import json import datasets from datasets.tasks import QuestionAnsweringExtractive _CITATION = "" _DESCRIPTION = "" _URL = "https://huggingface.co/datasets/husnu/tquad2/raw/main/" _URLS = { "train": _URL + "tquad_train_data_v2.json", "dev": _URL + "tquad_dev_data_v2.json", } class TQuAD2Config(datasets.BuilderConfig): """BuilderConfig for TQuAD2.""" def __init__(self, **kwargs): """BuilderConfig for TQuAD2. Args: **kwargs: keyword arguments forwarded to super. """ super(TQuAD2Config, self).__init__(**kwargs) class TQuAD2(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ TQuAD2Config(name="tquad2", version=datasets.Version("2.0.0"), description="TQuAD2 dataset"), ] IDS_ = [] def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), # These are the features of your dataset like images, labels ... } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage="https://huggingface.co/datasets/husnu/tquad2", citation=_CITATION, task_templates=[ QuestionAnsweringExtractive( question_column="question", context_column="context", answers_column="answers" ) ], ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs urls_to_download = _URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), ] def _generate_examples(self, filepath): """Yields examples.""" with open(filepath, encoding="utf-8") as f: squad = json.load(f) for example in squad["data"]: title = example.get("title", "") for paragraph in example["paragraphs"]: context = paragraph["context"] # do not strip leading blank spaces GH-2585 for qa in paragraph["qas"]: question = qa["question"] id_ = qa["id"] answer_starts = [answer["answer_start"] for answer in qa["answers"]] answers = [answer["text"] for answer in qa["answers"]] # if id_ is already in the dataset, we skip it while id_ in self.IDS_: if isinstance(id_, int): id_ = id_ + 1 else: id_ = id_ + "_duplicate" self.IDS_.append(id_) # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield id_, { "title": title, "context": context, "question": question, "id": id_, "answers": { "answer_start": answer_starts, "text": answers, }, }