import sys import copy import math import torch from torch import nn from torch.nn import functional as F from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm sys.path.append('../..') import modules.commons as commons import modules.modules as modules import modules.attentions as attentions from modules.commons import init_weights, get_padding from modules.ddsp import mlp, gru, scale_function, remove_above_nyquist, upsample from modules.ddsp import harmonic_synth, amp_to_impulse_response, fft_convolve from modules.ddsp import resample import utils from modules.stft import TorchSTFT import torch.distributions as D from modules.losses import ( generator_loss, discriminator_loss, feature_loss, kl_loss ) LRELU_SLOPE = 0.1 class PostF0Decoder(nn.Module): def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, spk_channels=0): super().__init__() self.in_channels = in_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.p_dropout = p_dropout self.gin_channels = spk_channels self.drop = nn.Dropout(p_dropout) self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) self.norm_1 = modules.LayerNorm(filter_channels) self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) self.norm_2 = modules.LayerNorm(filter_channels) self.proj = nn.Conv1d(filter_channels, 1, 1) if spk_channels != 0: self.cond = nn.Conv1d(spk_channels, in_channels, 1) def forward(self, x, x_mask, g=None): x = torch.detach(x) if g is not None: g = torch.detach(g) x = x + self.cond(g) x = self.conv_1(x * x_mask) x = torch.relu(x) x = self.norm_1(x) x = self.drop(x) x = self.conv_2(x * x_mask) x = torch.relu(x) x = self.norm_2(x) x = self.drop(x) x = self.proj(x * x_mask) return x * x_mask class TextEncoder(nn.Module): def __init__(self, c_dim, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout): super().__init__() self.out_channels = out_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.pre_net = torch.nn.Linear(c_dim, hidden_channels) self.encoder = attentions.Encoder( hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) def forward(self, x, x_lengths): x = x.transpose(1,-1) x = self.pre_net(x) x = torch.transpose(x, 1, -1) # [b, h, t] x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.encoder(x * x_mask, x_mask) x = self.proj(x) * x_mask return x, x_mask def pad_v2(input_ele, mel_max_length=None): if mel_max_length: max_len = mel_max_length else: max_len = max([input_ele[i].size(0) for i in range(len(input_ele))]) out_list = list() for i, batch in enumerate(input_ele): if len(batch.shape) == 1: one_batch_padded = F.pad( batch, (0, max_len - batch.size(0)), "constant", 0.0 ) elif len(batch.shape) == 2: one_batch_padded = F.pad( batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0 ) out_list.append(one_batch_padded) out_padded = torch.stack(out_list) return out_padded class LengthRegulator(nn.Module): """ Length Regulator """ def __init__(self): super(LengthRegulator, self).__init__() def LR(self, x, duration, max_len): x = torch.transpose(x, 1, 2) output = list() mel_len = list() for batch, expand_target in zip(x, duration): expanded = self.expand(batch, expand_target) output.append(expanded) mel_len.append(expanded.shape[0]) if max_len is not None: output = pad_v2(output, max_len) else: output = pad_v2(output) output = torch.transpose(output, 1, 2) return output, torch.LongTensor(mel_len) def expand(self, batch, predicted): predicted = torch.squeeze(predicted) out = list() for i, vec in enumerate(batch): expand_size = predicted[i].item() state_info_index = torch.unsqueeze(torch.arange(0, expand_size), 1).float() state_info_length = torch.unsqueeze(torch.Tensor([expand_size] * expand_size), 1).float() state_info = torch.cat([state_info_index, state_info_length], 1).to(vec.device) new_vec = vec.expand(max(int(expand_size), 0), -1) new_vec = torch.cat([new_vec, state_info], 1) out.append(new_vec) out = torch.cat(out, 0) return out def forward(self, x, duration, max_len): output, mel_len = self.LR(x, duration, max_len) return output, mel_len class PriorDecoder(nn.Module): def __init__(self, out_bn_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, n_speakers=0, spk_channels=0): super().