(* ========================================================================= *) (* Some analytic concepts for R instead of R^1. *) (* *) (* (c) Copyright, John Harrison 1998-2016 *) (* (c) Copyright, Andrea Gabrielli, Marco Maggesi 2016-2017 *) (* ========================================================================= *) needs "Library/binomial.ml";; needs "Multivariate/polytope.ml";; needs "Multivariate/measure.ml";; needs "Multivariate/transcendentals.ml";; (* ------------------------------------------------------------------------- *) (* Open-ness and closedness of a set of reals. *) (* ------------------------------------------------------------------------- *) let REAL_OPEN = prove (`!s. real_open s <=> open(IMAGE lift s)`, REWRITE_TAC[real_open; open_def; FORALL_IN_IMAGE; FORALL_LIFT; DIST_LIFT; LIFT_IN_IMAGE_LIFT]);; let REAL_CLOSED = prove (`!s. real_closed s <=> closed(IMAGE lift s)`, GEN_TAC THEN REWRITE_TAC[real_closed; REAL_OPEN; closed] THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DIFF; IN_UNIV] THEN MESON_TAC[LIFT_DROP]);; (* ------------------------------------------------------------------------- *) (* Compactness of a set of reals. *) (* ------------------------------------------------------------------------- *) let REAL_BOUNDED = prove (`real_bounded s <=> bounded(IMAGE lift s)`, REWRITE_TAC[BOUNDED_LIFT; real_bounded]);; let REAL_BOUNDED_POS_LT = prove (`!s. real_bounded s <=> ?b. &0 < b /\ !x. x IN s ==> abs(x) < b`, REWRITE_TAC[real_bounded] THEN MESON_TAC[REAL_LT_IMP_LE; REAL_ARITH `&0 < &1 + abs(y) /\ (x <= y ==> x < &1 + abs(y))`]);; let REAL_BOUNDED_SUBSET = prove (`!s t. real_bounded t /\ s SUBSET t ==> real_bounded s`, MESON_TAC[REAL_BOUNDED; BOUNDED_SUBSET; IMAGE_SUBSET]);; let REAL_BOUNDED_UNION = prove (`!s t. real_bounded(s UNION t) <=> real_bounded s /\ real_bounded t`, REWRITE_TAC[REAL_BOUNDED; IMAGE_UNION; BOUNDED_UNION]);; let REAL_BOUNDED_SUBSET_OPEN_INTERVAL_SYMMETRIC = prove (`!s. real_bounded s ==> ?a. s SUBSET real_interval(--a,a)`, REWRITE_TAC[REAL_BOUNDED_POS; LEFT_IMP_EXISTS_THM; SUBSET] THEN MAP_EVERY X_GEN_TAC [`s:real->bool`; `b:real`] THEN STRIP_TAC THEN EXISTS_TAC `b + &1` THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC);; let REAL_BOUNDED_SUBSET_OPEN_INTERVAL = prove (`!s. real_bounded s ==> ?a b. s SUBSET real_interval(a,b)`, MESON_TAC[REAL_BOUNDED_SUBSET_OPEN_INTERVAL_SYMMETRIC]);; let REAL_BOUNDED_SUBSET_CLOSED_INTERVAL_SYMMETRIC = prove (`!s. real_bounded s ==> ?a. s SUBSET real_interval[--a,a]`, MESON_TAC[REAL_INTERVAL_OPEN_SUBSET_CLOSED; SUBSET_TRANS; REAL_BOUNDED_SUBSET_OPEN_INTERVAL_SYMMETRIC]);; let REAL_BOUNDED_SUBSET_CLOSED_INTERVAL = prove (`!s. real_bounded s ==> ?a b. s SUBSET real_interval[a,b]`, MESON_TAC[REAL_INTERVAL_OPEN_SUBSET_CLOSED; SUBSET_TRANS; REAL_BOUNDED_SUBSET_OPEN_INTERVAL]);; let real_compact = prove (`!s. real_compact s <=> compact(IMAGE lift s)`, GEN_TAC THEN REWRITE_TAC[real_compact_def; GSYM COMPACT_IN_EUCLIDEAN] THEN EQ_TAC THEN DISCH_TAC THENL [MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `euclideanreal` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_LIFT]; GEN_REWRITE_TAC RAND_CONV [GSYM IMAGE_LIFT_DROP] THEN REWRITE_TAC[IMAGE_o] THEN MATCH_MP_TAC IMAGE_COMPACT_IN THEN EXISTS_TAC `euclidean:(real^1)topology` THEN ASM_REWRITE_TAC[CONTINUOUS_MAP_DROP]]);; (* ------------------------------------------------------------------------- *) (* Limits of functions with real range. *) (* ------------------------------------------------------------------------- *) parse_as_infix("--->",(12,"right"));; let tendsto_real = new_definition `(f ---> l) net <=> !e. &0 < e ==> eventually (\x. abs(f(x) - l) < e) net`;; let reallim = new_definition `reallim net f = @l. (f ---> l) net`;; let TENDSTO_REAL = prove (`(s ---> l) = ((lift o s) --> lift l)`, REWRITE_TAC[FUN_EQ_THM; tendsto; tendsto_real; o_THM; DIST_LIFT]);; let REAL_TENDSTO = prove (`(s --> l) = (drop o s ---> drop l)`, REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_DROP; ETA_AX]);; let REALLIM_COMPLEX = prove (`(s ---> l) = ((Cx o s) --> Cx(l))`, REWRITE_TAC[FUN_EQ_THM; tendsto; tendsto_real; o_THM; dist; GSYM CX_SUB; COMPLEX_NORM_CX]);; let REALLIM_TRIVIAL = prove (`!net f l. trivial_limit net ==> (f ---> l) net`, SIMP_TAC[tendsto_real; EVENTUALLY_TRIVIAL]);; let REALLIM_UNIQUE = prove (`!net f l l'. ~trivial_limit net /\ (f ---> l) net /\ (f ---> l') net ==> l = l'`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_UNIQUE) THEN REWRITE_TAC[LIFT_EQ]);; let REALLIM_CONST = prove (`!net a. ((\x. a) ---> a) net`, REWRITE_TAC[TENDSTO_REAL; o_DEF; LIM_CONST]);; let REALLIM_LMUL = prove (`!f l c. (f ---> l) net ==> ((\x. c * f x) ---> c * l) net`, REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_CMUL; LIM_CMUL]);; let REALLIM_RMUL = prove (`!f l c. (f ---> l) net ==> ((\x. f x * c) ---> l * c) net`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REALLIM_LMUL]);; let REALLIM_LMUL_EQ = prove (`!net f l c. ~(c = &0) ==> (((\x. c * f x) ---> c * l) net <=> (f ---> l) net)`, REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[REALLIM_LMUL] THEN DISCH_THEN(MP_TAC o SPEC `inv c:real` o MATCH_MP REALLIM_LMUL) THEN ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_LID; ETA_AX]);; let REALLIM_RMUL_EQ = prove (`!net f l c. ~(c = &0) ==> (((\x. f x * c) ---> l * c) net <=> (f ---> l) net)`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REALLIM_LMUL_EQ]);; let REALLIM_NEG = prove (`!net f l. (f ---> l) net ==> ((\x. --(f x)) ---> --l) net`, REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_NEG; LIM_NEG]);; let REALLIM_NEG_EQ = prove (`!net f l. ((\x. --(f x)) ---> --l) net <=> (f ---> l) net`, REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_NEG; LIM_NEG_EQ]);; let REALLIM_ADD = prove (`!net:(A)net f g l m. (f ---> l) net /\ (g ---> m) net ==> ((\x. f(x) + g(x)) ---> l + m) net`, REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_ADD; LIM_ADD]);; let REALLIM_SUB = prove (`!net:(A)net f g l m. (f ---> l) net /\ (g ---> m) net ==> ((\x. f(x) - g(x)) ---> l - m) net`, REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_SUB; LIM_SUB]);; let REALLIM_MUL = prove (`!net:(A)net f g l m. (f ---> l) net /\ (g ---> m) net ==> ((\x. f(x) * g(x)) ---> l * m) net`, REWRITE_TAC[REALLIM_COMPLEX; o_DEF; CX_MUL; LIM_COMPLEX_MUL]);; let REALLIM_INV = prove (`!net f l. (f ---> l) net /\ ~(l = &0) ==> ((\x. inv(f x)) ---> inv l) net`, REWRITE_TAC[REALLIM_COMPLEX; o_DEF; CX_INV; LIM_COMPLEX_INV; GSYM CX_INJ]);; let REALLIM_DIV = prove (`!net:(A)net f g l m. (f ---> l) net /\ (g ---> m) net /\ ~(m = &0) ==> ((\x. f(x) / g(x)) ---> l / m) net`, SIMP_TAC[real_div; REALLIM_MUL; REALLIM_INV]);; let REALLIM_ABS = prove (`!net f l. (f ---> l) net ==> ((\x. abs(f x)) ---> abs l) net`, REPEAT GEN_TAC THEN REWRITE_TAC[tendsto_real] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[] THEN REAL_ARITH_TAC);; let REALLIM_POW = prove (`!net f l n. (f ---> l) net ==> ((\x. f x pow n) ---> l pow n) net`, REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[real_pow; REALLIM_CONST; REALLIM_MUL]);; let REALLIM_MAX = prove (`!net:(A)net f g l m. (f ---> l) net /\ (g ---> m) net ==> ((\x. max (f x) (g x)) ---> max l m) net`, REWRITE_TAC[REAL_ARITH `max x y = inv(&2) * ((x + y) + abs(x - y))`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REALLIM_LMUL THEN ASM_SIMP_TAC[REALLIM_ADD; REALLIM_ABS; REALLIM_SUB]);; let REALLIM_MIN = prove (`!net:(A)net f g l m. (f ---> l) net /\ (g ---> m) net ==> ((\x. min (f x) (g x)) ---> min l m) net`, REWRITE_TAC[REAL_ARITH `min x y = inv(&2) * ((x + y) - abs(x - y))`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REALLIM_LMUL THEN ASM_SIMP_TAC[REALLIM_ADD; REALLIM_ABS; REALLIM_SUB]);; let REALLIM_NULL = prove (`!net f l. (f ---> l) net <=> ((\x. f(x) - l) ---> &0) net`, REWRITE_TAC[tendsto_real; REAL_SUB_RZERO]);; let REALLIM_NULL_ADD = prove (`!net:(A)net f g. (f ---> &0) net /\ (g ---> &0) net ==> ((\x. f(x) + g(x)) ---> &0) net`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REALLIM_ADD) THEN REWRITE_TAC[REAL_ADD_LID]);; let REALLIM_NULL_LMUL = prove (`!net f c. (f ---> &0) net ==> ((\x. c * f x) ---> &0) net`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `c:real` o MATCH_MP REALLIM_LMUL) THEN REWRITE_TAC[REAL_MUL_RZERO]);; let REALLIM_NULL_RMUL = prove (`!net f c. (f ---> &0) net ==> ((\x. f x * c) ---> &0) net`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o SPEC `c:real` o MATCH_MP REALLIM_RMUL) THEN REWRITE_TAC[REAL_MUL_LZERO]);; let REALLIM_NULL_POW = prove (`!net f n. (f ---> &0) net /\ ~(n = 0) ==> ((\x. f x pow n) ---> &0) net`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPEC `n:num` o MATCH_MP REALLIM_POW) ASSUME_TAC) THEN ASM_REWRITE_TAC[REAL_POW_ZERO]);; let REALLIM_NULL_LMUL_EQ = prove (`!net f c. ~(c = &0) ==> (((\x. c * f x) ---> &0) net <=> (f ---> &0) net)`, MESON_TAC[REALLIM_LMUL_EQ; REAL_MUL_RZERO]);; let REALLIM_NULL_RMUL_EQ = prove (`!net f c. ~(c = &0) ==> (((\x. f x * c) ---> &0) net <=> (f ---> &0) net)`, MESON_TAC[REALLIM_RMUL_EQ; REAL_MUL_LZERO]);; let