import segmentation_models_pytorch as smp import sklearn.metrics import torch import timm # -- Replace with your data -- x = torch.randn(1, 13, 512, 512) # S2 L1C image y = torch.randint(0, 4, (1, 512, 512)).numpy() # Target # -- Load the segmentation model - UNetMobV2 -- segmodel = smp.Unet( encoder_name="mobilenet_v2", encoder_weights=None, in_channels=13, classes=4 ) segmodel.load_state_dict(torch.load("models/UNetMobV2.pt")) segmodel.eval() # -- Predict the cloud mask -- with torch.no_grad(): yhat = segmodel(x) cloudmask = torch.argmax(yhat, dim=1).cpu().numpy().squeeze() # -- Predict the trustworthiness index (TI) -- ti_index = sklearn.metrics.fbeta_score( y_true=y.flatten(), y_pred=cloudmask.flatten(), beta=2.0, average="macro" ) # -- Load the hardness index (HI) model -- hi_model = timm.create_model( model_name="resnet10t", pretrained=True, num_classes=1, in_chans=13 ) hi_model.load_state_dict(torch.load("models/resnet10.pt")) hi_model.eval() # -- Estimate the hardness index (HI) -- with torch.no_grad(): y = hi_model(x) hi_index = torch.sigmoid(y).cpu().numpy().squeeze().item() # -- Decision making -- if (ti_index < 0.3) & (hi_index > 0.5): perror = 1 else: perror = 0