__init__() self.out_bn_channels = out_bn_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.spk_channels = spk_channels self.prenet = nn.Conv1d(hidden_channels , hidden_channels, 3, padding=1) self.decoder = attentions.FFT( hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout) self.proj = nn.Conv1d(hidden_channels, out_bn_channels, 1) if n_speakers != 0: self.cond = nn.Conv1d(spk_channels, hidden_channels, 1) def forward(self, x, x_lengths, spk_emb=None): x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.prenet(x) * x_mask if (spk_emb is not None): x = x + self.cond(spk_emb) x = self.decoder(x * x_mask, x_mask) bn = self.proj(x) * x_mask return bn, x_mask class Decoder(nn.Module): def __init__(self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, n_speakers=0, spk_channels=0, in_channels=None): super().__init__() self.out_channels = out_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.spk_channels = spk_channels self.prenet = nn.Conv1d(in_channels if in_channels is not None else hidden_channels, hidden_channels, 3, padding=1) self.decoder = attentions.FFT( hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) if n_speakers != 0: self.cond = nn.Conv1d(spk_channels, hidden_channels, 1) def forward(self, x, x_lengths, spk_emb=None): x = torch.detach(x) x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.prenet(x) * x_mask if (spk_emb is not None): x = x + self.cond(spk_emb) x = self.decoder(x * x_mask, x_mask) x = self.proj(x) * x_mask return x, x_mask class F0Decoder(nn.Module): def __init__(self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, n_speakers=0, spk_channels=0, in_channels=None): super().__init__() self.out_channels = out_channels self.hidden_channels = hidden_channels self.filter_channels = filter_channels self.n_heads = n_heads self.n_layers = n_layers self.kernel_size = kernel_size self.p_dropout = p_dropout self.spk_channels = spk_channels self.prenet = nn.Conv1d(in_channels if in_channels is not None else hidden_channels, hidden_channels, 3, padding=1) self.decoder = attentions.FFT( hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1) if n_speakers != 0: self.cond = nn.Conv1d(spk_channels, hidden_channels, 1) def forward(self, x, norm_f0, x_lengths, spk_emb=None): x = torch.detach(x) x += self.f0_prenet(norm_f0) x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.prenet(x) * x_mask if (spk_emb is not None): x = x + self.cond(spk_emb) x = self.decoder(x * x_mask, x_mask) x = self.proj(x) * x_mask return x, x_mask class ConvReluNorm(nn.Module): def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout): super().