REALLIM_NULL_NEG = prove (`!net f. ((\x. --(f x)) ---> &0) net <=> (f ---> &0) net`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `--x = --(&1) * x`] THEN MATCH_MP_TAC REALLIM_NULL_LMUL_EQ THEN CONV_TAC REAL_RAT_REDUCE_CONV);; let REALLIM_NULL_SUB = prove (`!net:(A)net f g. (f ---> &0) net /\ (g ---> &0) net ==> ((\x. f(x) - g(x)) ---> &0) net`, SIMP_TAC[real_sub; REALLIM_NULL_ADD; REALLIM_NULL_NEG]);; let REALLIM_RE = prove (`!net f l. (f --> l) net ==> ((Re o f) ---> Re l) net`, REWRITE_TAC[REALLIM_COMPLEX] THEN REWRITE_TAC[tendsto; dist; o_THM; GSYM CX_SUB; COMPLEX_NORM_CX] THEN REWRITE_TAC[GSYM RE_SUB; eventually] THEN MESON_TAC[REAL_LET_TRANS; COMPLEX_NORM_GE_RE_IM]);; let REALLIM_IM = prove (`!net f l. (f --> l) net ==> ((Im o f) ---> Im l) net`, REWRITE_TAC[REALLIM_COMPLEX] THEN REWRITE_TAC[tendsto; dist; o_THM; GSYM CX_SUB; COMPLEX_NORM_CX] THEN REWRITE_TAC[GSYM IM_SUB; eventually] THEN MESON_TAC[REAL_LET_TRANS; COMPLEX_NORM_GE_RE_IM]);; let REALLIM_TRANSFORM_EVENTUALLY = prove (`!net f g l. eventually (\x. f x = g x) net /\ (f ---> l) net ==> (g ---> l) net`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN SIMP_TAC[o_THM]);; let REALLIM_TRANSFORM = prove (`!net f g l. ((\x. f x - g x) ---> &0) net /\ (f ---> l) net ==> (g ---> l) net`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN REWRITE_TAC[o_DEF; LIFT_NUM; LIFT_SUB; LIM_TRANSFORM]);; let REALLIM_TRANSFORM_EQ = prove (`!net f:A->real g l. ((\x. f x - g x) ---> &0) net ==> ((f ---> l) net <=> (g ---> l) net)`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN REWRITE_TAC[o_DEF; LIFT_NUM; LIFT_SUB; LIM_TRANSFORM_EQ]);; let REAL_SEQ_OFFSET = prove (`!f l k. (f ---> l) sequentially ==> ((\i. f (i + k)) ---> l) sequentially`, REPEAT GEN_TAC THEN SIMP_TAC[TENDSTO_REAL; o_DEF] THEN DISCH_THEN(MP_TAC o MATCH_MP SEQ_OFFSET) THEN SIMP_TAC[]);; let REAL_SEQ_OFFSET_REV = prove (`!f l k. ((\i. f (i + k)) ---> l) sequentially ==> (f ---> l) sequentially`, SIMP_TAC[TENDSTO_REAL; o_DEF] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SEQ_OFFSET_REV THEN EXISTS_TAC `k:num` THEN ASM_SIMP_TAC[]);; let REALLIM_TRANSFORM_STRADDLE = prove (`!f g h a. eventually (\n. f(n) <= g(n)) net /\ (f ---> a) net /\ eventually (\n. g(n) <= h(n)) net /\ (h ---> a) net ==> (g ---> a) net`, REPEAT GEN_TAC THEN REWRITE_TAC[RIGHT_AND_FORALL_THM; tendsto_real; AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REAL_ARITH_TAC);; let REAL_CONVERGENT_IMP_BOUNDED = prove (`!s l. (s ---> l) sequentially ==> real_bounded (IMAGE s (:num))`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_BOUNDED; TENDSTO_REAL] THEN DISCH_THEN(MP_TAC o MATCH_MP CONVERGENT_IMP_BOUNDED) THEN REWRITE_TAC[BOUNDED_POS; FORALL_IN_IMAGE; IN_UNIV] THEN REWRITE_TAC[o_DEF; NORM_LIFT]);; let REALLIM_NULL_ABS = prove (`!net f. ((\x. abs(f x)) ---> &0) net <=> (f ---> &0) net`, REWRITE_TAC[tendsto_real; REAL_SUB_RZERO; REAL_ABS_ABS]);; let REALLIM_WITHIN_LE = prove (`!f:real^N->real l a s. (f ---> l) (at a within s) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. x