2""', 'assert compare_one(""1"", 1) == None # Check some edge cases that are easy to work out by hand.', 'assert True']",HumanEval/137
"
def is_equal_to_sum_even(n):
""""""Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
is_equal_to_sum_even(4) == False
is_equal_to_sum_even(6) == False
is_equal_to_sum_even(8) == True
""""""
","['assert is_equal_to_sum_even(4) == False', 'assert is_equal_to_sum_even(6) == False', 'assert is_equal_to_sum_even(8) == True', 'assert is_equal_to_sum_even(10) == True', 'assert is_equal_to_sum_even(11) == False', 'assert is_equal_to_sum_even(12) == True', 'assert is_equal_to_sum_even(13) == False', 'assert is_equal_to_sum_even(16) == True']",HumanEval/138
"
def special_factorial(n):
""""""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
""""""
","['assert special_factorial(4) == 288, ""Test 4""', 'assert special_factorial(5) == 34560, ""Test 5""', 'assert special_factorial(7) == 125411328000, ""Test 7"" # Check some edge cases that are easy to work out by hand.', 'assert special_factorial(1) == 1, ""Test 1""']",HumanEval/139
"
def fix_spaces(text):
""""""
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fix_spaces(""Example"") == ""Example""
fix_spaces(""Example 1"") == ""Example_1""
fix_spaces("" Example 2"") == ""_Example_2""
fix_spaces("" Example 3"") == ""_Example-3""
""""""
","['assert fix_spaces(""Example"") == ""Example"", ""This prints if this assert fails 1 (good for debugging!)""', 'assert fix_spaces(""Mudasir Hanif "") == ""Mudasir_Hanif_"", ""This prints if this assert fails 2 (good for debugging!)""', 'assert fix_spaces(""Yellow Yellow Dirty Fellow"") == ""Yellow_Yellow__Dirty__Fellow"", ""This prints if this assert fails 3 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert fix_spaces(""Exa mple"") == ""Exa-mple"", ""This prints if this assert fails 4 (good for debugging!)""', 'assert fix_spaces("" Exa 1 2 2 mple"") == ""-Exa_1_2_2_mple"", ""This prints if this assert fails 4 (good for debugging!)""']",HumanEval/140
"
def file_name_check(file_name):
""""""Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
file_name_check(""example.txt"") # => 'Yes'
file_name_check(""1example.dll"") # => 'No' (the name should start with a latin alphapet letter)
""""""
","['assert file_name_check(""example.txt"") == \'Yes\'', 'assert file_name_check(""1example.dll"") == \'No\'', ""assert file_name_check('s1sdf3.asd') == 'No'"", ""assert file_name_check('K.dll') == 'Yes'"", ""assert file_name_check('MY16FILE3.exe') == 'Yes'"", ""assert file_name_check('His12FILE94.exe') == 'No'"", ""assert file_name_check('_Y.txt') == 'No'"", ""assert file_name_check('?aREYA.exe') == 'No'"", ""assert file_name_check('/this_is_valid.dll') == 'No'"", ""assert file_name_check('this_is_valid.wow') == 'No'"", ""assert file_name_check('this_is_valid.txt') == 'Yes'"", ""assert file_name_check('this_is_valid.txtexe') == 'No'"", ""assert file_name_check('#this2_i4s_5valid.ten') == 'No'"", ""assert file_name_check('@this1_is6_valid.exe') == 'No'"", ""assert file_name_check('this_is_12valid.6exe4.txt') == 'No'"", ""assert file_name_check('all.exe.txt') == 'No'"", ""assert file_name_check('I563_No.exe') == 'Yes'"", ""assert file_name_check('Is3youfault.txt') == 'Yes'"", ""assert file_name_check('no_one#knows.dll') == 'Yes'"", ""assert file_name_check('1I563_Yes3.exe') == 'No'"", ""assert file_name_check('I563_Yes3.txtt') == 'No'"", ""assert file_name_check('final..txt') == 'No'"", ""assert file_name_check('final132') == 'No'"", ""assert file_name_check('_f4indsartal132.') == 'No' # Check some edge cases that are easy to work out by hand."", ""assert file_name_check('.txt') == 'No'"", ""assert file_name_check('s.') == 'No'""]",HumanEval/141
