--- pretty_name: Wind Tunnel dataset size_categories: - 10K

### Dataset Structure ``` data ├── train │ ├── │ │ ├── input_mesh.obj │ │ ├── openfoam_mesh.obj │ │ ├── pressure_field_mesh.vtk │ │ ├── simulation_metadata.json │ │ └── streamlines_mesh.ply │ └── ... ├── validation │ └── ... └── test └── ... ``` ### Dataset Files Each simulation in the Wind Tunnel Dataset is accompanied by several key files that provide both input and output data. Here’s a breakdown of the files included in each simulation: - **input_mesh.obj**: OBJ file with the input mesh. - **openfoam_mesh.obj**: OBJ file with the OpenFOAM mesh. - **pressure_field_mesh.vtk**: VTK file with the pressure field data. - **streamlines_mesh.ply**: PLY file with the streamlines. - **metadata.json**: JSON with metadata about the input parameters and about some output results such as the force coefficients (obtained via simulation) and the path of the output files. ## Downloading the Dataset: To download the dataset you have to install the [Datasets package](https://huggingface.co/docs/datasets/en/index) by HuggingFace: ```python pip install datasets ``` ### 1. Using snapshot_download() ```python from huggingface_hub import snapshot_download dataset_name = "inductiva/windtunnel" # Download the entire dataset snapshot_download(repo_id=dataset_name, repo_type="dataset") # Download to a specific local directory snapshot_download(repo_id=dataset_name, repo_type="dataset", local_dir="local_folder") # Download only the simulation metadata across all simulations snapshot_download( repo_id=dataset_name, repo_type="dataset", local_dir="local_folder", allow_patterns=["*/*/*/simulation_metadata.json"] ) ``` ### 2. Using load_dataset() ```python from datasets import load_dataset # Load the dataset (streaming is supported) dataset = load_dataset("inductiva/windtunnel", streaming=False) # Display dataset information print(dataset) # Access a sample from the training set sample = dataset["train"][0] print("Sample from training set:", sample) ``` ## What's next? If you have any issues using this dataset, feel free to reach out to us at [support@intuctiva.ai](support@intuctiva.ai) To learn more about how we created this dataset—or how you can generate synthetic datasets for Physics-AI models—visit [Inductiva.AI](inductiva.ai) or check out our blog post on [transforming complex simulation workflows into easy-to-use Python classes](https://inductiva.ai/blog/article/transform-complex-simulations).