IN s /\ &0 < dist(x,a) /\ dist(x,a) <= d ==> abs(f(x) - l) < e`, REWRITE_TAC[tendsto_real; EVENTUALLY_WITHIN_LE]);; let REALLIM_WITHIN = prove (`!f:real^N->real l a s. (f ---> l) (at a within s) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. x IN s /\ &0 < dist(x,a) /\ dist(x,a) < d ==> abs(f(x) - l) < e`, REWRITE_TAC[tendsto_real; EVENTUALLY_WITHIN] THEN MESON_TAC[]);; let REALLIM_AT = prove (`!f l a:real^N. (f ---> l) (at a) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. &0 < dist(x,a) /\ dist(x,a) < d ==> abs(f(x) - l) < e`, REWRITE_TAC[tendsto_real; EVENTUALLY_AT] THEN MESON_TAC[]);; let REALLIM_AT_INFINITY = prove (`!f l. (f ---> l) at_infinity <=> !e. &0 < e ==> ?b. !x. norm(x) >= b ==> abs(f(x) - l) < e`, REWRITE_TAC[tendsto_real; EVENTUALLY_AT_INFINITY] THEN MESON_TAC[]);; let REALLIM_AT_INFINITY_COMPLEX_0 = prove (`!f l. (f ---> l) at_infinity <=> ((f o inv) ---> l) (at(Cx(&0)))`, REWRITE_TAC[REALLIM_COMPLEX; LIM_AT_INFINITY_COMPLEX_0] THEN REWRITE_TAC[o_ASSOC]);; let REALLIM_SEQUENTIALLY = prove (`!s l. (s ---> l) sequentially <=> !e. &0 < e ==> ?N. !n. N <= n ==> abs(s(n) - l) < e`, REWRITE_TAC[tendsto_real; EVENTUALLY_SEQUENTIALLY] THEN MESON_TAC[]);; let REALLIM_EVENTUALLY = prove (`!net f l. eventually (\x. f x = l) net ==> (f ---> l) net`, SIMP_TAC[tendsto_real] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] EVENTUALLY_MONO)) THEN ASM_MESON_TAC[REAL_ARITH `abs(x - x) = &0`]);; let LIM_COMPONENTWISE = prove (`!net f:A->real^N. (f --> l) net <=> !i. 1 <= i /\ i <= dimindex(:N) ==> ((\x. (f x)$i) ---> l$i) net`, ONCE_REWRITE_TAC[LIM_COMPONENTWISE_LIFT] THEN REWRITE_TAC[TENDSTO_REAL; o_DEF]);; let REALLIM_UBOUND = prove (`!(net:A net) f l b. (f ---> l) net /\ ~trivial_limit net /\ eventually (\x. f x <= b) net ==> l <= b`, REWRITE_TAC[FORALL_DROP; TENDSTO_REAL; LIFT_DROP] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `net:A net` LIM_DROP_UBOUND) THEN EXISTS_TAC `lift o (f:A->real)` THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP]);; let REALLIM_LBOUND = prove (`!(net:A net) f l b. (f ---> l) net /\ ~trivial_limit net /\ eventually (\x. b <= f x) net ==> b <= l`, ONCE_REWRITE_TAC[GSYM REAL_LE_NEG2] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `net:A net` REALLIM_UBOUND) THEN EXISTS_TAC `\a:A. --(f a:real)` THEN ASM_REWRITE_TAC[REALLIM_NEG_EQ]);; let REALLIM_LE = prove (`!net f g l m. (f ---> l) net /\ (g ---> m) net /\ ~trivial_limit net /\ eventually (\x. f x <= g x) net ==> l <= m`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o MATCH_MP REALLIM_SUB o ONCE_REWRITE_RULE[CONJ_SYM]) MP_TAC) THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN REWRITE_TAC[GSYM IMP_CONJ_ALT; GSYM CONJ_ASSOC] THEN DISCH_THEN(ACCEPT_TAC o MATCH_MP REALLIM_LBOUND));; let REALLIM_CONST_EQ = prove (`!net:(A net) c d. ((\x. c) ---> d) net <=> trivial_limit net \/ c = d`, REWRITE_TAC[TENDSTO_REAL; LIM_CONST_EQ; o_DEF; LIFT_EQ]);; let REALLIM_SUM = prove (`!net f:A->B->real l s. FINITE s /\ (!i. i IN s ==> ((f i) ---> (l