let poly_tm = `poly`;; let dest_poly tm = let poly,[l;var] = strip_ncomb 2 tm in if not (poly = poly_tm) then failwith "dest_poly: not a poly" else l,var;; let is_poly tm = fst (strip_comb tm) = `poly`;; (* ------------------------------------------------------------------------- *) (* Get the lead variable in polynomial; &1 if a constant. *) (* ------------------------------------------------------------------------- *) let polyvar = let dummy_tm = `&1` in fun tm -> if is_ratconst tm then dummy_tm else lhand(rand tm);; (* let k00 = `&3 * x * y pow 2 + &2 * x pow 2 * y * z + z * x + &3 * y * z` let k0 = `(&0 + y * (&0 + z * &3)) + x * (((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2)))`;; # polyvar k0;; val it : Term.term = `x` *) (* ---------------------------------------------------------------------- *) (* Is a constant polynomial (wrt variable ordering) *) (* ---------------------------------------------------------------------- *) let is_constant vars p = assert (not (vars = [])); try let l,r = dest_plus p in let x,r2 = dest_mult r in if x = hd vars then false else true with _ -> if p = hd vars then false else true;; (* ------------------------------------------------------------------------- *) (* We only use this as a handy way to do derivatives. *) (* ------------------------------------------------------------------------- *) let POLY = prove (`(poly [] x = &0) /\ (poly [__c__] x = __c__) /\ (poly (CONS __h__ __t__) x = __h__ + x * poly __t__ x)`, REWRITE_TAC[poly] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Convert in and out of list representations. *) (* ------------------------------------------------------------------------- *) (* THIS IS BAD CODE!!! It depends on the names of the variables in POLY *) let POLY_ENLIST_CONV vars = let lem = GEN rx POLY in let [cnv_0; cnv_1; cnv_2] = map (fun th -> GEN_REWRITE_CONV I [GSYM th]) (CONJUNCTS (ISPEC (hd vars) lem)) and zero_tm = rzero in let rec conv tm = if polyvar tm = hd vars then (funpow 2 RAND_CONV conv THENC cnv_2) tm else if tm = zero_tm then cnv_0 tm else cnv_1 tm in conv;; (* map GSYM (CONJUNCTS (ISPEC (hd vars) lem)) POLY_ENLIST_CONV vars p in let tm = `&0 + c * &1` POLY_ENLIST_CONV vars tm #trace conv POLY_ENLIST_CONV vars tm let vars = [ry;rx] let tm = `&0 + y * (&0 + x * &1)` let k1 = rhs(concl (POLY_ENLIST_CONV [`x:real`;`y:real`;`z:real`] k0));; POLY_ENLIST_CONV [`x:real`;`y:real`;`z:real`] k0;; val it : Hol.thm = |- k0 = poly [&0 + y * (&0 + z * &3); &0 * z * &1 + y * (&0 + y * &3); &0 + y * (&0 + z * &2)] x *) let POLY_DELIST_CONV = let [cnv_0; cnv_1; cnv_2] = map (fun th -> GEN_REWRITE_CONV I [th]) (CONJUNCTS POLY) in let rec conv tm = (cnv_0 ORELSEC cnv_1 ORELSEC (cnv_2 THENC funpow 2 RAND_CONV conv)) tm in conv;; (* # POLY_DELIST_CONV `poly [&5; &6; &7] x`;; val it : Hol.thm = |- poly [&5; &6; &7] x = &5 + x * (&6 + x * &7) *) (* ------------------------------------------------------------------------- *) (* Differentiation within list