"
def sum_squares(lst):
""""""""
This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a
multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not
change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = [1,2,3] the output should be 6
For lst = [] the output should be 0
For lst = [-1,-5,2,-1,-5] the output should be -126
""""""
","['assert sum_squares([1,2,3]) == 6', 'assert sum_squares([1,4,9]) == 14', 'assert sum_squares([]) == 0', 'assert sum_squares([1,1,1,1,1,1,1,1,1]) == 9', 'assert sum_squares([-1,-1,-1,-1,-1,-1,-1,-1,-1]) == -3', 'assert sum_squares([0]) == 0', 'assert sum_squares([-1,-5,2,-1,-5]) == -126', 'assert sum_squares([-56,-99,1,0,-2]) == 3030', 'assert sum_squares([-1,0,0,0,0,0,0,0,-1]) == 0', 'assert sum_squares([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196', ""assert sum_squares([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448 # Don't remove this line:""]",HumanEval/142
"
def words_in_sentence(sentence):
""""""
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Input: sentence = ""This is a test""
Output: ""is""
Example 2:
Input: sentence = ""lets go for swimming""
Output: ""go for""
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
""""""
","['assert words_in_sentence(""This is a test"") == ""is""', 'assert words_in_sentence(""lets go for swimming"") == ""go for""', 'assert words_in_sentence(""there is no place available here"") == ""there is no place""', 'assert words_in_sentence(""Hi I am Hussein"") == ""Hi am Hussein""', 'assert words_in_sentence(""go for it"") == ""go for it"" # Check some edge cases that are easy to work out by hand.', 'assert words_in_sentence(""here"") == """"', 'assert words_in_sentence(""here is"") == ""is""']",HumanEval/143
"
def simplify(x, n):
""""""Your task is to implement a function that will simplify the expression
x * n. The function returns True if x * n evaluates to a whole number and False
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify(""1/5"", ""5/1"") = True
simplify(""1/6"", ""2/1"") = False
simplify(""7/10"", ""10/2"") = False
""""""
","['assert simplify(""1/5"", ""5/1"") == True, \'test1\'', 'assert simplify(""1/6"", ""2/1"") == False, \'test2\'', 'assert simplify(""5/1"", ""3/1"") == True, \'test3\'', 'assert simplify(""7/10"", ""10/2"") == False, \'test4\'', 'assert simplify(""2/10"", ""50/10"") == True, \'test5\'', 'assert simplify(""7/2"", ""4/2"") == True, \'test6\'', 'assert simplify(""11/6"", ""6/1"") == True, \'test7\'', 'assert simplify(""2/3"", ""5/2"") == False, \'test8\'', 'assert simplify(""5/2"", ""3/5"") == False, \'test9\'', 'assert simplify(""2/4"", ""8/4"") == True, \'test10\' # Check some edge cases that are easy to work out by hand.', 'assert simplify(""2/4"", ""4/2"") == True, \'test11\'', 'assert simplify(""1/5"", ""5/1"") == True, \'test12\'', 'assert simplify(""1/5"", ""1/5"") == False, \'test13\'']",HumanEval/144
"
def order_by_points(nums):
""""""
Write a function which sorts the given list of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original list.
