(* ====================================================================== *) (* TESTFORM *) (* ====================================================================== *) let rec TESTFORM var interpsigns_thm set_thm fm = let polys,set,signs = dest_interpsigns interpsigns_thm in let polys' = dest_list polys in let signs' = dest_list signs in if fm = t_tm then BETA_RULE (ISPECL [set] t_thm) else if fm = f_tm then BETA_RULE (ISPECL [set] f_thm) else if is_neg fm then let lam = mk_abs (var,dest_neg fm) in let thm = TESTFORM var interpsigns_thm set_thm (dest_neg fm) in if is_pos (concl thm) then MATCH_MP (BETA_RULE (ISPECL [lam;set] neg_thm_p)) thm else if is_neg (concl thm) then MATCH_MP (BETA_RULE (ISPECL [lam;set] neg_thm_n)) thm else failwith "error" else if is_conj fm then let a,b = dest_conj fm in let a',b' = mk_abs (var,a),mk_abs (var,b) in let thma = TESTFORM var interpsigns_thm set_thm a in let thmb = TESTFORM var interpsigns_thm set_thm b in if is_neg (concl thma) && is_neg (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] and_thm_nn);set_thm;thma;thmb] else if is_neg (concl thma) && is_pos (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] and_thm_np);set_thm;thma;thmb] else if is_pos (concl thma) && is_neg (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] and_thm_pn);set_thm;thma;thmb] else if is_pos (concl thma) && is_pos (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] and_thm_pp);set_thm;thma;thmb] else failwith "error" else if is_disj fm then let a,b = dest_disj fm in let a',b' = mk_abs (var,a),mk_abs (var,b) in let thma = TESTFORM var interpsigns_thm set_thm a in let thmb = TESTFORM var interpsigns_thm set_thm b in if is_neg (concl thma) && is_neg (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] or_thm_nn);set_thm;thma;thmb] else if is_pos (concl thma) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] or_thm_p);set_thm;thma] else if is_pos (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] or_thm_q);set_thm;thmb] else failwith "error" else if is_imp fm then let a,b = dest_imp fm in let a',b' = mk_abs (var,a),mk_abs (var,b) in let thma = TESTFORM var interpsigns_thm set_thm a in let thmb = TESTFORM var interpsigns_thm set_thm b in if is_neg (concl thma) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] imp_thm_n);set_thm;thma] else if is_pos (concl thma) && is_neg (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] imp_thm_pn);set_thm;thma;thmb] else if is_pos (concl thma) && is_pos (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] imp_thm_pp);set_thm;thmb] else failwith "error" else if is_iff fm then let a,b = dest_eq fm in let a',b' = mk_abs (var,a),mk_abs (var,b) in let thma = TESTFORM var interpsigns_thm set_thm a in let thmb = TESTFORM var interpsigns_thm set_thm b in if is_neg (concl thma) && is_neg (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] iff_thm_nn);set_thm;thma;thmb] else if is_neg (concl thma) && is_pos (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] iff_thm_np);set_thm;thma;thmb] else if is_pos (concl thma) && is_neg (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] iff_thm_pn);set_thm;thma;thmb] else if is_pos (concl thma) && is_pos (concl thmb) then MATCH_MPL [BETA_RULE (ISPECL [a';b';set] iff_thm_pp);set_thm;thma;thmb] else failwith "error" else (* an atom *) let op,p,_ = get_binop fm in let lam = mk_abs (var,p) in let ind = try index lam polys' with Failure "index" -> failwith "TESTFORM: Poly not present in list" in let sign = ith ind signs' in let thm = ith ind (interpsigns_thms interpsigns_thm) in let thm_op,thm_p,_ = get_binop (snd (dest_imp (snd (dest_forall (concl thm))))) in if op = req then if thm_op = req then thm else if thm_op = rlt then MATCH_MPL [BETA_RULE (ISPECL [lam;set] lt_eq_thm);thm] else if thm_op = rgt then MATCH_MPL [BETA_RULE (ISPECL [lam;set] gt_eq_thm);thm] else failwith "error" else if op = rlt then if thm_op = rlt then thm else if thm_op = req then MATCH_MPL [BETA_RULE (ISPECL [lam;set] eq_lt_thm);thm] else if thm_op = rgt then MATCH_MPL [BETA_RULE (ISPECL [lam;set] gt_lt_thm);thm] else failwith "error" else if op = rgt then if thm_op = rgt then thm else if thm_op = req then MATCH_MPL [BETA_RULE (ISPECL [lam;set] eq_gt_thm);thm] else if thm_op = rlt then MATCH_MPL [BETA_RULE (ISPECL [lam;set] lt_gt_thm);thm] else failwith "error" else