representation. *) (* ------------------------------------------------------------------------- *) (* let poly_diff_aux = new_recursive_definition list_RECURSION *) (* `(poly_diff_aux n [] = []) /\ *) (* (poly_diff_aux n (CONS h t) = CONS (&n * h) (poly_diff_aux (SUC n) t))`;; *) (* let poly_diff = new_definition *) (* `poly_diff l = if l = [] then [] else poly_diff_aux 1 (TL l)`;; *) let POLY_DIFF_CLAUSES = prove (`(poly_diff [] = []) /\ (poly_diff [c] = []) /\ (poly_diff (CONS h t) = poly_diff_aux 1 t)`, REWRITE_TAC[poly_diff; NOT_CONS_NIL; HD; TL; poly_diff_aux]);; let POLY_DIFF_LEMMA = prove (`!l n x. ((\x. (x pow (SUC n)) * poly l x) diffl ((x pow n) * poly (poly_diff_aux (SUC n) l) x))(x)`, (* {{{ Proof *) LIST_INDUCT_TAC THEN REWRITE_TAC[poly; poly_diff_aux; REAL_MUL_RZERO; DIFF_CONST] THEN MAP_EVERY X_GEN_TAC [`n:num`; `x:real`] THEN REWRITE_TAC[REAL_LDISTRIB; REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[GSYM(ONCE_REWRITE_RULE[REAL_MUL_SYM] (CONJUNCT2 pow))] THEN POP_ASSUM(MP_TAC o SPECL [`SUC n`; `x:real`]) THEN SUBGOAL_THEN `(((\x. (x pow (SUC n)) * h)) diffl ((x pow n) * &(SUC n) * h))(x)` (fun th -> DISCH_THEN(MP_TAC o CONJ th)) THENL [REWRITE_TAC[REAL_MUL_ASSOC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MP_TAC(SPEC `\x. x pow (SUC n)` DIFF_CMUL) THEN BETA_TAC THEN DISCH_THEN MATCH_MP_TAC THEN MP_TAC(SPEC `SUC n` DIFF_POW) THEN REWRITE_TAC[SUC_SUB1] THEN DISCH_THEN(MATCH_ACCEPT_TAC o ONCE_REWRITE_RULE[REAL_MUL_SYM]); DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN REWRITE_TAC[REAL_MUL_ASSOC]]);; (* }}} *) let POLY_DIFF = prove (`!l x. ((\x. poly l x) diffl (poly (poly_diff l) x))(x)`, (* {{{ Proof *) LIST_INDUCT_TAC THEN REWRITE_TAC[POLY_DIFF_CLAUSES] THEN ONCE_REWRITE_TAC[SYM(ETA_CONV `\x. poly l x`)] THEN REWRITE_TAC[poly; DIFF_CONST] THEN MAP_EVERY X_GEN_TAC [`x:real`] THEN MP_TAC(SPECL [`t:(real)list`; `0`; `x:real`] POLY_DIFF_LEMMA) THEN REWRITE_TAC[SYM(num_CONV `1`)] THEN REWRITE_TAC[pow; REAL_MUL_LID] THEN REWRITE_TAC[POW_1] THEN DISCH_THEN(MP_TAC o CONJ (SPECL [`h:real`; `x:real`] DIFF_CONST)) THEN DISCH_THEN(MP_TAC o MATCH_MP DIFF_ADD) THEN BETA_TAC THEN REWRITE_TAC[REAL_ADD_LID]);; (* }}} *) let CANON_POLY_DIFF_CONV = let aux_conv0 = GEN_REWRITE_CONV I [CONJUNCT1 poly_diff_aux] and aux_conv1 = GEN_REWRITE_CONV I [CONJUNCT2 poly_diff_aux] and diff_conv0 = GEN_REWRITE_CONV I (butlast (CONJUNCTS POLY_DIFF_CLAUSES)) and diff_conv1 = GEN_REWRITE_CONV I [last (CONJUNCTS POLY_DIFF_CLAUSES)] in let rec POLY_DIFF_AUX_CONV tm = (aux_conv0 ORELSEC (aux_conv1 THENC RAND_CONV (LAND_CONV NUM_SUC_CONV THENC POLY_DIFF_AUX_CONV))) tm in diff_conv0 ORELSEC (diff_conv1 THENC POLY_DIFF_AUX_CONV);; (* # POLY_DIFF_CONV (mk_comb(`poly_diff`,k2));; val it : Hol.thm = |- poly_diff k2 = [&1 * (&0 * z * &1 + y * (&0 + y * &3)); &2 * (&0 + y * (&0 + z * &2))] *) (* ------------------------------------------------------------------------- *) (* Whether the first of two items comes earlier in the list. *) (* ------------------------------------------------------------------------- *) let