For example:
>>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
>>> order_by_points([]) == []
""""""
","['assert order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]', 'assert order_by_points([1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]', 'assert order_by_points([]) == []', 'assert order_by_points([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54]', 'assert order_by_points([1,2,3,4,5,6,7,8,9,10,11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]', 'assert order_by_points([0,6,6,-76,-21,23,4]) == [-76, -21, 0, 4, 23, 6, 6] # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/145
"
def specialFilter(nums):
""""""Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
""""""
","['assert specialFilter([5, -2, 1, -5]) == 0', 'assert specialFilter([15, -73, 14, -15]) == 1', 'assert specialFilter([33, -2, -3, 45, 21, 109]) == 2', 'assert specialFilter([43, -12, 93, 125, 121, 109]) == 4', 'assert specialFilter([71, -2, -33, 75, 21, 19]) == 3 # Check some edge cases that are easy to work out by hand.', 'assert specialFilter([1]) == 0', 'assert specialFilter([]) == 0']",HumanEval/146
"
def get_max_triples(n):
""""""
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Input: n = 5
Output: 1
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
""""""
","['assert get_max_triples(5) == 1', 'assert get_max_triples(6) == 4', 'assert get_max_triples(10) == 36', 'assert get_max_triples(100) == 53361']",HumanEval/147
"
def bf(planet1, planet2):
'''
There are eight planets in our solar system: the closerst to the Sun
is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn,
Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
The function should return a tuple containing all planets whose orbits are
located between the orbit of planet1 and the orbit of planet2, sorted by
the proximity to the sun.
The function should return an empty tuple if planet1 or planet2
are not correct planet names.
Examples
bf(""Jupiter"", ""Neptune"") ==> (""Saturn"", ""Uranus"")
bf(""Earth"", ""Mercury"") ==> (""Venus"")
bf(""Mercury"", ""Uranus"") ==> (""Venus"", ""Earth"", ""Mars"", ""Jupiter"", ""Saturn"")
'''
","['assert bf(""Jupiter"", ""Neptune"") == (""Saturn"", ""Uranus""), ""First test error: "" + str(len(bf(""Jupiter"", ""Neptune"")))', 'assert bf(""Earth"", ""Mercury"") == (""Venus"",), ""Second test error: "" + str(bf(""Earth"", ""Mercury""))', 'assert bf(""Mercury"", ""Uranus"") == (""Venus"", ""Earth"", ""Mars"", ""Jupiter"", ""Saturn""), ""Third test error: "" + str(bf(""Mercury"", ""Uranus""))', 'assert bf(""Neptune"", ""Venus"") == (""Earth"", ""Mars"", ""Jupiter"", ""Saturn"", ""Uranus""), ""Fourth test error: "" + str(bf(""Neptune"", ""Venus"")) # Check some edge cases that are easy to work out by hand.', 'assert bf(""Earth"", ""Earth"") == ()', 'assert bf(""Mars"", ""Earth"") == ()', 'assert bf(""Jupiter"", ""Makemake"") == ()']",HumanEval/148
"
def sorted_list_sum(lst):
""""""Write a function that accepts a list of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted list with a sorted order,
The list is always a list of strings and never an array of numbers,
and it may contain duplicates.
The order of the list should be ascending by length of each word, and you
should return the list sorted by that rule.
If two words have the same length, sort the list alphabetically.
The function should return a list of strings in sorted order.
You may assume that all words will have the same length.
For example:
assert list_sort([""aa"", ""a"", ""aaa""]) => [""aa""]
assert list_sort([""ab"", ""a"", ""aaa"", ""cd""]) => [""ab"", ""cd""]
""""""
","['assert sorted_list_sum([""aa"", ""a"", ""aaa""]) == [""aa""]', 'assert sorted_list_sum([""school"", ""AI"", ""asdf"", ""b""]) == [""AI"", ""asdf"", ""school""]', 'assert sorted_list_sum([""d"", ""b"", ""c"", ""a""]) == []', 'assert sorted_list_sum([""d"", ""dcba"", ""abcd"", ""a""]) == [""abcd"", ""dcba""] # Check some edge cases that are easy to work out by hand.', 'assert sorted_list_sum([""AI"", ""ai"", ""au""]) == [""AI"", ""ai"", ""au""]', 'assert sorted_list_sum([""a"", ""b"", ""b"", ""c"", ""c"", ""a""]) == []', 'assert sorted_list_sum([\'aaaa\', \'bbbb\', \'dd\', \'cc\']) == [""cc"", ""dd"", ""aaaa"", ""bbbb""]']",HumanEval/149
"
def x_or_y(n, x, y):
""""""A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
for x_or_y(7, 34, 12) == 34
for x_or_y(15, 8, 5) == 5
""""""
","['assert x_or_y(7, 34, 12) == 34', 'assert x_or_y(15, 8, 5) == 5', 'assert x_or_y(3, 33, 5212) == 33', 'assert x_or_y(1259, 3, 52) == 3', 'assert x_or_y(7919, -1, 12) == -1', 'assert x_or_y(3609, 1245, 583) == 583', 'assert x_or_y(91, 56, 129) == 129', 'assert x_or_y(6, 34, 1234) == 1234 # Check some edge cases that are easy to work out by hand.', 'assert x_or_y(1, 2, 0) == 0', 'assert x_or_y(2, 2, 0) == 2']",HumanEval/150
"
def double_the_difference(lst):
'''
Given a list of numbers, return the sum of squares of the numbers
in the list that are odd. Ignore numbers that are negative or not integers.
