--- pretty_name: Wind Tunnel 20K Dataset size_categories: - 10K

# Wind Tunnel 20K Dataset The Wind Tunnel Dataset contains 19,812 OpenFOAM simulations of 1,000 unique automobile-like objects placed in a virtual wind tunnel. Each object is simulated under 20 distinct conditions: 4 random wind speeds ranging from 10 to 50 m/s, and 5 rotation angles (0°, 180° and 3 random angles). The meshes for these automobile-like objects were generated using the Instant Mesh model on images sourced from the Stanford Cars Dataset. To ensure stable and reliable results, each simulation runs for 300 iterations. The entire dataset of 20,000 simulations is organized into three subsets: 70% for training, 20% for validation, and 10% for testing. The data generation process itself was orchestrated using the [Inductiva API](https://inductiva.ai/), which allowed us to run hundreds of OpenFOAM simulations in parallel on the cloud. # Motivation Recently, there has been great interest in developing ML methods to accelerate CFD simulations. Research has shown that for well defined CFD simulation scenarios (e.g. a virtual wind tunnel), it is possible to train an ML model capable of “predicting” the end result of the simulation orders of magnitude faster than existing classical simulation methods, while maintaining comparable accuracy levels. However, the ML/CFD communities still lack training data for their research. We identified two main reasons for that. First, there is a fundamental lack of datasets containing 3D meshes over which we can run CDF simulation. In fact existing 3D object datasets have many limitations: they are either small in size, closed source, or have low quality meshes. The absence of such input data has been a fundamental blocker for any attempt to generate large-scale training data in any realistic CFD scenario, which will naturally involve 3D meshes. Second, even if you had all the 3D meshes you needed, it is still not trivial to orchestrate the thousands CFD simulations that are required to generate a large and diverse enough dataset for training ML-based CFD methods. For creating such a dataset one has to be able to define an initial simulation scenario (e.g. the windtunnel scenario), and run enough variations of the simulation, with different meshes, different wind speeds, etc to cover a wide enough range of data points to train a generalizable and robust ML model. Now, using most CFD software, running one simulation alone may be difficult enough. Orchestrating thousands of them and managing all the resulting data is a challenge in itself. While both of these problems are difficult to solve in general, we decided to focus on one common CFD scenario: a virtual wind tunnel for (static) automobiles and produce a large dataset of CFD simulation run using the popular simulation package OpenFOAM. Next, we will explain how we tackled the data and the simulation orchestration issues. ## Generating a large quantity of Automobile-like 3D Meshes Due to the lack of publicly available 3D meshes of automobile objects, we decided to use recent advances in image-to-mesh models to generate meshes from images of automobiles that are freely available. More specifically, we used the InstantMesh model, which is open-source (Apache-2.0) and is currently state-of-the-art in image-to-mesh generation. The automobile-like meshes were generated by running the InstatMesh image-to-mesh model on 1k images from the publicly available (Apache-2.0) Stanford Cars Dataset consisting of 16,185 images of automobiles. Naturally, running the image-to-mesh model leads to meshes that may have certain defects, such as irregular surfaces, asymmetry issues, holes and disconnected components. Therefore, after running the image-to-mesh model, we run a custom post-processing step where we try to improve the meshes quality. We used PCA to align the mesh with the main axis and we removed disconnected components. The resulting set of meshes still have little defects, such as presence of "spikes" or "cavities" in supposedly flat areas, unexpected holes, asymmetry issues, among others. We consider these defects as valuable features of the dataset, since from the point of view of the learning problem, they bring certain challenges to ML models that we believe will make overfitting harder and will generally contribute to obtaining more robust and generalizable models. ## Orchestrating 20k simulations on the cloud (just using Python) For solving the challenge of orchestrating 20k OpenFOAM simulations, we resorted to the Inductiva API. The Inductiva platform exposes a simple Python API for running simulation workflows on the cloud. Inductiva makes available several popular open-source