rec earlier l x y = match l with h::t -> if h = y then false else if h = x then true else earlier t x y | [] -> false;; (* ------------------------------------------------------------------------- *) (* Add polynomials. *) (* ------------------------------------------------------------------------- *) let POLY_ADD_CONV = let [cnv_r; cnv_l; cnv_2; cnv_0] = (map REWR_CONV o CONJUNCTS o REAL_ARITH) `(pol1 + (d + y * q) = (pol1 + d) + y * q) /\ ((c + x * p) + pol2 = (c + pol2) + x * p) /\ ((c + x * p) + (d + x * q) = (c + d) + x * (p + q)) /\ (c + x * &0 = c)` and dest_add = dest_binop `(+)` in let rec POLY_ADD_CONV vars tm = let pol1,pol2 = dest_add tm in let x = polyvar pol1 and y = polyvar pol2 in if not(is_var x) && not(is_var y) then REAL_RAT_REDUCE_CONV tm else if not(is_var y) || earlier vars x y then (cnv_l THENC LAND_CONV (POLY_ADD_CONV vars)) tm else if not(is_var x) || earlier vars y x then (cnv_r THENC LAND_CONV (POLY_ADD_CONV vars)) tm else (cnv_2 THENC COMB_CONV(RAND_CONV(POLY_ADD_CONV vars)) THENC TRY_CONV cnv_0) tm in POLY_ADD_CONV;; (* # POLY_ADD_CONV [`x:real`;`y:real`;`z:real`] (mk_binop `(+)` k0 k0) ;; val it : Hol.thm = |- ((&0 + y * (&0 + z * &3)) + x * (((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2)))) + (&0 + y * (&0 + z * &3)) + x * (((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2))) = (&0 + y * (&0 + z * &6)) + x * (((&0 + z * &2) + y * (&0 + y * &6)) + x * (&0 + y * (&0 + z * &4))) *) (* ------------------------------------------------------------------------- *) (* Negate polynomials. *) (* ------------------------------------------------------------------------- *) let POLY_NEG_CONV = let cnv = REWR_CONV(REAL_ARITH `--(c + x * p) = --c + x * --p`) in let rec POLY_NEG_CONV tm = if is_ratconst(rand tm) then REAL_RAT_NEG_CONV tm else (cnv THENC COMB_CONV(RAND_CONV POLY_NEG_CONV)) tm in POLY_NEG_CONV;; (* ------------------------------------------------------------------------- *) (* Subtract polynomials. *) (* ------------------------------------------------------------------------- *) let POLY_SUB_CONV = let cnv = REWR_CONV real_sub in fun vars -> cnv THENC RAND_CONV POLY_NEG_CONV THENC POLY_ADD_CONV vars;; (* ------------------------------------------------------------------------- *) (* Multiply polynomials. *) (* ------------------------------------------------------------------------- *) let POLY_MUL_CONV = let [cnv_l1; cnv_r1; cnv_2; cnv_l0; cnv_r0] = (map REWR_CONV o CONJUNCTS o REAL_ARITH) `(pol1 * (d + y * q) = (pol1 * d) + y * (pol1 * q)) /\ ((c + x * p) * pol2 = (c * pol2) + x * (p * pol2)) /\ (pol1 * (d + x * q) = pol1 * d + (&0 + x * pol1 * q)) /\ (&0 * pol2 = &0) /\ (pol1 * &0 = &0)` and dest_mul = dest_binop `( * )` and zero_tm = `&0` in let rec POLY_MUL_CONV vars tm = let pol1,pol2 = dest_mul tm in if pol1 = zero_tm then cnv_l0 tm else if pol2 = zero_tm then cnv_r0 tm else if is_ratconst pol1 && is_ratconst pol2 then REAL_RAT_MUL_CONV tm else let x = polyvar pol1 and y = polyvar pol2 in if not(is_var