"""TODO(fquad): Add a description here.""" import json import os import datasets # TODO(fquad): BibTeX citation _CITATION = """\ @ARTICLE{2020arXiv200206071 author = {Martin, d'Hoffschmidt and Maxime, Vidal and Wacim, Belblidia and Tom, Brendlé}, title = "{FQuAD: French Question Answering Dataset}", journal = {arXiv e-prints}, keywords = {Computer Science - Computation and Language}, year = "2020", month = "Feb", eid = {arXiv:2002.06071}, pages = {arXiv:2002.06071}, archivePrefix = {arXiv}, eprint = {2002.06071}, primaryClass = {cs.CL} } """ # TODO(fquad): _DESCRIPTION = """\ FQuAD: French Question Answering Dataset We introduce FQuAD, a native French Question Answering Dataset. FQuAD contains 25,000+ question and answer pairs. Finetuning CamemBERT on FQuAD yields a F1 score of 88% and an exact match of 77.9%. """ _URL = "https://storage.googleapis.com/illuin/fquad/" _URLS = { "train": _URL + "train.json.zip", "valid": _URL + "valid.json.zip", } class Fquad(datasets.GeneratorBasedBuilder): """TODO(fquad): Short description of my dataset.""" # TODO(fquad): Set up version. VERSION = datasets.Version("0.1.0") def _info(self): # TODO(fquad): Specifies the datasets.DatasetInfo object return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "context": datasets.Value("string"), "questions": datasets.features.Sequence(datasets.Value("string")), "answers": datasets.features.Sequence( {"texts": datasets.Value("string"), "answers_starts": datasets.Value("int32")} ), # These are the features of your dataset like images, labels ... } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage="https://fquad.illuin.tech/", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO(fquad): Downloads the data and defines the splits # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs download_urls = _URLS dl_dir = dl_manager.download_and_extract(download_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(dl_dir["train"], "train.json")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(dl_dir["valid"], "valid.json")}, ), ] def _generate_examples(self, filepath): """Yields examples.""" # TODO(fquad): Yields (key, example) tuples from the dataset with open(filepath, encoding="utf-8") as f: data = json.load(f) for id1, examples in enumerate(data["data"]): for id2, example in enumerate(examples["paragraphs"]): questions = [question["question"] for question in example["qas"]] answers = [answer["answers"] for answer in example["qas"]] texts = [answer[0]["text"] for answer in answers] answers_starts = [answer[0]["answer_start"] for answer in answers] yield str(id1) + "_" + str(id2), { "context": example["context"], "questions": questions, "answers": {"texts": texts, "answers_starts": answers_starts}, }