|
|
"""Mobjects representing function graphs.""" |
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
__all__ = ["ParametricFunction", "FunctionGraph", "ImplicitFunction"] |
|
|
|
|
|
|
|
|
from collections.abc import Callable, Iterable, Sequence |
|
|
from typing import TYPE_CHECKING |
|
|
|
|
|
import numpy as np |
|
|
from isosurfaces import plot_isoline |
|
|
|
|
|
from manim import config |
|
|
from manim.mobject.graphing.scale import LinearBase, _ScaleBase |
|
|
from manim.mobject.opengl.opengl_compatibility import ConvertToOpenGL |
|
|
from manim.mobject.types.vectorized_mobject import VMobject |
|
|
|
|
|
if TYPE_CHECKING: |
|
|
from typing import Any |
|
|
|
|
|
from typing_extensions import Self |
|
|
|
|
|
from manim.typing import Point3D, Point3DLike |
|
|
from manim.utils.color import ParsableManimColor |
|
|
|
|
|
from manim.utils.color import YELLOW |
|
|
|
|
|
|
|
|
class ParametricFunction(VMobject, metaclass=ConvertToOpenGL): |
|
|
"""A parametric curve. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
function |
|
|
The function to be plotted in the form of ``(lambda t: (x(t), y(t), z(t)))`` |
|
|
t_range |
|
|
Determines the length that the function spans in the form of (t_min, t_max, step=0.01). By default ``[0, 1]`` |
|
|
scaling |
|
|
Scaling class applied to the points of the function. Default of :class:`~.LinearBase`. |
|
|
use_smoothing |
|
|
Whether to interpolate between the points of the function after they have been created. |
|
|
(Will have odd behaviour with a low number of points) |
|
|
use_vectorized |
|
|
Whether to pass in the generated t value array to the function as ``[t_0, t_1, ...]``. |
|
|
Only use this if your function supports it. Output should be a numpy array |
|
|
of shape ``[[x_0, x_1, ...], [y_0, y_1, ...], [z_0, z_1, ...]]`` but ``z`` can |
|
|
also be 0 if the Axes is 2D |
|
|
discontinuities |
|
|
Values of t at which the function experiences discontinuity. |
|
|
dt |
|
|
The left and right tolerance for the discontinuities. |
|
|
|
|
|
|
|
|
Examples |
|
|
-------- |
|
|
.. manim:: PlotParametricFunction |
|
|
:save_last_frame: |
|
|
|
|
|
class PlotParametricFunction(Scene): |
|
|
def func(self, t): |
|
|
return (np.sin(2 * t), np.sin(3 * t), 0) |
|
|
|
|
|
def construct(self): |
|
|
func = ParametricFunction(self.func, t_range = (0, TAU), fill_opacity=0).set_color(RED) |
|
|
self.add(func.scale(3)) |
|
|
|
|
|
.. manim:: ThreeDParametricSpring |
|
|
:save_last_frame: |
|
|
|
|
|
class ThreeDParametricSpring(ThreeDScene): |
|
|
def construct(self): |
|
|
curve1 = ParametricFunction( |
|
|
lambda u: ( |
|
|
1.2 * np.cos(u), |
|
|
1.2 * np.sin(u), |
|
|
u * 0.05 |
|
|
), color=RED, t_range = (-3*TAU, 5*TAU, 0.01) |
|
|
).set_shade_in_3d(True) |
|
|
axes = ThreeDAxes() |
|
|
self.add(axes, curve1) |
|
|
self.set_camera_orientation(phi=80 * DEGREES, theta=-60 * DEGREES) |
|
|
self.wait() |
|
|
|
|
|
.. attention:: |
|
|
If your function has discontinuities, you'll have to specify the location |
|
|
of the discontinuities manually. See the following example for guidance. |
|
|
|
|
|
.. manim:: DiscontinuousExample |
|
|
:save_last_frame: |
|
|
|
|
|
class DiscontinuousExample(Scene): |
|
|
def construct(self): |
|
|
ax1 = NumberPlane((-3, 3), (-4, 4)) |
|
|
ax2 = NumberPlane((-3, 3), (-4, 4)) |
|
|
VGroup(ax1, ax2).arrange() |
|
|
discontinuous_function = lambda x: (x ** 2 - 2) / (x ** 2 - 4) |
|
|
incorrect = ax1.plot(discontinuous_function, color=RED) |
|
|