y) || earlier vars x y then (cnv_r1 THENC COMB_CONV(RAND_CONV(POLY_MUL_CONV vars))) tm else if not(is_var x) || earlier vars y x then (cnv_l1 THENC COMB_CONV(RAND_CONV(POLY_MUL_CONV vars))) tm else (cnv_2 THENC COMB2_CONV (RAND_CONV(POLY_MUL_CONV vars)) (funpow 2 RAND_CONV (POLY_MUL_CONV vars)) THENC POLY_ADD_CONV vars) tm in POLY_MUL_CONV;; (* # POLY_MUL_CONV [`x:real`;`y:real`;`z:real`] (mk_binop `( * )` k0 k0) ;; val it : Hol.thm = |- ((&0 + y * (&0 + z * &3)) + x * (((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2)))) * ((&0 + y * (&0 + z * &3)) + x * (((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2)))) = (&0 + y * (&0 + y * (&0 + z * (&0 + z * &9)))) + x * ((&0 + y * ((&0 + z * (&0 + z * &6)) + y * (&0 + y * (&0 + z * &18)))) + x * (((&0 + z * (&0 + z * &1)) + y * (&0 + y * ((&0 + z * (&6 + z * &12)) + y * (&0 + y * &9)))) + x * ((&0 + y * ((&0 + z * (&0 + z * &4)) + y * (&0 + y * (&0 + z * &12)))) + x * (&0 + y * (&0 + y * (&0 + z * (&0 + z * &4))))))) *) (* ------------------------------------------------------------------------- *) (* Exponentiate polynomials. *) (* ------------------------------------------------------------------------- *) let POLY_POW_CONV = let [cnv_0; cnv_1] = map REWR_CONV (CONJUNCTS real_pow) and zero_tm = `0` in let rec POLY_POW_CONV vars tm = if rand tm = zero_tm then cnv_0 tm else (RAND_CONV num_CONV THENC cnv_1 THENC RAND_CONV (POLY_POW_CONV vars) THENC POLY_MUL_CONV vars) tm in POLY_POW_CONV;; (* # POLY_POW_CONV [`x:real`;`y:real`;`z:real`] (mk_binop `(pow)` k0 `2`) ;; val it : Hol.thm = |- ((&0 + y * (&0 + z * &3)) + x * (((&0 + z * &1) + y * (&0 + y * &3)) + x * (&0 + y * (&0 + z * &2)))) pow 2 = (&0 + y * (&0 + y * (&0 + z * (&0 + z * &9)))) + x * ((&0 + y * ((&0 + z * (&0 + z * &6)) + y * (&0 + y * (&0 + z * &18)))) + x * (((&0 + z * (&0 + z * &1)) + y * (&0 + y * ((&0 + z * (&6 + z * &12)) + y * (&0 + y * &9)))) + x * ((&0 + y * ((&0 + z * (&0 + z * &4)) + y * (&0 + y * (&0 + z * &12)))) + x * (&0 + y * (&0 + y * (&0 + z * (&0 + z * &4))))))) *) (* ------------------------------------------------------------------------- *) (* Convert expression to canonical polynomials. *) (* ------------------------------------------------------------------------- *) let POLYNATE_CONV = let cnv_var = REWR_CONV(REAL_ARITH `x = &0 + x * &1`) and cnv_div = REWR_CONV real_div and neg_tm = `(--)` and add_tm = `(+)` and sub_tm = `(-)` and mul_tm = `( * )` and pow_tm = `(pow)` and div_tm = `(/)` in let rec POLYNATE_CONV vars tm = if is_var tm then cnv_var tm else if is_ratconst tm then REFL tm else let lop,r = dest_comb tm in if lop = neg_tm then (RAND_CONV(POLYNATE_CONV vars) THENC POLY_NEG_CONV) tm else let op,l = dest_comb lop in if op = pow_tm then (LAND_CONV(POLYNATE_CONV vars) THENC POLY_POW_CONV vars) tm else if op = div_tm then (cnv_div THENC COMB2_CONV (RAND_CONV(POLYNATE_CONV vars)) REAL_RAT_REDUCE_CONV THENC POLY_MUL_CONV vars) tm else let cnv = if op = add_tm then POLY_ADD_CONV else if op = sub_tm then POLY_SUB_CONV