__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout assert n_layers > 1, "Number of layers should be larger than 0." self.conv_layers = nn.ModuleList() self.norm_layers = nn.ModuleList() self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) self.norm_layers.append(LayerNorm(hidden_channels)) self.relu_drop = nn.Sequential( nn.ReLU(), nn.Dropout(p_dropout)) for _ in range(n_layers - 1): self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) self.norm_layers.append(LayerNorm(hidden_channels)) self.proj = nn.Conv1d(hidden_channels, out_channels, 1) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x): x = self.conv_layers[0](x) x = self.norm_layers[0](x) x = self.relu_drop(x) for i in range(1, self.n_layers): x_ = self.conv_layers[i](x) x_ = self.norm_layers[i](x_) x_ = self.relu_drop(x_) x = (x + x_) / 2 x = self.proj(x) return x class PosteriorEncoder(nn.Module): def __init__(self, hps, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.pre = nn.Conv1d(in_channels, hidden_channels, 1) self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, n_speakers=hps.data.n_speakers, spk_channels=hps.model.spk_channels) # self.enc = ConvReluNorm(hidden_channels, # hidden_channels, # hidden_channels, # kernel_size, # n_layers, # 0.1) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x, x_lengths, g=None): x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) stats = self.proj(x) * x_mask return stats, x_mask class ResBlock3(torch.nn.Module): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): super(ResBlock3, self).__init__() self.convs = nn.ModuleList([ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], padding=get_padding(kernel_size, dilation[0]))) ]) self.convs.apply(init_weights) def forward(self, x, x_mask=None): for c in self.convs: xt = F.leaky_relu(x, LRELU_SLOPE) if x_mask is not None: xt = xt * x_mask xt = c(xt) x = xt + x if x_mask is not None: x = x * x_mask return x def remove_weight_norm(self): for l in self.convs: remove_weight_norm(l) class Generator_Harm(torch.nn.Module): def __init__(self, hps): super(Generator_Harm, self).__init__() self.hps = hps self.prenet = Conv1d(hps.model.hidden_channels, hps.model.hidden_channels, 3, padding=1) self.net = ConvReluNorm(hps.model.hidden_channels, hps.model.hidden_channels, hps.model.hidden_channels, hps.model.kernel_size, 8, hps.model.p_dropout) # self.rnn = nn.LSTM(input_size=hps.model.hidden_channels, # hidden_size=hps.model.hidden_channels, # num_layers=1, # bias=True, # batch_first=True, # dropout=0.5, # bidirectional=True) self.postnet = Conv1d(hps.model.hidden_channels, hps.model.n_harmonic + 1, 3, padding=1) def forward(self, f0, harm, mask): pitch = f0.transpose(1, 2) harm = self.prenet(harm) harm = self.net(harm) * mask # harm = harm.transpose(1, 2) # harm, (hs, hc) = self.rnn(harm) # harm = harm.transpose(1, 2) harm = self.postnet(harm) harm = harm.transpose(1, 2) param = harm param = scale_function(param) total_amp = param[..., :1] amplitudes = param[..., 1:] amplitudes = remove_above_nyquist( amplitudes, pitch, self.hps.data.sampling_rate, ) amplitudes /= amplitudes.sum(-1, keepdim=True) amplitudes *= total_amp amplitudes = upsample(amplitudes, self.hps.data.hop_length) pitch = upsample(pitch, self.hps.data.hop_length) n_harmonic = amplitudes.shape[-1] omega = torch.cumsum(2 * math.pi * pitch / self.hps.data.sampling_rate, 1) omegas = omega * torch.arange(1, n_harmonic + 1).to(omega) signal_harmonics = (torch.sin(omegas) * amplitudes) signal_harmonics = signal_harmonics.transpose(1, 2) return signal_harmonics class Generator(torch.nn.Module): def __init__(self, hps, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, n_speakers=0, spk_channels=0): super(Generator, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) self.upsample_rates = upsample_rates self.n_speakers = n_speakers resblock = modules.ResBlock1 if resblock == '1' else modules.R self.downs = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): i = len(upsample_rates) - 1 - i u = upsample_rates[i] k = upsample_kernel_sizes[i] # print("down: ",upsample_initial_channel//(2**(i+1))," -> ", upsample_initial_channel//(2**i)) self.downs.append(weight_norm( Conv1d(hps.model.n_harmonic + 2, hps.model.n_harmonic + 2, k, u, padding=k // 2))) self.resblocks_downs = nn.ModuleList() for i in range(len(self.downs)): j = len(upsample_rates) - 1 - i self.resblocks_downs.append(ResBlock3(hps.model.n_harmonic + 2, 3, (1, 3))) self.concat_pre = Conv1d(upsample_initial_channel + hps.model.n_harmonic + 2, upsample_initial_channel, 3, 1, padding=1) self.concat_conv = nn.ModuleList() for i in range(len(upsample_rates)): ch = upsample_initial_channel // (2 ** (i + 1)) self.concat_conv.append(Conv1d(ch + hps.model.n_harmonic + 2, ch, 3, 1, padding=1, bias=False)) self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append(weight_norm( ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2))) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): self.resblocks.append(resblock(ch, k, d)) self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) self.ups.apply(init_weights) if self.n_speakers != 0: self.cond = nn.Conv1d(spk_channels, upsample_initial_channel, 1) def forward(self, x, ddsp, g=None): x = self.conv_pre(x) if g is not None: x = x + self.cond(g) se = ddsp res_features = [se] for i in range(self.num_upsamples): in_size = se.size(2) se = self.downs[i](se) se = self.resblocks_downs[i](se) up_rate = self.upsample_rates[self.num_upsamples - 1 - i] se = se[:, :, : in_size // up_rate] res_features.append(se) x = torch.cat([x, se], 1) x = self.concat_pre(x) for i in range(self.num_upsamples): x = F.leaky_relu(x, modules.LRELU_SLOPE) in_size = x.size(2) x = self.ups[i](x) # 保证维度正确,丢掉多余通道 x = x[:, :, : in_size * self.upsample_rates[i]] x = torch.cat([x, res_features[self.num_upsamples - 1 - i]], 1) x = self.concat_conv[i](x) xs = None for j in range(self.num_kernels): if xs is None: xs = self.resblocks[i * self.num_kernels + j](x) else: xs += self.resblocks[i * self.num_kernels + j](x) x = xs / self.num_kernels x = F.leaky_relu(x) x = self.conv_post(x) x = torch.tanh(x) return x def remove_weight_norm(self): print('Removing weight norm...') for l in self.ups: remove_weight_norm(l) for l in self.resblocks: l.remove_weight_norm() class Generator_Noise(torch.nn.Module): def __init__(self, hps): super(Generator_Noise, self).__init__() self.hps = hps self.win_size = hps.data.win_size self.hop_size = hps.data.hop_length self.fft_size = hps.data.n_fft self.istft_pre = Conv1d(hps.model.hidden_channels, hps.model.hidden_channels, 3, padding=1) self.net = ConvReluNorm(hps.model.hidden_channels, hps.model.hidden_channels, hps.model.hidden_channels, hps.model.kernel_size, 8, hps.model.p_dropout) self.istft_amplitude = torch.nn.Conv1d(hps.model.hidden_channels, self.fft_size // 2 + 1, 1, 1) self.window = torch.hann_window(self.win_size) def forward(self, x, mask): istft_x = x istft_x = self.istft_pre(istft_x) istft_x = self.net(istft_x) * mask amp = self.istft_amplitude(istft_x).unsqueeze(-1) phase = (torch.rand(amp.shape) * 2 * 3.14 - 3.14).to(amp) real = amp * torch.cos(phase) imag = amp * torch.sin(phase) spec = torch.cat([real, imag], 3) istft_x = torch.istft(spec, self.fft_size, self.hop_size, self.win_size, self.window.to(amp), True, length=x.shape[2] * self.hop_size, return_complex=False) return istft_x.unsqueeze(1) class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) class DiscriminatorP(torch.nn.Module): def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): super(DiscriminatorP, self).