double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
double_the_difference([-1, -2, 0]) == 0
double_the_difference([9, -2]) == 81
double_the_difference([0]) == 0
If the input list is empty, return 0.
'''
","['assert double_the_difference([]) == 0 , ""This prints if this assert fails 1 (good for debugging!)""', 'assert double_the_difference([5, 4]) == 25 , ""This prints if this assert fails 2 (good for debugging!)""', 'assert double_the_difference([0.1, 0.2, 0.3]) == 0 , ""This prints if this assert fails 3 (good for debugging!)""', 'assert double_the_difference([-10, -20, -30]) == 0 , ""This prints if this assert fails 4 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert double_the_difference([-1, -2, 8]) == 0, ""This prints if this assert fails 5 (also good for debugging!)""', 'assert double_the_difference([0.2, 3, 5]) == 34, ""This prints if this assert fails 6 (also good for debugging!)"" lst = list(range(-99, 100, 2)) odd_sum = sum([i**2 for i in lst if i%2!=0 and i > 0])', 'assert double_the_difference(lst) == odd_sum , ""This prints if this assert fails 7 (good for debugging!)""']",HumanEval/151
"
def compare(game,guess):
""""""I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6]
""""""
","['assert compare([1,2,3,4,5,1],[1,2,3,4,2,-2])==[0,0,0,0,3,3], ""This prints if this assert fails 1 (good for debugging!)""', 'assert compare([0,0,0,0,0,0],[0,0,0,0,0,0])==[0,0,0,0,0,0], ""This prints if this assert fails 1 (good for debugging!)""', 'assert compare([1,2,3],[-1,-2,-3])==[2,4,6], ""This prints if this assert fails 1 (good for debugging!)""', 'assert compare([1,2,3,5],[-1,2,3,4])==[2,0,0,1], ""This prints if this assert fails 1 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/152
"
def Strongest_Extension(class_name, extensions):
""""""You will be given the name of a class (a string) and a list of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the list.
For example, if you are given ""Slices"" as the class and a list of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA'
""""""
","[""assert Strongest_Extension('Watashi', ['tEN', 'niNE', 'eIGHt8OKe']) == 'Watashi.eIGHt8OKe'"", ""assert Strongest_Extension('Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']) == 'Boku123.YEs.WeCaNe'"", ""assert Strongest_Extension('__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']) == '__YESIMHERE.NuLl__'"", ""assert Strongest_Extension('K', ['Ta', 'TAR', 't234An', 'cosSo']) == 'K.TAR'"", ""assert Strongest_Extension('__HAHA', ['Tab', '123', '781345', '-_-']) == '__HAHA.123'"", ""assert Strongest_Extension('YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']) == 'YameRore.okIWILL123'"", ""assert Strongest_Extension('finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']) == 'finNNalLLly.WoW' # Check some edge cases that are easy to work out by hand."", ""assert Strongest_Extension('_', ['Bb', '91245']) == '_.Bb'"", ""assert Strongest_Extension('Sp', ['671235', 'Bb']) == 'Sp.671235'""]",HumanEval/153
"
def cycpattern_check(a , b):
""""""You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word
cycpattern_check(""abcd"",""abd"") => False
cycpattern_check(""hello"",""ell"") => True