else if op = mul_tm then POLY_MUL_CONV else failwith "POLYNATE_CONV: unknown operation" in (BINOP_CONV (POLYNATE_CONV vars) THENC cnv vars) tm in POLYNATE_CONV;; (* POLYNATE_CONV [`x:real`;`y:real`] `x + y`;; POLYNATE_CONV [`x:real`;`y:real`] `x * y + &2 * y`;; *) (* ------------------------------------------------------------------------- *) (* Pure term manipulation versions; will optimize eventually. *) (* ------------------------------------------------------------------------- *) let poly_add_ = let add_tm = `(+)` in fun vars p1 p2 -> rand(concl(POLY_ADD_CONV vars (mk_comb(mk_comb(add_tm,p1),p2))));; let poly_sub_ = let sub_tm = `(-)` in fun vars p1 p2 -> rand(concl(POLY_SUB_CONV vars (mk_comb(mk_comb(sub_tm,p1),p2))));; let poly_mul_ = let mul_tm = `( * )` in fun vars p1 p2 -> rand(concl(POLY_MUL_CONV vars (mk_comb(mk_comb(mul_tm,p1),p2))));; let poly_neg_ = let neg_tm = `(--)` in fun p -> rand(concl(POLY_NEG_CONV(mk_comb(neg_tm,p))));; let poly_pow_ = let pow_tm = `(pow)` in fun vars p k -> rand(concl(POLY_POW_CONV vars (mk_comb(mk_comb(pow_tm,p),mk_small_numeral k))));; (* ------------------------------------------------------------------------- *) (* Get the degree of a polynomial. *) (* ------------------------------------------------------------------------- *) let rec degree_ vars tm = if polyvar tm = hd vars then 1 + degree_ vars (funpow 2 rand tm) else 0;; (* ------------------------------------------------------------------------- *) (* Get the list of coefficients. *) (* ------------------------------------------------------------------------- *) let rec coefficients vars tm = if polyvar tm = hd vars then (lhand tm)::coefficients vars (funpow 2 rand tm) else [tm];; (* ------------------------------------------------------------------------- *) (* Get the head constant. *) (* ------------------------------------------------------------------------- *) let head vars p = last(coefficients vars p);; (* ---------------------------------------------------------------------- *) (* Remove the head coefficient *) (* ---------------------------------------------------------------------- *) let rec behead vars tm = try let c,r = dest_plus tm in let x,p = dest_mult r in if not (x = hd vars) then failwith "" else let p' = behead vars p in if p' = rzero then c else mk_plus c (mk_mult x p') with _ -> rzero;; (* behead [`x:real`] `&1 + x * (&1 + x * (&0 + y * &1))` *) let BEHEAD = let lem = ARITH_RULE `a + b * &0 = a` in fun vars zthm tm -> let tm' = behead vars tm in (* note: pure rewrite is ok here, as tm is in canonical form *) let thm1 = PURE_REWRITE_CONV[zthm] tm in let thm2 = PURE_REWRITE_CONV[lem] (rhs(concl thm1)) in let thm3 = TRANS thm1 thm2 in thm3;; let BEHEAD3 = let lem = ARITH_RULE `a + b * &0 = a` in fun vars zthm tm -> let tm' = behead vars tm in (* note slight hack here: BEHEAD was working fine if p = a + x * b where a <> b. But when they were equal, dropping multiple levels broke the reconstruction. Thus, we only do conversion on the right