i)) net) ==> ((\x. sum s (\i. f i x)) ---> sum s l) net`, REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; REALLIM_CONST; REALLIM_ADD; IN_INSERT; ETA_AX]);; let REALLIM_NULL_SUM = prove (`!net f:A->B->real s. FINITE s /\ (!a. a IN s ==> ((\x. f x a) ---> &0) net) ==> ((\x. sum s (f x)) ---> &0) net`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REALLIM_SUM) THEN REWRITE_TAC[SUM_0; ETA_AX]);; let REALLIM_NULL_COMPARISON = prove (`!net:(A)net f g. eventually (\x. abs(f x) <= g x) net /\ (g ---> &0) net ==> (f ---> &0) net`, REWRITE_TAC[TENDSTO_REAL; LIFT_NUM; o_DEF] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_NULL_COMPARISON THEN EXISTS_TAC `g:A->real` THEN ASM_REWRITE_TAC[NORM_LIFT]);; let CONVERGENT_REAL_BOUNDED_MONOTONE = prove (`!s. real_bounded(IMAGE s (:num)) /\ ((!n. s n <= s(SUC n)) \/ (!n. s(SUC n) <= s n)) ==> ?l. (s ---> l) sequentially`, GEN_TAC THEN REWRITE_TAC[REAL_BOUNDED; GSYM IMAGE_o] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONVERGENT_BOUNDED_MONOTONE_1)) THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP; TENDSTO_REAL; EXISTS_LIFT]);; let REALLIM_EVENTUALLY_UBOUND = prove (`!net f l c. (f ---> l) net /\ l < c ==> eventually (\x:A. f x < c) net`, REPEAT GEN_TAC THEN REWRITE_TAC[tendsto_real] THEN INTRO_TAC "lim lt" THEN HYP_TAC "lim: +" (SPEC `(c - l) / &2`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN ASM_REAL_ARITH_TAC);; let REALLIM_EVENTUALLY_LBOUND = prove (`!net f l c. (f ---> l) net /\ c < l ==> eventually (\x:A. c < f x) net`, REPEAT GEN_TAC THEN REWRITE_TAC[tendsto_real] THEN INTRO_TAC "lim lt" THEN HYP_TAC "lim: +" (SPEC `(l - c) / &2`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN ASM_REAL_ARITH_TAC);; let REALLIM_SEQUENTIALLY_WITHIN = prove (`!f l s. (f ---> l) sequentially ==> (f ---> l) (sequentially within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[tendsto_real; EVENTUALLY_SEQUENTIALLY; EVENTUALLY_SEQUENTIALLY_WITHIN] THEN ASM_CASES_TAC `FINITE (s:num->bool)` THEN ASM_REWRITE_TAC[] THEN POP_ASSUM (MP_TAC o REWRITE_RULE[GSYM INFINITE; num_INFINITE_EQ]) THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Real series. *) (* ------------------------------------------------------------------------- *) parse_as_infix("real_sums",(12,"right"));; let real_sums = new_definition `(f real_sums l) s <=> ((\n. sum (s INTER (0..n)) f) ---> l) sequentially`;; let real_infsum = new_definition `real_infsum s f = @l. (f real_sums l) s`;; let real_summable = new_definition `real_summable s f = ?l. (f real_sums l) s`;; let REAL_SUMS = prove (`(f real_sums l) = ((lift o f) sums (lift l))`, REWRITE_TAC[FUN_EQ_THM; sums; real_sums; TENDSTO_REAL] THEN SIMP_TAC[LIFT_SUM; FINITE_INTER_NUMSEG; o_DEF]);; let REAL_SUMS_RE = prove (`!f l s. (f sums l) s ==> ((Re o f) real_sums (Re l)) s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_sums; sums] THEN DISCH_THEN(MP_TAC o MATCH_MP REALLIM_RE) THEN SIMP_TAC[o_DEF; RE_VSUM; FINITE_INTER_NUMSEG]);; let REAL_SUMS_IM = prove (`!f l s. (f sums l) s ==> ((Im