import datasets import json import requests from urllib.parse import urlencode from pathlib import Path import os _NAME = 'RuREBus' _CITATION = ''' @inproceedings{rurebus, Address = {Moscow, Russia}, Author = {Ivanin, Vitaly and Artemova, Ekaterina and Batura, Tatiana and Ivanov, Vladimir and Sarkisyan, Veronika and Tutubalina, Elena and Smurov, Ivan}, Title = {RuREBus-2020 Shared Task: Russian Relation Extraction for Business}, Booktitle = {Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference “Dialog” [Komp’iuternaia Lingvistika i Intellektual’nye Tehnologii: Trudy Mezhdunarodnoj Konferentsii “Dialog”]}, Year = {2020} } '''.strip() _DESCRIPTION = 'Russian Relation Extraction for Business' _HOMEPAGE = 'https://github.com/dialogue-evaluation/RuREBus' _VERSION = '1.0.0' class RuREBusBuilder(datasets.GeneratorBasedBuilder): base_url = 'https://cloud-api.yandex.net/v1/disk/public/resources/download?' public_key = 'https://disk.yandex.ru/d/t1WakmYXlL6jBw' final_url = base_url + urlencode(dict(public_key=public_key)) response = requests.get(final_url) raw_txt_url = response.json()['href'] _DATA_URLS = { 'train': 'data/train.jsonl', 'test': 'data/test.jsonl', } _RAW_TXT_URLS = { 'raw_txt': raw_txt_url } _TYPES_PATHS = {'ent_types': 'ent_types.txt', 'rel_types': 'rel_types.txt'} VERSION = datasets.Version(_VERSION) BUILDER_CONFIGS = [ datasets.BuilderConfig('data', version=VERSION, description='Annotated data'), datasets.BuilderConfig('raw_txt', version=VERSION, description='Raw texts without annotations'), datasets.BuilderConfig('ent_types', version=VERSION, description='All possible entity types'), datasets.BuilderConfig('rel_types', version=VERSION, description='All possible relation types'), ] DEFAULT_CONFIG_NAME = 'data' def _info(self) -> datasets.DatasetInfo: if self.config.name == 'data': features = datasets.Features({ 'id': datasets.Value('int32'), 'text': datasets.Value('string'), 'entities': datasets.Sequence(datasets.Value('string')), 'relations': datasets.Sequence(datasets.Value('string')) }) elif self.config.name == 'raw_txt': features = datasets.Features({ 'region': datasets.Value('string'), 'district': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string') }) else: features = datasets.Features({'type': datasets.Value('string')}) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION ) def _split_generators(self, dl_manager: datasets.DownloadManager): if self.config.name == 'data': files = dl_manager.download(self._DATA_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={'filepath': files['train']}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={'filepath': files['test']}, ), ] elif self.config.name == 'raw_txt': folder = dl_manager.download_and_extract(self._RAW_TXT_URLS)['raw_txt'] return [ datasets.SplitGenerator( name='raw_txt', gen_kwargs={'filepath': folder}, ) ] else: files = dl_manager.download(self._TYPES_PATHS) return [ datasets.SplitGenerator( name=self.config.name, gen_kwargs={'filepath': files[self.config.name]}, ) ] def _generate_examples(self, filepath): if self.config.name == 'data': with open(filepath, encoding='utf-8') as f: for i, line in enumerate(f): yield i, json.loads(line) elif self.config.name == 'raw_txt': path = os.path.join(filepath, 'MED_txt/unparsed_txt') i = 0 for root, dirs, files in os.walk(path): if files: root = Path(root) region = root.parent.name.encode('cp437').decode('cp866') district = root.name.encode('cp437').decode('cp866') titles = {} with open(root / 'name_dict.txt', encoding='utf-8') as f_titles: for line in f_titles: key, title = line.split(maxsplit=1)[1].split('_', maxsplit=1) titles[key] = title.strip() for file in files: if file != 'name_dict.txt': file = Path(file) key = file.name.split('_', maxsplit=1)[0] title = titles[key] with open(root / file, encoding='utf-8') as f: text = f.read() item = { 'region': region, 'district': district, 'title': title, 'text': text } yield i, item i += 1 else: with open(filepath, encoding='utf-8') as f: for i, line in enumerate(f): yield i, {'type': line.strip()}