correct = ax2.plot( |
|
|
discontinuous_function, |
|
|
discontinuities=[-2, 2], # discontinuous points |
|
|
dt=0.1, # left and right tolerance of discontinuity |
|
|
color=GREEN, |
|
|
) |
|
|
self.add(ax1, ax2, incorrect, correct) |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
function: Callable[[float], Point3DLike], |
|
|
t_range: tuple[float, float] | tuple[float, float, float] = (0, 1), |
|
|
scaling: _ScaleBase = LinearBase(), |
|
|
dt: float = 1e-8, |
|
|
discontinuities: Iterable[float] | None = None, |
|
|
use_smoothing: bool = True, |
|
|
use_vectorized: bool = False, |
|
|
**kwargs: Any, |
|
|
): |
|
|
def internal_parametric_function(t: float) -> Point3D: |
|
|
"""Wrap ``function``'s output inside a NumPy array.""" |
|
|
return np.asarray(function(t)) |
|
|
|
|
|
self.function = internal_parametric_function |
|
|
if len(t_range) == 2: |
|
|
t_range = (*t_range, 0.01) |
|
|
|
|
|
self.scaling = scaling |
|
|
|
|
|
self.dt = dt |
|
|
self.discontinuities = discontinuities |
|
|
self.use_smoothing = use_smoothing |
|
|
self.use_vectorized = use_vectorized |
|
|
self.t_min, self.t_max, self.t_step = t_range |
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
def get_function(self) -> Callable[[float], Point3D]: |
|
|
return self.function |
|
|
|
|
|
def get_point_from_function(self, t: float) -> Point3D: |
|
|
return self.function(t) |
|
|
|
|
|
def generate_points(self) -> Self: |
|
|
if self.discontinuities is not None: |
|
|
discontinuities = filter( |
|
|
lambda t: self.t_min <= t <= self.t_max, |
|
|
self.discontinuities, |
|
|
) |
|
|
discontinuities_array = np.array(list(discontinuities)) |
|
|
boundary_times = np.array( |
|
|
[ |
|
|
self.t_min, |
|
|
self.t_max, |
|
|
*(discontinuities_array - self.dt), |
|
|
*(discontinuities_array + self.dt), |
|
|
], |
|
|
) |
|
|
boundary_times.sort() |
|
|
else: |
|
|
boundary_times = [self.t_min, self.t_max] |
|
|
|
|
|
for t1, t2 in zip(boundary_times[0::2], boundary_times[1::2]): |
|
|
t_range = np.array( |
|
|
[ |
|
|
*self.scaling.function(np.arange(t1, t2, self.t_step)), |
|
|
self.scaling.function(t2), |
|
|
], |
|
|
) |
|
|
|
|
|
if self.use_vectorized: |
|
|
x, y, z = self.function(t_range) |
|
|
if not isinstance(z, np.ndarray): |
|
|
z = np.zeros_like(x) |
|
|
points = np.stack([x, y, z], axis=1) |
|
|
else: |
|
|
points = np.array([self.function(t) for t in t_range]) |
|
|
|
|
|
self.start_new_path(points[0]) |
|
|
self.add_points_as_corners(points[1:]) |
|
|
if self.use_smoothing: |
|
|
|
|
|
self.make_smooth() |
|
|
return self |
|
|
|
|
|
def init_points(self) -> None: |
|
|
self.generate_points() |
|
|
|
|
|
|
|
|
class FunctionGraph(ParametricFunction): |
|
|
"""A :class:`ParametricFunction` that spans the length of the scene by default. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
.. manim:: ExampleFunctionGraph |
|
|
:save_last_frame: |
|
|
|
|
|
class ExampleFunctionGraph(Scene): |
|
|
def construct(self): |
|
|
cos_func = FunctionGraph( |
|
|
lambda t: np.cos(t) + 0.5 * np.cos(7 * t) + (1 / 7) * np.cos(14 * t), |
|
|
color=RED, |
|
|
) |
|
|
|
|
|
sin_func_1 = FunctionGraph( |
|
|
lambda t: np.sin(t) + 0.5 * np.sin(7 * t) + (1 / 7) * np.sin(14 * t), |
|
|
color=BLUE, |
|
|
) |
|
|
|
|
|
sin_func_2 = FunctionGraph( |
|
|
lambda t: np.sin(t) + 0.5 * np.sin(7 * t) + (1 / 7) * np.sin(14 * t), |
|
|
x_range=[-4, 4], |
|
|
color=GREEN, |
|
|
).move_to([0, 1, 0]) |
|
|
|
|
|
self.add(cos_func, sin_func_1, sin_func_2) |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
