import os import sys import string import random import numpy as np import math import json from torch.utils.data import DataLoader import torch import utils from modules import audio sys.path.append('../..') from utils import load_wav class BaseDataset(torch.utils.data.Dataset): def __init__(self, hparams, fileid_list_path): self.hparams = hparams self.fileid_list = self.get_fileid_list(fileid_list_path) random.seed(hparams.train.seed) random.shuffle(self.fileid_list) if (hparams.data.n_speakers > 0): self.spk2id = hparams.spk def get_fileid_list(self, fileid_list_path): fileid_list = [] with open(fileid_list_path, 'r') as f: for line in f.readlines(): fileid_list.append(line.strip()) return fileid_list def __len__(self): return len(self.fileid_list) class SingDataset(BaseDataset): def __init__(self, hparams, data_dir, fileid_list_path): BaseDataset.__init__(self, hparams, fileid_list_path) self.hps = hparams self.data_dir = data_dir # self.__filter__() def __filter__(self): new_fileid_list= [] for wav_path in self.fileid_list: # mel_path = wav_path + ".mel.npy" # mel = np.load(mel_path) # if mel.shape[0] < 60: # print("skip short audio:", wav_path) # continue # if mel.shape[0] > 800: # print("skip long audio:", wav_path) # continue # assert mel.shape[1] == 80 new_fileid_list.append(wav_path) print("original length:", len(self.fileid_list)) print("filtered length:", len(new_fileid_list)) self.fileid_list = new_fileid_list def interpolate_f0(self, data): ''' 对F0进行插值处理 ''' data = np.reshape(data, (data.size, 1)) vuv_vector = np.zeros((data.size, 1), dtype=np.float32) vuv_vector[data > 0.0] = 1.0 vuv_vector[data <= 0.0] = 0.0 ip_data = data frame_number = data.size last_value = 0.0 for i in range(frame_number): if data[i] <= 0.0: j = i + 1 for j in range(i + 1, frame_number): if data[j] > 0.0: break if j < frame_number - 1: if last_value > 0.0: step = (data[j] - data[i - 1]) / float(j - i) for k in range(i, j): ip_data[k] = data[i - 1] + step * (k - i + 1) else: for k in range(i, j): ip_data[k] = data[j] else: for k in range(i, frame_number): ip_data[k] = last_value else: ip_data[i] = data[i] last_value = data[i] return ip_data, vuv_vector def parse_label(self, pho, pitchid, dur, slur, gtdur): phos = [] pitchs = [] durs = [] slurs = [] gtdurs = [] for index in range(len(pho.split())): phos.append(npu.symbol_converter.ttsing_phone_to_int[pho.strip().split()[index]]) pitchs.append(0) durs.append(0) slurs.append(0) gtdurs.append(float(gtdur.strip().split()[index])) phos = np.asarray(phos, dtype=np.int32) pitchs = np.asarray(pitchs, dtype=np.int32) durs = np.asarray(durs, dtype=np.float32) slurs = np.asarray(slurs, dtype=np.int32) gtdurs = np.asarray(gtdurs, dtype=np.float32) acc_duration = np.cumsum(gtdurs) acc_duration = np.pad(acc_duration, (1, 0), 'constant', constant_values=(0,)) acc_duration_frames = np.ceil(acc_duration / (self.hps.data.hop_length / self.hps.data.sampling_rate)) gtdurs = acc_duration_frames[1:] - acc_duration_frames[:-1] # new_phos = [] # new_gtdurs=[] # for ph, dur in zip(phos, gtdurs): # for i in range(int(dur)): # new_phos.append(ph) # new_gtdurs.append(1) phos = torch.LongTensor(phos) pitchs = torch.LongTensor(pitchs) durs = torch.FloatTensor(durs) slurs = torch.LongTensor(slurs) gtdurs = torch.LongTensor(gtdurs) return phos, pitchs, durs, slurs, gtdurs def __getitem__(self, index): wav_path = self.fileid_list[index] spk = wav_path.split('/')[-2] spkid = self.spk2id[spk] wav = load_wav(wav_path, raw_sr=self.hparams.data.sampling_rate, target_sr=self.hparams.data.sampling_rate, win_size=self.hparams.data.win_size, hop_size=self.hparams.data.hop_length) mel_path = wav_path + ".mel.npy" if not os.path.exists(mel_path): mel = audio.melspectrogram(wav, self.hparams.data).astype(np.float32).T np.save(mel_path, mel) else: mel = np.load(mel_path) if mel.shape[0] < 30: print("skip short audio:", self.fileid_list[index]) return None assert mel.shape[1] == 80 mel = torch.FloatTensor(mel).transpose(0, 1) f0_path = wav_path + ".f0.npy" f0 = np.load(f0_path) assert abs(f0.shape[0]-mel.shape[1]) < 2, (f0.shape ,mel.shape) sum_dur = min(f0.shape[0], mel.shape[1]) f0 = f0[:sum_dur] mel = mel[:, :sum_dur] f0, uv = self.interpolate_f0(f0) f0 = f0.reshape([-1]) f0 = torch.FloatTensor(f0).reshape([1, -1]) uv = uv.reshape([-1]) uv = torch.FloatTensor(uv).reshape([1, -1]) wav = wav.reshape(-1) if (wav.shape[0] != sum_dur * self.hparams.data.hop_length): if (abs(wav.shape[0] - sum_dur * self.hparams.data.hop_length) > 3 * self.hparams.data.hop_length): print("dataset error wav : ", wav.shape, sum_dur) return None if (wav.shape[0] > sum_dur * self.hparams.data.hop_length): wav = wav[:sum_dur * self.hparams.data.hop_length] else: wav = np.concatenate([wav, np.zeros([sum_dur * self.hparams.data.hop_length - wav.shape[0]])], axis=0) wav = torch.FloatTensor(wav).reshape([1, -1]) c_path = wav_path + ".soft.pt" c = torch.load(c_path) c = utils.repeat_expand_2d(c.squeeze(0), sum_dur) assert f0.shape[1] == mel.shape[1] if mel.shape[1] > 800: start = random.randint(0, mel.shape[1]-800) end = start + 790 mel = mel[:, start:end] f0 = f0[:, start:end] uv = uv[:, start:end] c = c[:, start:end] wav = wav[:, start*self.hparams.data.hop_length:end*self.hparams.data.hop_length] return c, mel, f0, wav, spkid, uv class SingCollate(): def __init__(self, hparams): self.hparams = hparams self.mel_dim = self.hparams.data.acoustic_dim def __call__(self, batch): batch = [b for b in batch if b is not None] input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([len(x[0]) for x in batch]), dim=0, descending=True) max_c_len = max([x[0].size(1) for x in batch]) max_mel_len = max([x[1].size(1) for x in batch]) max_f0_len = max([x[2].size(1) for x in batch]) max_wav_len = max([x[3].size(1) for x in batch]) c_lengths = torch.LongTensor(len(batch)) mel_lengths = torch.LongTensor(len(batch)) f0_lengths = torch.LongTensor(len(batch)) wav_lengths = torch.LongTensor(len(batch)) c_padded = torch.FloatTensor(len(batch), self.hparams.data.c_dim, max_mel_len) mel_padded = torch.FloatTensor(len(batch), self.hparams.data.acoustic_dim, max_mel_len) f0_padded = torch.FloatTensor(len(batch), 1, max_f0_len) uv_padded = torch.FloatTensor(len(batch), 1, max_f0_len) wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len) spkids = torch.LongTensor(len(batch)) c_padded.zero_() mel_padded.zero_() f0_padded.zero_() uv_padded.zero_() wav_padded.zero_() for i in range(len(ids_sorted_decreasing)): row = batch[ids_sorted_decreasing[i]] c = row[0] c_padded[i, :, :c.size(1)] = c c_lengths[i] = c.size(1) mel = row[1] mel_padded[i, :, :mel.size(1)] = mel mel_lengths[i] = mel.size(1) f0 = row[2] f0_padded[i, :, :f0.size(1)] = f0 f0_lengths[i] = f0.size(1) wav = row[3] wav_padded[i, :, :wav.size(1)] = wav wav_lengths[i] = wav.size(1) spkids[i] = row[4] uv = row[5] uv_padded[i, :, :uv.size(1)] = uv data_dict = {} data_dict["c"] = c_padded data_dict["mel"] = mel_padded data_dict["f0"] = f0_padded data_dict["uv"] = uv_padded data_dict["wav"] = wav_padded data_dict["c_lengths"] = c_lengths data_dict["mel_lengths"] = mel_lengths data_dict["f0_lengths"] = f0_lengths data_dict["wav_lengths"] = wav_lengths data_dict["spkid"] = spkids return data_dict class DatasetConstructor(): def __init__(self, hparams, num_replicas=1, rank=1): self.hparams = hparams self.num_replicas = num_replicas self.rank = rank self.dataset_function = {"SingDataset": SingDataset} self.collate_function = {"SingCollate": SingCollate} self._get_components() def _get_components(self): self._init_datasets() self._init_collate() self._init_data_loaders() def _init_datasets(self): self._train_dataset = self.dataset_function[self.hparams.data.dataset_type](self.hparams, self.hparams.data.data_dir, self.hparams.data.training_filelist) self._valid_dataset = self.dataset_function[self.hparams.data.dataset_type](self.hparams, self.hparams.data.data_dir, self.hparams.data.validation_filelist) def _init_collate(self): self._collate_fn = self.collate_function[self.hparams.data.collate_type](self.hparams) def _init_data_loaders(self): train_sampler = torch.utils.data.distributed.DistributedSampler(self._train_dataset, num_replicas=self.num_replicas, rank=self.rank, shuffle=True) self.train_loader = DataLoader(self._train_dataset, num_workers=4, shuffle=False, batch_size=self.hparams.train.batch_size, pin_memory=True, drop_last=True, collate_fn=self._collate_fn, sampler=train_sampler) self.valid_loader = DataLoader(self._valid_dataset, num_workers=1, shuffle=False, batch_size=1, pin_memory=True, drop_last=True, collate_fn=self._collate_fn) def get_train_loader(self): return self.train_loader def get_valid_loader(self): return self.valid_loader