if op = rle then if thm_op = rlt then MATCH_MPL [BETA_RULE (ISPECL [lam;set] lt_le_thm);thm] else if thm_op = req then MATCH_MPL [BETA_RULE (ISPECL [lam;set] eq_le_thm);thm] else if thm_op = rgt then MATCH_MPL [BETA_RULE (ISPECL [lam;set] gt_le_thm);thm] else failwith "error" else if op = rge then if thm_op = rlt then MATCH_MPL [BETA_RULE (ISPECL [lam;set] lt_ge_thm);thm] else if thm_op = req then MATCH_MPL [BETA_RULE (ISPECL [lam;set] eq_ge_thm);thm] else if thm_op = rgt then MATCH_MPL [BETA_RULE (ISPECL [lam;set] gt_ge_thm);thm] else failwith "error" else failwith "error" ;; let TESTFORM var interpsigns_thm set_thm fm = let start_time = Sys.time() in let res = TESTFORM var interpsigns_thm set_thm fm in testform_timer +.= (Sys.time() -. start_time); res;; let tvar,tmat,tfm = ref `T`,ref TRUTH,ref `T`;; (* let var,mat_thm,fm = !tvar,!tmat,!tfm *) let COMBINE_TESTFORMS = let lem1 = TAUT `(T ==> a) <=> a` and lem2 = TAUT `(T /\ x) <=> x` and imat_tm = `interpmat` in fun var mat_thm fm -> tvar := var; tmat := mat_thm; tfm := fm; (* if not (fst (strip_comb (concl mat_thm)) = imat_tm) then failwith "not a mat thm" else *) let mat_thm' = (CONV_RULE (RATOR_CONV (RAND_CONV (LIST_CONV (ALPHA_CONV var))))) mat_thm in let rol_thm,all2_thm = interpmat_thms mat_thm' in let ord_thms = rol_nonempty_thms rol_thm in let part_thm = PARTITION_LINE_CONV (snd(dest_comb(concl rol_thm))) in let isigns_thms = CONJUNCTS(REWRITE_RULE[ALL2;part_thm] all2_thm) in let ex_thms = map2 (fun x y -> TESTFORM var x y fm) isigns_thms ord_thms in if exists (fun x -> is_forall(concl x)) ex_thms then let witness_thm = find (fun x -> is_forall(concl x)) ex_thms in let i = try index witness_thm ex_thms with _ -> failwith "COMBINE_TESTFORMS: witness not present" in let ord_thm = ith i ord_thms in let x,bod = dest_exists (concl ord_thm) in if bod = t_tm then let thm1 = ISPEC var witness_thm in let thm2 = PURE_REWRITE_RULE[lem1] thm1 in let exists_thm = EXISTS (mk_exists(var,concl thm2),var) thm2 in EQT_INTRO exists_thm else let nv = new_var real_ty in let ord_thm' = CONV_RULE (RAND_CONV (ALPHA_CONV nv)) ord_thm in let y,bod = dest_exists (concl ord_thm') in let ass_thm = ASSUME bod in let thm = MATCH_MP witness_thm ass_thm in let exists_thm = EXISTS (mk_exists(y,concl thm) ,y) thm in let ret = CHOOSE (nv,ord_thm) exists_thm in EQT_INTRO ret else if length ord_thms = 1 && snd(dest_exists(concl (hd ord_thms))) = t_tm then PURE_REWRITE_RULE[lem2] (EQF_INTRO (hd ex_thms)) else let ex_thms' = map (MATCH_MP NOT_EXISTS_CONJ_THM) ex_thms in let len = length ex_thms' in let first,[t1;t2] = chop_list (len-2) ex_thms' in let base = MATCH_MPL[testform_itlem;t1;t2] in let ex_thm = itlist (fun x y -> MATCH_MPL[testform_itlem;x;y]) first base in let cover_thm = ROL_COVERS rol_thm in let pre_thm = MATCH_MP ex_thm (ISPEC var cover_thm) in let gen_thm = GEN var pre_thm in let ret = MATCH_EQ_MP FORALL_NOT_THM gen_thm in EQF_INTRO ret;; let COMBINE_TESTFORMS var mat_thm fm = let start_time = Sys.time() in let res = COMBINE_TESTFORMS var mat_thm fm in combine_testforms_timer +.= (Sys.time() -. start_time); res;; (* {{{ Examples *) (* let var,mat_thm,fm = rx,ASSUME `interpsigns [\x. &1 + x * (&0 + x * &1)] (\x. T) [Pos]`,ASSUME `?x:real. T` let ex_thms = map2 (fun x y -> TESTFORM var x y fm) isigns_thms ord_thms in TESTFORM ry (hd isigns_thms) (hd ord_thms) fm TESTFORM ry (hd isigns_thms) (hd ord_thms) `&1 + y * (&0 + x * -- &1) <= &0` TESTFORM ry (hd isigns_thms) (hd ord_thms) `(&1 + x * (&0 + x * -- &1)) + y * (&0 + y * -- &1) < &0` TESTFORM ry (hd isigns_thms) (hd ord_thms) `(&1 + y * (&0 + x * -- &1) <= &0) /\ (&1 + x * (&0 + x * -- &1)) + y * (&0 + y * -- &1) < &0` let fm = `(&1 + y * (&0 + x * -- &1) <= &0) /\ (&1 + x * (&0 + x * -- &1)) + y * (&0 + y * -- &1) < &0` let var,mat_thm,fm = ry, ASSUME `interpmat [] [\y. (&1 + x * (&0 + x * -- &1)) + y * (&0 + y * -- &1); \y. &1 + y * (&0 + x * -- &1)] [[Neg; Pos]]`, `~((&1 + x * (&0 + x * -- &1)) + y * (&0 + y * -- &1) < &0 /\ &1 + y * (&0 + x * -- &1) <= &0)` let var,mat_thm,fm = ry, ASSUME `interpmat [x_354] [\y. (&1 + x * -- &1) + y * (&0 + x * -- &2); \x. &1 + x * -- &1; \y. (&1 + x * -- &1) + y * (&0 + x * -- &2)] [[Neg; Pos; Neg]; [Neg; Zero; Neg]; [Neg; Neg; Neg]]`, `~(&1 + x * -- &1 < &0 /\ &1 + y * -- &1 < &0 ==> (&1 + x * -- &1) + y * (&0 + x * -- &2) < &0)` *) (* }}} *)