cycpattern_check(""whassup"",""psus"") => False
cycpattern_check(""abab"",""baa"") => True
cycpattern_check(""efef"",""eeff"") => False
cycpattern_check(""himenss"",""simen"") => True
""""""
","['assert cycpattern_check(""xyzw"",""xyw"") == False , ""test #0""', 'assert cycpattern_check(""yello"",""ell"") == True , ""test #1""', 'assert cycpattern_check(""whattup"",""ptut"") == False , ""test #2""', 'assert cycpattern_check(""efef"",""fee"") == True , ""test #3""', 'assert cycpattern_check(""abab"",""aabb"") == False , ""test #4""', 'assert cycpattern_check(""winemtt"",""tinem"") == True , ""test #5""']",HumanEval/154
"
def even_odd_count(num):
""""""Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
even_odd_count(-12) ==> (1, 1)
even_odd_count(123) ==> (1, 2)
""""""
","['assert even_odd_count(7) == (0, 1)', 'assert even_odd_count(-78) == (1, 1)', 'assert even_odd_count(3452) == (2, 2)', 'assert even_odd_count(346211) == (3, 3)', 'assert even_odd_count(-345821) == (3, 3)', 'assert even_odd_count(-2) == (1, 0)', 'assert even_odd_count(-45347) == (2, 3)', 'assert even_odd_count(0) == (1, 0) # Check some edge cases that are easy to work out by hand.', 'assert True']",HumanEval/155
"
def int_to_mini_roman(number):
""""""
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
>>> int_to_mini_roman(19) == 'xix'
>>> int_to_mini_roman(152) == 'clii'
>>> int_to_mini_roman(426) == 'cdxxvi'
""""""
","[""assert int_to_mini_roman(19) == 'xix'"", ""assert int_to_mini_roman(152) == 'clii'"", ""assert int_to_mini_roman(251) == 'ccli'"", ""assert int_to_mini_roman(426) == 'cdxxvi'"", ""assert int_to_mini_roman(500) == 'd'"", ""assert int_to_mini_roman(1) == 'i'"", ""assert int_to_mini_roman(4) == 'iv'"", ""assert int_to_mini_roman(43) == 'xliii'"", ""assert int_to_mini_roman(90) == 'xc'"", ""assert int_to_mini_roman(94) == 'xciv'"", ""assert int_to_mini_roman(532) == 'dxxxii'"", ""assert int_to_mini_roman(900) == 'cm'"", ""assert int_to_mini_roman(994) == 'cmxciv'"", ""assert int_to_mini_roman(1000) == 'm' # Check some edge cases that are easy to work out by hand."", 'assert True']",HumanEval/156
"
def right_angle_triangle(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return True if the three
sides form a right-angled triangle, False otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
right_angle_triangle(3, 4, 5) == True
right_angle_triangle(1, 2, 3) == False
'''
","['assert right_angle_triangle(3, 4, 5) == True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert right_angle_triangle(1, 2, 3) == False', 'assert right_angle_triangle(10, 6, 8) == True', 'assert right_angle_triangle(2, 2, 2) == False', 'assert right_angle_triangle(7, 24, 25) == True', 'assert right_angle_triangle(10, 5, 7) == False', 'assert right_angle_triangle(5, 12, 13) == True', 'assert right_angle_triangle(15, 8, 17) == True', 'assert right_angle_triangle(48, 55, 73) == True # Check some edge cases that are easy to work out by hand.', 'assert right_angle_triangle(1, 1, 1) == False, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert right_angle_triangle(2, 2, 10) == False']",HumanEval/157
"
def find_max(words):
""""""Write a function that accepts a list of strings.