except when the head variable has been fully eliminated *) let conv = let l,r = dest_binop rp tm in let l1,r1 = dest_binop rm r in if l1 = hd vars then RAND_CONV(PURE_ONCE_REWRITE_CONV[zthm]) else PURE_ONCE_REWRITE_CONV[zthm] in let thm1 = conv tm in let thm2 = PURE_REWRITE_CONV[lem] (rhs(concl thm1)) in let thm3 = TRANS thm1 thm2 in thm3;; let BEHEAD = BEHEAD3;; (* let vars = [`z:real`;`x:real`] let zthm = (ASSUME `&0 + x * &1 = &0`) let tm = `(&0 + x * &1) + z * (&0 + x * &1)` behead vars tm BEHEAD vars zthm tm BEHEAD2 vars zthm tm BEHEAD3 vars zthm tm let tm = `(&0 + x * &1)` BEHEAD3 vars zthm tm let vars = [`x:real`] let tm = `&1 + x * (&1 + x * (&0 + y * &1))` let zthm = (ASSUME `&0 + y * &1 = &0`) BEHEAD vars zthm tm BEHEAD2 vars zthm tm *) (* ------------------------------------------------------------------------- *) (* Test whether a polynomial is a constant w.r.t. the head variable. *) (* ------------------------------------------------------------------------- *) let is_const_poly vars tm = polyvar tm <> hd vars;; (* ------------------------------------------------------------------------- *) (* Get the constant multiple of the "maximal" monomial (implicit lex order) *) (* ------------------------------------------------------------------------- *) let rec headconst p = try rat_of_term p with Failure _ -> headconst(funpow 2 rand p);; (* ------------------------------------------------------------------------- *) (* Monicize; return |- const * pol = monic-pol *) (* ------------------------------------------------------------------------- *) let MONIC_CONV = let mul_tm = `( * ):real->real->real` in fun vars p -> let c = Int 1 // headconst p in POLY_MUL_CONV vars (mk_comb(mk_comb(mul_tm,term_of_rat c),p));; (* ------------------------------------------------------------------------- *) (* Pseudo-division of s by p; head coefficient of p assumed nonzero. *) (* Returns |- a^k s = p q + r for some q and r with deg(r) < deg(p). *) (* Optimized only for the trivial case of equal head coefficients; no GCDs. *) (* ------------------------------------------------------------------------- *) let PDIVIDE = let zero_tm = `&0` and add0_tm = `(+) (&0)` and add_tm = `(+)` and mul_tm = `( * )` and pow_tm = `(pow)` and one_tm = `&1` in let mk_varpow vars k = let mulx_tm = mk_comb(mul_tm,hd vars) in funpow k (fun t -> mk_comb(add0_tm,mk_comb(mulx_tm,t))) one_tm in let rec pdivide_aux vars a n p s = if s = zero_tm then (0,zero_tm,s) else let b = head vars s and m = degree_ vars s in if m < n then (0,zero_tm,s) else let xp = mk_varpow vars (m - n) in let p' = poly_mul_ vars xp p in if a = b then let (k,q,r) = pdivide_aux vars a n p (poly_sub_ vars s p') in (k,poly_add_ vars q (poly_mul_ vars xp (poly_pow_ vars a k)),r) else let (k,q,r) = pdivide_aux vars a n p (poly_sub_ vars (poly_mul_ vars a s) (poly_mul_ vars b p')) in let q' = poly_add_ vars q (poly_mul_ vars b (poly_mul_ vars (poly_pow_ vars a k) xp)) in (k+1,q',r) in fun vars s p -> let a = head vars p in let (k,q,r) = pdivide_aux