__init__() self.period = period self.use_spectral_norm = use_spectral_norm norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))), ]) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def forward(self, x): fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, modules.LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm=False): super(DiscriminatorS, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList([ norm_f(Conv1d(1, 16, 15, 1, padding=7)), norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ]) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def forward(self, x): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, modules.LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class MultiFrequencyDiscriminator(nn.Module): def __init__(self, hop_lengths=[128, 256, 512], hidden_channels=[256, 512, 512], domain='double', mel_scale=True): super(MultiFrequencyDiscriminator, self).__init__() self.stfts = nn.ModuleList([ TorchSTFT(fft_size=x * 4, hop_size=x, win_size=x * 4, normalized=True, domain=domain, mel_scale=mel_scale) for x in hop_lengths]) self.domain = domain if domain == 'double': self.discriminators = nn.ModuleList([ BaseFrequenceDiscriminator(2, c) for x, c in zip(hop_lengths, hidden_channels)]) else: self.discriminators = nn.ModuleList([ BaseFrequenceDiscriminator(1, c) for x, c in zip(hop_lengths, hidden_channels)]) def forward(self, x): scores, feats = list(), list() for stft, layer in zip(self.stfts, self.discriminators): # print(stft) mag, phase = stft.transform(x.squeeze()) if self.domain == 'double': mag = torch.stack(torch.chunk(mag, 2, dim=1), dim=1) else: mag = mag.unsqueeze(1) score, feat = layer(mag) scores.append(score) feats.append(feat) return scores, feats class BaseFrequenceDiscriminator(nn.Module): def __init__(self, in_channels, hidden_channels=512): super(BaseFrequenceDiscriminator, self).__init__() self.discriminator = nn.ModuleList() self.discriminator += [ nn.Sequential( nn.ReflectionPad2d((1, 1, 1, 1)), nn.utils.weight_norm(nn.Conv2d( in_channels, hidden_channels // 32, kernel_size=(3, 3), stride=(1, 1))) ), nn.Sequential( nn.LeakyReLU(0.2, True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.utils.weight_norm(nn.Conv2d( hidden_channels // 32, hidden_channels // 16, kernel_size=(3, 3), stride=(2, 2))) ), nn.Sequential( nn.LeakyReLU(0.2, True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.utils.weight_norm(nn.Conv2d( hidden_channels // 16, hidden_channels // 8, kernel_size=(3, 3), stride=(1, 1))) ), nn.Sequential( nn.LeakyReLU(0.2, True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.utils.weight_norm(nn.Conv2d( hidden_channels // 8, hidden_channels // 4, kernel_size=(3, 3), stride=(2, 2))) ), nn.Sequential( nn.LeakyReLU(0.2, True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.utils.weight_norm(nn.Conv2d( hidden_channels // 4, hidden_channels // 2, kernel_size=(3, 3), stride=(1, 1))) ), nn.Sequential( nn.LeakyReLU(0.2, True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.utils.weight_norm(nn.Conv2d( hidden_channels // 2, hidden_channels, kernel_size=(3, 3), stride=(2, 2))) ), nn.Sequential( nn.LeakyReLU(0.2, True), nn.ReflectionPad2d((1, 1, 1, 1)), nn.utils.weight_norm(nn.Conv2d( hidden_channels, 1, kernel_size=(3, 3), stride=(1, 1))) ) ] def forward(self, x): hiddens = [] for layer in self.discriminator: x = layer(x) hiddens.append(x) return x, hiddens[-1] class Discriminator(torch.nn.Module): def __init__(self, hps, use_spectral_norm=False): super(Discriminator, self).