function: Callable[[float], Any], |
|
|
x_range: tuple[float, float] | tuple[float, float, float] | None = None, |
|
|
color: ParsableManimColor = YELLOW, |
|
|
**kwargs: Any, |
|
|
) -> None: |
|
|
if x_range is None: |
|
|
x_range = (-config["frame_x_radius"], config["frame_x_radius"]) |
|
|
|
|
|
self.x_range = x_range |
|
|
self.parametric_function: Callable[[float], Point3D] = lambda t: np.array( |
|
|
[t, function(t), 0] |
|
|
) |
|
|
self.function = function |
|
|
super().__init__(self.parametric_function, self.x_range, color=color, **kwargs) |
|
|
|
|
|
def get_function(self) -> Callable[[float], Any]: |
|
|
return self.function |
|
|
|
|
|
def get_point_from_function(self, x: float) -> Point3D: |
|
|
return self.parametric_function(x) |
|
|
|
|
|
|
|
|
class ImplicitFunction(VMobject, metaclass=ConvertToOpenGL): |
|
|
def __init__( |
|
|
self, |
|
|
func: Callable[[float, float], float], |
|
|
x_range: Sequence[float] | None = None, |
|
|
y_range: Sequence[float] | None = None, |
|
|
min_depth: int = 5, |
|
|
max_quads: int = 1500, |
|
|
use_smoothing: bool = True, |
|
|
**kwargs: Any, |
|
|
): |
|
|
"""An implicit function. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
func |
|
|
The implicit function in the form ``f(x, y) = 0``. |
|
|
x_range |
|
|
The x min and max of the function. |
|
|
y_range |
|
|
The y min and max of the function. |
|
|
min_depth |
|
|
The minimum depth of the function to calculate. |
|
|
max_quads |
|
|
The maximum number of quads to use. |
|
|
use_smoothing |
|
|
Whether or not to smoothen the curves. |
|
|
kwargs |
|
|
Additional parameters to pass into :class:`VMobject` |
|
|
|
|
|
|
|
|
.. note:: |
|
|
A small ``min_depth`` :math:`d` means that some small details might |
|
|
be ignored if they don't cross an edge of one of the |
|
|
:math:`4^d` uniform quads. |
|
|
|
|
|
The value of ``max_quads`` strongly corresponds to the |
|
|
quality of the curve, but a higher number of quads |
|
|
may take longer to render. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
.. manim:: ImplicitFunctionExample |
|
|
:save_last_frame: |
|
|
|
|
|
class ImplicitFunctionExample(Scene): |
|
|
def construct(self): |
|
|
graph = ImplicitFunction( |
|
|
lambda x, y: x * y ** 2 - x ** 2 * y - 2, |
|
|
color=YELLOW |
|
|
) |
|
|
self.add(NumberPlane(), graph) |
|
|
""" |
|
|
self.function = func |
|
|
self.min_depth = min_depth |
|
|
self.max_quads = max_quads |
|
|
self.use_smoothing = use_smoothing |
|
|
self.x_range = x_range or [ |
|
|
-config.frame_width / 2, |
|
|
config.frame_width / 2, |
|
|
] |
|
|
self.y_range = y_range or [ |
|
|
-config.frame_height / 2, |
|
|
config.frame_height / 2, |
|
|
] |
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
def generate_points(self) -> Self: |
|
|
p_min, p_max = ( |
|
|
np.array([self.x_range[0], self.y_range[0]]), |
|
|
np.array([self.x_range[1], self.y_range[1]]), |
|
|
) |
|
|
curves = plot_isoline( |
|
|
fn=lambda u: self.function(u[0], u[1]), |
|
|
pmin=p_min, |
|
|
pmax=p_max, |
|
|
min_depth=self.min_depth, |
|
|
max_quads=self.max_quads, |
|
|
) |
|
|
curves = [ |
|
|
np.pad(curve, [(0, 0), (0, 1)]) for curve in curves if curve != [] |
|
|
] |
|
|
for curve in curves: |
|
|
self.start_new_path(curve[0]) |
|
|
self.add_points_as_corners(curve[1:]) |
|
|
if self.use_smoothing: |
|
|
self.make_smooth() |
|
|
return self |
|
|
|
|
|
def init_points(self) -> None: |
|
|
self.generate_points() |
|
|
|