vars a (degree_ vars p) p s in let th1 = POLY_MUL_CONV vars (mk_comb(mk_comb(mul_tm,q),p)) in let th2 = AP_THM (AP_TERM add_tm th1) r in let th3 = CONV_RULE(RAND_CONV(POLY_ADD_CONV vars)) th2 in let th4 = POLY_POW_CONV vars (mk_comb(mk_comb(pow_tm,a),mk_small_numeral k)) in let th5 = AP_THM (AP_TERM mul_tm th4) s in let th6 = CONV_RULE(RAND_CONV(POLY_MUL_CONV vars)) th5 in TRANS th6 (GSYM th3);; (* ------------------------------------------------------------------------- *) (* Produce sign theorem for rational constant. *) (* ------------------------------------------------------------------------- *) let SIGN_CONST = let zero = Int 0 and zero_tm = `&0` and eq_tm = `(=):real->real->bool` and gt_tm = `(>):real->real->bool` and lt_tm = `(<):real->real->bool` in fun tm -> let x = rat_of_term tm in if x =/ zero then EQT_ELIM(REAL_RAT_EQ_CONV(mk_comb(mk_comb(eq_tm,tm),zero_tm))) else if x >/ zero then EQT_ELIM(REAL_RAT_GT_CONV(mk_comb(mk_comb(gt_tm,tm),zero_tm))) else EQT_ELIM(REAL_RAT_LT_CONV(mk_comb(mk_comb(lt_tm,tm),zero_tm)));; (* SIGN_CONST `-- &5`;; val it : Hol.thm = |- &5 > &0 *) (* ------------------------------------------------------------------------- *) (* Differentiation conversion in main representation. *) (* ------------------------------------------------------------------------- *) let POLY_DERIV_CONV = let poly_diff_tm = `poly_diff` and pth = GEN_REWRITE_RULE I [SWAP_FORALL_THM] POLY_DIFF in fun vars tm -> let th1 = POLY_ENLIST_CONV vars tm in let th2 = SPECL [hd vars; lhand(rand(concl th1))] pth in CONV_RULE(RATOR_CONV (COMB2_CONV (RAND_CONV(ABS_CONV(POLY_DELIST_CONV))) (LAND_CONV(CANON_POLY_DIFF_CONV THENC LIST_CONV (POLY_MUL_CONV vars)) THENC POLY_DELIST_CONV))) th2;; (* let k0 = (rhs o concl) (POLYNATE_CONV [`x:real`] `x pow 2 * y`);; let vars = [`x:real`] let tm = k0 let k1 = concl th2 let k2 = rator k1 let l,r = dest_comb k2 RATOR_CONV (RAND_CONV(ABS_CONV(POLY_DELIST_CONV))) l (LAND_CONV(POLY_DIFF_CONV THENC LIST_CONV (CANON_POLY_MUL_CONV vars)) THENC POLY_DELIST_CONV) r (LAND_CONV(POLY_DIFF_CONV THENC LIST_CONV (CANON_POLY_MUL_CONV vars))) r (LAND_CONV(POLY_DIFF_CONV)) r POLY_DERIV_CONV [`x:real`] (rhs(concl((POLYNATE_CONV [`x:real`] `x pow 2 * y`))));; val it : Hol.thm = |- ((\x. &0 + x * (&0 + x * (&0 + y * &1))) diffl &0 + x * (&0 + y * &2)) x *) (* ---------------------------------------------------------------------- *) (* POLYATOM_CONV *) (* ---------------------------------------------------------------------- *) (* This is the AFN_CONV argument to the lifting function LIFT_QELIM_CONV *) let lt_lem = prove_by_refinement( `!x y. x < y <=> x - y < &0`, (* {{{ Proof *) [ REAL_ARITH_TAC; ]);; (* }}} *) let le_lem = prove_by_refinement( `!x y. x <= y <=> x - y <= &0`, (* {{{ Proof *) [ REAL_ARITH_TAC; ]);; (* }}} *) let eq_lem = prove_by_refinement( `!x y. (x = y) <=> (x - y = &0)`, (* {{{ Proof *) [ REAL_ARITH_TAC; ]);; (* }}} *) let POLYATOM_CONV vars tm = let thm1 = ONCE_REWRITE_CONV[real_gt;real_ge;eq_lem] tm in let l,r = dest_eq (concl thm1) in let thm2 = ONCE_REWRITE_CONV[lt_lem;le_lem] r in let op,l',r' = get_binop (rhs (concl thm2)) in let thm3a = POLYNATE_CONV vars l' in let thm3b = AP_TERM op thm3a in let thm3 = AP_THM thm3b rzero in end_itlist TRANS [thm1;thm2;thm3];; (* let k0 = `x pow 2 + y * x - &5 > x + &10` let k0 = `x pow 2 + y * x - &5 >= x + &10` let k0 = `x pow 2 + y * x - &5 < x + &10` let k0 = `x pow 2 + y * x - &5 <= x + &10` let k0 = `x pow 2 + y * x - &5 = x + &10` let tm = k0;; let vars = [`x:real`;`y:real`] POLYATOM_CONV vars k0 let vars = [`e:real`; `k:real`;`f:real`;`a:real`] prioritize_real() let tm = `k < e` let liouville = `&6 * (w pow 2 + x pow 2 + y pow 2 + z pow 2) pow 2 = (((w + x) pow 4 + (w + y) pow 4 + (w + z) pow 4 + (x + y) pow 4 + (x + z) pow 4 + (y + z) pow 4) + ((w - x) pow 4 + (w - y) pow 4 + (w - z) pow 4 + (x - y) pow 4 + (x - z) pow 4 + (y - z) pow 4))` let lvars = [`w:real`;`x:real`;`y:real`; `z:real`] POLYATOM_CONV lvars liouville *) (* ---------------------------------------------------------------------- *) (* Factoring *) (* ---------------------------------------------------------------------- *) let weakfactor x pol = let rec weakfactor k x pol = try let ls,rs = dest_plus pol in if not (ls = rzero) then failwith "" else let lm,rm = dest_mult rs in if not (lm = x) then failwith "" else weakfactor (k + 1) x rm with Failure _ -> k,pol in weakfactor 0 x pol;; let poly_var x = mk_plus rzero (mk_mult x rone);; (* poly_var rx *) let POW_PROD_SUM = prove_by_refinement( `!x n m. (x pow n) * x pow m = x pow (n + m)`, (* {{{ Proof *) [ STRIP_TAC THEN STRIP_TAC THEN INDUCT_TAC; REWRITE_TAC[real_pow]; NUM_SIMP_TAC; REAL_SIMP_TAC; REWRITE_TAC[real_pow]; REWRITE_TAC[ARITH_RULE `n + SUC m = SUC (n + m)`]; REWRITE_TAC[real_pow]; POP_ASSUM (SUBST1_TAC o GSYM); REAL_ARITH_TAC; ]);; (* }}} *) let lem1 = REAL_ARITH `x * x = x pow 2`;; let lem2 = GSYM (CONJUNCT2 real_pow);; let lem3 = REAL_ARITH `!x. x = x pow 1`;; let SIMP_POW_CONV tm = let thm1 = ((REWRITE_CONV [GSYM REAL_MUL_ASSOC;lem1;lem2;POW_PROD_SUM]) THENC (ARITH_SIMP_CONV[])) tm in let _,r = dest_eq (concl thm1) in if can dest_pow r then thm1 else let thm2 = ISPEC r lem3 in thm2;; (* SIMP_POW_CONV `x * x * x * x * x` SIMP_POW_CONV `x * x * (x * x) * x` SIMP_POW_CONV `x * (x * (x * x)) *(x * x)` SIMP_POW_CONV `x:real` *) let WEAKFACTOR_CONV x pol = let k,pol' = weakfactor x pol in let thm1 = ((itlist2 (fun x y z -> ((funpow y RAND_CONV) x) THENC z) (replicate (GEN_REWRITE_CONV I [REAL_ADD_LID]) k) (0--(k-1)) ALL_CONV) THENC (PURE_REWRITE_CONV[REAL_MUL_ASSOC])) pol in let thm2 = (CONV_RULE (RAND_CONV (LAND_CONV SIMP_POW_CONV))) thm1 in thm2;; (* let pol = `&0 + x * (&0 + x * (&0 + y * &1))` let pol = `&0 + x * (&0 + x * (&0 + x * (&0 + x * (&0 + x * (&0 + x * (&0 + y * &1))))))` let pol = `&0 + x * (&0 + x * (&0 + x * (&0 + x * (&0 + x * (&1 + x * (&0 + y * &1))))))` let pol = `&1 + x * (&0 + x * (&0 + y * &1))` let pol = `&0 + x * (&1 + x * (&0 + y * &1))` WEAKFACTOR_CONV rx pol weakfactor rx pol *)