simulation packages, including OpenFOAM. Here is an example of how to run an OpenFOAM simulation using Inductiva (point to the doc that Paulo is preparing). Using the Inductiva API, it becomes easy to parametrise specific simulation scenarios and run variations of a base case by programatically changing the input parameters and starting conditions of the simulation. Additionally, users can build custom Python classes that wrap parameterized simulation scenarios, allowing them to have a simple Python interface to running simulations without the need to directly interface with the low level simulation packages. We leveraged Inductiva API to create a Python class for the Wind Tunnel scenario (point to GitHub), which we then used to run 20k simulations over a range of input parameters. For more information on how to transform complex simulation workflows in simple Python classes check this blog post (point to the blog post). # How did we generate the dataset? 1. **Generate Input Meshes**: First, input meshes are generated using the InstantMesh model with images from the Stanford Cars Dataset. Post-processing is then applied to these input meshes. 2. **Run OpenFOAM Simulations**: The Inductiva API is utilized to run OpenFOAM simulations on the input meshes at various wind speeds and object angles. This process produces an output mesh named `openfoam_mesh.obj`, which contains all relevant simulation information. 3. **Post-process OpenFOAM Output**: The OpenFOAM output is post-processed to generate streamlines and pressure map meshes. The code used to generate the meshes and postprocess them is available on github: [https://github.com/inductiva/datasets-generation](https://github.com/inductiva/datasets-generation). # Dataset Structure ``` data ├── train │ ├── │ │ ├── input_mesh.obj │ │ ├── openfoam_mesh.obj │ │ ├── pressure_field_mesh.vtk │ │ ├── simulation_metadata.json │ │ └── streamlines_mesh.ply │ └── ... ├── validation │ └── ... └── test └── ... ``` ## Dataset Files Each simulation in the Wind Tunnel Dataset is accompanied by several key files that provide both the input and the output data of the simulations. Here’s a breakdown of the files included in each simulation: - **[input_mesh.obj](#input_meshobj)**: OBJ file with the input mesh. - **[openfoam_mesh.obj](#openfoam_meshobj)**: OBJ file with the OpenFOAM mesh. - **[pressure_field_mesh.vtk](#pressure_field_meshvtk)**: VTK file with the pressure field data. - **[streamlines_mesh.ply](#streamlines_meshply)**: PLY file with the streamlines. - **[metadata.json](#metadatajson)**: JSON with metadata about the input parameters and about some output results such as the force coefficients (obtained via simulation) and the path of the output files. ### input_mesh.obj Input mesh generated with InstantMesh model from images of the Stanford Cars Dataset. This mesh was used as the input of the OpenFoam simulation. The mesh generation process is described [here](#why). | **Input Mesh** | **Points Histogram** | |-------------------------------|------------------------------| | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/input_mesh.png) | ![Histogram](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_input.png) | ### openfoam_mesh.obj Output mesh obtained from the OpenFoam simulation. The number of points is smaller than `input_mesh` due to internal OpenFoam processing. | **Open Foam Mesh** | **Points Histogram** | |-------------------------------|------------------------------| | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/openfoam_mesh.png) | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_foam.png) | ### pressure_field_mesh.obj We extracted pressure values from the `openfoam_mesh.obj`. Then we interpolated the pressure values with closest_point strategy on the `input_mesh.obj` so that we have a higher resolution mesh. As can be seen on the histogram, the distribution of points is the same as the input_mesh.obj. More information [here](https://github.com/inductiva/wind-tunnel/blob/deab68a018531ff05d0d8ef9d63d8c108800f78f/windtunnel/windtunnel_outputs.py#L111). | **Pressure Field Mesh** | **Points Histogram** | |-------------------------------|------------------------------| | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/pressure_field_mesh.png) | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/histogram_of_points_input.png)) | ### streamlines_mesh.ply We generated streamlines from the `openfoam_mesh.obj`. More information [here](https://github.com/inductiva/wind-tunnel/blob/deab68a018531ff05d0d8ef9d63d8c108800f78f/windtunnel/windtunnel_outputs.py#L70). | **Streamlines Mesh** | |-------------------------------| | ![Input