__init__() periods = [2, 3, 5, 7, 11] discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods] self.discriminators = nn.ModuleList(discs) # self.disc_multfrequency = MultiFrequencyDiscriminator(hop_lengths=[int(hps.data.sampling_rate * 2.5 / 1000), # int(hps.data.sampling_rate * 5 / 1000), # int(hps.data.sampling_rate * 7.5 / 1000), # int(hps.data.sampling_rate * 10 / 1000), # int(hps.data.sampling_rate * 12.5 / 1000), # int(hps.data.sampling_rate * 15 / 1000)], # hidden_channels=[256, 256, 256, 256, 256]) def forward(self, y, y_hat): y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for i, d in enumerate(self.discriminators): y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) y_d_gs.append(y_d_g) fmap_rs.append(fmap_r) fmap_gs.append(fmap_g) # scores_r, fmaps_r = self.disc_multfrequency(y) # scores_g, fmaps_g = self.disc_multfrequency(y_hat) # for i in range(len(scores_r)): # y_d_rs.append(scores_r[i]) # y_d_gs.append(scores_g[i]) # fmap_rs.append(fmaps_r[i]) # fmap_gs.append(fmaps_g[i]) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class SynthesizerTrn(nn.Module): """ Model """ def __init__(self, hps): super().__init__() self.hps = hps self.text_encoder = TextEncoder( hps.data.c_dim, hps.model.prior_hidden_channels, hps.model.prior_hidden_channels, hps.model.prior_filter_channels, hps.model.prior_n_heads, hps.model.prior_n_layers, hps.model.prior_kernel_size, hps.model.prior_p_dropout) self.decoder = PriorDecoder( hps.model.hidden_channels * 2, hps.model.prior_hidden_channels, hps.model.prior_filter_channels, hps.model.prior_n_heads, hps.model.prior_n_layers, hps.model.prior_kernel_size, hps.model.prior_p_dropout, n_speakers=hps.data.n_speakers, spk_channels=hps.model.spk_channels ) self.f0_decoder = F0Decoder( 1, hps.model.prior_hidden_channels, hps.model.prior_filter_channels, hps.model.prior_n_heads, hps.model.prior_n_layers, hps.model.prior_kernel_size, hps.model.prior_p_dropout, n_speakers=hps.data.n_speakers, spk_channels=hps.model.spk_channels ) self.mel_decoder = Decoder( hps.data.acoustic_dim, hps.model.prior_hidden_channels, hps.model.prior_filter_channels, hps.model.prior_n_heads, hps.model.prior_n_layers, hps.model.prior_kernel_size, hps.model.prior_p_dropout, n_speakers=hps.data.n_speakers, spk_channels=hps.model.spk_channels ) self.posterior_encoder = PosteriorEncoder( hps, hps.data.acoustic_dim, hps.model.hidden_channels, hps.model.hidden_channels, 3, 1, 8) self.dropout = nn.Dropout(0.2) self.LR = LengthRegulator() self.dec = Generator(hps, hps.model.hidden_channels, hps.model.resblock, hps.model.resblock_kernel_sizes, hps.model.resblock_dilation_sizes, hps.model.upsample_rates, hps.model.upsample_initial_channel, hps.model.upsample_kernel_sizes, n_speakers=hps.data.n_speakers, spk_channels=hps.model.spk_channels) self.dec_harm = Generator_Harm(hps) self.dec_noise = Generator_Noise(hps) self.f0_prenet = nn.Conv1d(1, hps.model.prior_hidden_channels , 3, padding=1) self.energy_prenet = nn.Conv1d(1, hps.model.prior_hidden_channels , 3, padding=1) self.mel_prenet = nn.Conv1d(hps.data.acoustic_dim, hps.model.prior_hidden_channels , 3, padding=1) if hps.data.n_speakers > 1: self.emb_spk = nn.Embedding(hps.data.n_speakers, hps.model.spk_channels) self.flow = modules.ResidualCouplingBlock(hps.model.prior_hidden_channels, hps.model.hidden_channels, 5, 1, 4,n_speakers=hps.data.n_speakers, gin_channels=hps.model.spk_channels) def forward(self, c, c_lengths, F0, uv, mel, bn_lengths, spk_id=None): if self.hps.data.n_speakers > 0: g = self.emb_spk(spk_id).unsqueeze(-1) # [b, h, 1] else: g = None # Encoder decoder_input, x_mask = self.text_encoder(c, c_lengths) LF0 = 2595. * torch.log10(1. + F0 / 700.) LF0 = LF0 / 500 norm_f0 = utils.normalize_f0(LF0,x_mask, uv.squeeze(1),random_scale=True) pred_lf0, predict_bn_mask = self.f0_decoder(decoder_input, norm_f0, bn_lengths, spk_emb=g) # print(pred_lf0) loss_f0 = F.mse_loss(pred_lf0, LF0) # aam predict_mel, predict_bn_mask = self.mel_decoder(decoder_input + self.f0_prenet(LF0), bn_lengths, spk_emb=g) predict_energy = predict_mel.detach().sum(1).unsqueeze(1) / self.hps.data.acoustic_dim decoder_input = decoder_input + \ self.f0_prenet(LF0) + \ self.energy_prenet(predict_energy) + \ self.mel_prenet(predict_mel.detach()) decoder_output, predict_bn_mask = self.decoder(decoder_input, bn_lengths, spk_emb=g) prior_info = decoder_output m_p = prior_info[:, :self.hps.model.hidden_channels, :] logs_p = prior_info[:, self.hps.model.hidden_channels:, :] # posterior posterior, y_mask = self.posterior_encoder(mel, bn_lengths,g=g) m_q = posterior[:, :self.hps.model.hidden_channels, :] logs_q = posterior[:, self.hps.model.hidden_channels:, :] z = (m_q + torch.randn_like(m_q) * torch.exp(logs_q)) * y_mask z_p = self.flow(z, y_mask, g=g) # kl loss loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, y_mask) p_z = z p_z = self.dropout(p_z) pitch = upsample(F0.transpose(1, 2), self.hps.data.hop_length) omega = torch.cumsum(2 * math.pi * pitch / self.hps.data.sampling_rate, 1) sin = torch.sin(omega).transpose(1, 2) # dsp synthesize noise_x = self.dec_noise(p_z, y_mask) harm_x = self.dec_harm(F0, p_z, y_mask) # dsp waveform dsp_o = torch.cat([harm_x, noise_x], axis=1) decoder_condition = torch.cat([harm_x, noise_x, sin], axis=1) # dsp based HiFiGAN vocoder x_slice, ids_slice = commons.rand_slice_segments(p_z, bn_lengths, self.hps.train.segment_size // self.hps.data.hop_length) F0_slice = commons.slice_segments(F0, ids_slice, self.hps.train.segment_size // self.hps.data.hop_length) dsp_slice = commons.slice_segments(dsp_o, ids_slice * self.hps.data.hop_length, self.hps.train.segment_size) condition_slice = commons.slice_segments(decoder_condition, ids_slice * self.hps.data.hop_length, self.hps.train.segment_size) o = self.dec(x_slice, condition_slice.detach(), g=g) return o, ids_slice, LF0 * predict_bn_mask, dsp_slice.sum(1), loss_kl, \ predict_mel, predict_bn_mask, pred_lf0, loss_f0, norm_f0 def infer(self, c, g=None, f0=None,uv=None, predict_f0=False, noice_scale=0.3): if len(g.shape) == 2: g = g.squeeze(0) if len(f0.shape) == 2: f0 = f0.unsqueeze(0) g = self.emb_spk(g).unsqueeze(-1) # [b, h, 1] c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) # Encoder decoder_input, x_mask = self.text_encoder(c, c_lengths) y_lengths = c_lengths LF0 = 2595. * torch.log10(1. + f0 / 700.) LF0 = LF0 / 500 if predict_f0: norm_f0 = utils.normalize_f0(LF0, x_mask, uv.squeeze(1)) pred_lf0, predict_bn_mask = self.f0_decoder(decoder_input, norm_f0, y_lengths, spk_emb=g) pred_f0 = 700 * ( torch.pow(10, pred_lf0 * 500 / 2595) - 1) f0 = pred_f0 LF0 = pred_lf0 # aam predict_mel, predict_bn_mask = self.mel_decoder(decoder_input + self.f0_prenet(LF0), y_lengths, spk_emb=g) predict_energy = predict_mel.sum(1).unsqueeze(1) / self.hps.data.acoustic_dim decoder_input = decoder_input + \ self.f0_prenet(LF0) + \ self.energy_prenet(predict_energy) + \ self.mel_prenet(predict_mel) decoder_output, y_mask = self.decoder(decoder_input, y_lengths, spk_emb=g) prior_info = decoder_output m_p = prior_info[:, :self.hps.model.hidden_channels, :] logs_p = prior_info[:, self.hps.model.hidden_channels:, :] z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noice_scale z = self.flow(z_p, y_mask, g=g, reverse=True) prior_z = z noise_x = self.dec_noise(prior_z, y_mask) harm_x = self.dec_harm(f0, prior_z, y_mask) pitch = upsample(f0.transpose(1, 2), self.hps.data.hop_length) omega = torch.cumsum(2 * math.pi * pitch / self.hps.data.sampling_rate, 1) sin = torch.sin(omega).transpose(1, 2) decoder_condition = torch.cat([harm_x, noise_x, sin], axis=1) # dsp based HiFiGAN vocoder o = self.dec(prior_z, decoder_condition, g=g) return o, harm_x.sum(1).unsqueeze(1), noise_x, f0