from datasets import load_dataset from itertools import islice import sys import time from tqdm import tqdm from transformers import AutoTokenizer from itertools import islice import json NUM_PROC = 12 dataset = load_dataset("hoskinson-center/proof-pile") tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20B") def length(example): return {"length": [len(x) for x in tokenizer(example["text"])["input_ids"]]} dataset = dataset.map(length, batched=True, num_proc=NUM_PROC) stats = dict() for x in tqdm(dataset["train"]): meta = json.loads(x["meta"]) if "config" in meta.keys(): config = meta["config"] elif "set_name" in meta.keys(): config = meta["set_name"] elif "subset_name" in meta.keys(): path = meta["file"] config = path[:path.index("/")] else: print(x) raise KeyError() if config not in stats.keys(): stats[config] = dict() stats[config]["bytes"] = 0 stats[config]["tokens"] = 0 stats[config]["bytes"] += len(x["text"].encode("utf-8")) stats[config]["tokens"] += x["length"] print(json.dumps(stats, indent=2)) print("saving stats...") with open("stats.json", "w") as f: f.write(json.dumps(stats, indent=2))