Mesh](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/assets/streamlines_mesh.png) | ### metadata.obj This file contains metadata information about the simulation. It consists of input parameters like `wind_speed`, `rotate_angle`, `num_iterations` and `resolution`. It also has output parameters like `drag_coefficient`, `moment_coefficient`, `lift_coefficient`, `front_lift_coefficient`, `rear_lift_coefficient` and the location of the output meshes: ```json { "id": "1w63au1gpxgyn9kun5q9r7eqa", "object_file": "object_24.obj", "wind_speed": 35, "rotate_angle": 332, "num_iterations": 300, "resolution": 5, "drag_coefficient": 0.8322182, "moment_coefficient": 0.3425206, "lift_coefficient": 0.1824983, "front_lift_coefficient": 0.4337698, "rear_lift_coefficient": -0.2512715, "input_mesh_path": "data/train/1w63au1gpxgyn9kun5q9r7eqa/input_mesh.obj", "openfoam_mesh_path": "data/train/1w63au1gpxgyn9kun5q9r7eqa/openfoam_mesh.obj", "pressure_field_mesh_path": "data/train/1w63au1gpxgyn9kun5q9r7eqa/pressure_field_mesh.vtk", "streamlines_mesh_path": "data/train/1w63au1gpxgyn9kun5q9r7eqa/streamlines_mesh.ply" } ``` ### Dataset Statistics The dataset comprises 19,812 valid samples out of a total of 20,000 simulations, with [188 submissions failing](https://huggingface.co/datasets/inductiva/windtunnel/resolve/main/failed_tasks.txt) due to numerical errors in OpenFOAM. The complete dataset requires about 300 GB of storage. ## Downloading the Dataset: To download the dataset you have to install the [Datasets package](https://huggingface.co/docs/datasets/en/index) by HuggingFace: ```python pip install datasets ``` ### 1. Using snapshot_download() ```python import huggingface_hub dataset_name = "inductiva/windtunnel-20k" # Download the entire dataset huggingface_hub.snapshot_download(repo_id=dataset_name, repo_type="dataset") # Download to a specific local directory huggingface_hub.snapshot_download( repo_id=dataset_name, repo_type="dataset", local_dir="local_folder" ) # Download only the simulation metadata across all simulations huggingface_hub.snapshot_download( repo_id=dataset_name, repo_type="dataset", local_dir="local_folder", allow_patterns=["*/*/*/simulation_metadata.json"] ) ``` ### 2. Using load_dataset() ```python import datasets # Load the dataset (streaming is supported) dataset = datasets.load_dataset("inductiva/windtunnel-20k", streaming=False) # Display dataset information print(dataset) # Access a sample from the training set sample = dataset["train"][0] print("Sample from training set:", sample) ``` ## OpenFoam Parameters We used [Inductiva Template Manager](https://tutorials.inductiva.ai/intro_to_api/templating.html) to parameterize the OpenFoam configuration files. Need a better way to do this: ``` flowVelocity ({{ wind_speed }} 0 0); vertices ( ({{ x_min }} {{ y_min }} {{ z_min }}) ({{ x_max }} {{ y_min }} {{ z_min }}) ({{ x_max }} {{ y_max }} {{ z_min }}) ({{ x_min }} {{ y_max }} {{ z_min }}) ({{ x_min }} {{ y_min }} {{ z_max }}) ({{ x_max }} {{ y_min }} {{ z_max }}) ({{ x_max }} {{ y_max }} {{ z_max }}) ({{ x_min }} {{ y_max }} {{ z_max }}) ); endTime {{ num_iterations }}; magUInf {{ wind_speed }}; lRef {{ length }}; // Wheelbase length Aref {{ area }}; // Estimated geometry { object { type triSurfaceMesh; file "object.obj"; } refinementBox { type searchableBox; min ({{ x_min }} {{ y_min }} {{ z_min }}); max ({{ x_max }} {{ y_max }} {{ z_max }}); } }; features ( { file "object.eMesh"; level {{ resolution + 1 }}; } ); refinementSurfaces { object { // Surface-wise min and max refinement level level ({{ resolution }} {{ resolution + 1 }}); // Optional specification of patch type (default is wall). No // constraint types (cyclic, symmetry) etc. are allowed. patchInfo { type wall; inGroups (objectGroup); } } } refinementRegions { refinementBox { mode inside; levels ((1E15 {{ resolution - 1 }})); } } locationInMesh ({{ x_min }} {{ y_min }} {{ z_min }}); ``` You can find the OpenFoam configuration files on github: [https://github.com/inductiva/wind-tunnel/tree/main/windtunnel/templates](https://github.com/inductiva/wind-tunnel/tree/main/windtunnel/templates) ## What's next? If you have any issues using this dataset, feel free to reach out to us at [support@intuctiva.ai](support@intuctiva.ai). If you detect any clearly problematic mesh, please let us know so we can correct that issue for the next version of the Windtunnel-20k dataset. To learn more about how we created this dataset—or how you can generate synthetic datasets for Physics-AI models—visit [Inductiva.AI](inductiva.ai) or check out our blog post on [transforming complex simulation workflows into easy-to-use Python classes](https://inductiva.ai/blog/article/transform-complex-simulations).