The list contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
find_max([""name"", ""of"", ""string""]) == ""string""
find_max([""name"", ""enam"", ""game""]) == ""enam""
find_max([""aaaaaaa"", ""bb"" ,""cc""]) == """"aaaaaaa""
""""""
","['assert (find_max([""name"", ""of"", ""string""]) == ""string""), ""t1""', 'assert (find_max([""name"", ""enam"", ""game""]) == ""enam""), \'t2\'', 'assert (find_max([""aaaaaaa"", ""bb"", ""cc""]) == ""aaaaaaa""), \'t3\'', 'assert (find_max([""abc"", ""cba""]) == ""abc""), \'t4\'', 'assert (find_max([""play"", ""this"", ""game"", ""of"",""footbott""]) == ""footbott""), \'t5\'', 'assert (find_max([""we"", ""are"", ""gonna"", ""rock""]) == ""gonna""), \'t6\'', 'assert (find_max([""we"", ""are"", ""a"", ""mad"", ""nation""]) == ""nation""), \'t7\'', 'assert (find_max([""this"", ""is"", ""a"", ""prrk""]) == ""this""), \'t8\' # Check some edge cases that are easy to work out by hand.', 'assert (find_max([""b""]) == ""b""), \'t9\'', 'assert (find_max([""play"", ""play"", ""play""]) == ""play""), \'t10\'']",HumanEval/158
"
def eat(number, need, remaining):
""""""
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
* eat(5, 6, 10) -> [11, 4]
* eat(4, 8, 9) -> [12, 1]
* eat(1, 10, 10) -> [11, 0]
* eat(2, 11, 5) -> [7, 0]
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
""""""
","['assert True, ""This prints if this assert fails 1 (good for debugging!)""', 'assert eat(5, 6, 10) == [11, 4], ""Error""', 'assert eat(4, 8, 9) == [12, 1], ""Error""', 'assert eat(1, 10, 10) == [11, 0], ""Error""', 'assert eat(2, 11, 5) == [7, 0], ""Error"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""', 'assert eat(4, 5, 7) == [9, 2], ""Error""', 'assert eat(4, 5, 1) == [5, 0], ""Error""']",HumanEval/159
"
def do_algebra(operator, operand):
""""""
Given two lists operator, and operand. The first list has basic algebra operations, and
the second list is a list of integers. Use the two given lists to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator list is equal to the length of operand list minus one.
Operand is a list of of non-negative integers.
Operator list has at least one operator, and operand list has at least two operands.
""""""
","[""assert do_algebra(['**', '*', '+'], [2, 3, 4, 5]) == 37"", ""assert do_algebra(['+', '*', '-'], [2, 3, 4, 5]) == 9"", 'assert do_algebra([\'//\', \'*\'], [7, 3, 4]) == 8, ""This prints if this assert fails 1 (good for debugging!)"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/160
"
def solve(s):
""""""You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve(""1234"") = ""4321""
solve(""ab"") = ""AB""
solve(""#a@C"") = ""#A@c""
""""""
","['assert solve(""AsDf"") == ""aSdF""', 'assert solve(""1234"") == ""4321""', 'assert solve(""ab"") == ""AB""', 'assert solve(""#a@C"") == ""#A@c""', 'assert solve(""#AsdfW^45"") == ""#aSDFw^45""', 'assert solve(""#6@2"") == ""2@6#"" # Check some edge cases that are easy to work out by hand.', 'assert solve(""#$a^D"") == ""#$A^d""', 'assert solve(""#ccc"") == ""#CCC"" # Don\'t remove this line:']",HumanEval/161
"
def string_to_md5(text):
""""""
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return None.
>>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'
""""""
","[""assert string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'"", ""assert string_to_md5('') == None"", ""assert string_to_md5('A B C') == '0ef78513b0cb8cef12743f5aeb35f888'"", ""assert string_to_md5('password') == '5f4dcc3b5aa765d61d8327deb882cf99' # Check some edge cases that are easy to work out by hand."", 'assert True']",HumanEval/162
"
def generate_integers(a, b):
""""""
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []
""""""
","['assert generate_integers(2, 10) == [2, 4, 6, 8], ""Test 1""', 'assert generate_integers(10, 2) == [2, 4, 6, 8], ""Test 2""', 'assert generate_integers(132, 2) == [2, 4, 6, 8], ""Test 3""', 'assert generate_integers(17,89) == [], ""Test 4"" # Check some edge cases that are easy to work out by hand.', 'assert True, ""This prints if this assert fails 2 (also good for debugging!)""']",HumanEval/163