o f) real_sums (Im l)) s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_sums; sums] THEN DISCH_THEN(MP_TAC o MATCH_MP REALLIM_IM) THEN SIMP_TAC[o_DEF; IM_VSUM; FINITE_INTER_NUMSEG]);; let REAL_SUMS_COMPLEX = prove (`!f l s. (f real_sums l) s <=> ((Cx o f) sums (Cx l)) s`, REWRITE_TAC[real_sums; sums; REALLIM_COMPLEX] THEN SIMP_TAC[o_DEF; VSUM_CX; FINITE_INTER; FINITE_NUMSEG]);; let REAL_SUMMABLE = prove (`real_summable s f <=> summable s (lift o f)`, REWRITE_TAC[real_summable; summable; REAL_SUMS; GSYM EXISTS_LIFT]);; let REAL_SUMMABLE_COMPLEX = prove (`real_summable s f <=> summable s (Cx o f)`, REWRITE_TAC[real_summable; summable; REAL_SUMS_COMPLEX] THEN EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_TAC `l:complex`) THEN EXISTS_TAC `Re l` THEN SUBGOAL_THEN `Cx(Re l) = l` (fun th -> ASM_REWRITE_TAC[th]) THEN REWRITE_TAC[GSYM REAL] THEN MATCH_MP_TAC REAL_SERIES THEN MAP_EVERY EXISTS_TAC [`Cx o (f:num->real)`; `s:num->bool`] THEN ASM_REWRITE_TAC[o_THM; REAL_CX]);; let REAL_SERIES_CAUCHY = prove (`(?l. (f real_sums l) s) <=> (!e. &0 < e ==> ?N. !m n. m >= N ==> abs(sum(s INTER (m..n)) f) < e)`, REWRITE_TAC[REAL_SUMS; SERIES_CAUCHY; GSYM EXISTS_LIFT] THEN SIMP_TAC[NORM_REAL; GSYM drop; DROP_VSUM; FINITE_INTER_NUMSEG] THEN REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]);; let REAL_SUMMABLE_CAUCHY = prove (`!f s. real_summable s f <=> !e. &0 < e ==> ?N. !m n. m >= N ==> abs(sum(s INTER (m..n)) f) < e`, REWRITE_TAC[real_summable; GSYM REAL_SERIES_CAUCHY]);; let REAL_SUMS_SUMMABLE = prove (`!f l s. (f real_sums l) s ==> real_summable s f`, REWRITE_TAC[real_summable] THEN MESON_TAC[]);; let REAL_SUMS_INFSUM = prove (`!f s. (f real_sums (real_infsum s f)) s <=> real_summable s f`, REWRITE_TAC[real_infsum; real_summable] THEN MESON_TAC[]);; let REAL_INFSUM_COMPLEX = prove (`!f s. real_summable s f ==> real_infsum s f = Re(infsum s (Cx o f))`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM REAL_SUMS_INFSUM; REAL_SUMS_COMPLEX] THEN DISCH_THEN(MP_TAC o MATCH_MP INFSUM_UNIQUE) THEN MESON_TAC[RE_CX]);; let REAL_SERIES_FROM = prove (`!f l k. (f real_sums l) (from k) = ((\n. sum(k..n) f) ---> l) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[real_sums] THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; numseg; from; IN_ELIM_THM; IN_INTER] THEN ARITH_TAC);; let REAL_SERIES_UNIQUE = prove (`!f l l' s. (f real_sums l) s /\ (f real_sums l') s ==> l = l'`, REWRITE_TAC[real_sums] THEN MESON_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; REALLIM_UNIQUE]);; let REAL_INFSUM_UNIQUE = prove (`!f l s. (f real_sums l) s ==> real_infsum s f = l`, MESON_TAC[REAL_SERIES_UNIQUE; REAL_SUMS_INFSUM; real_summable]);; let REAL_SERIES_FINITE = prove (`!f s. FINITE s ==> (f real_sums (sum s f)) s`, REPEAT GEN_TAC THEN REWRITE_TAC[num_FINITE; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[real_sums; REALLIM_SEQUENTIALLY] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN SUBGOAL_THEN `s INTER (0..m) = s` (fun th -> ASM_REWRITE_TAC[th; REAL_SUB_REFL; REAL_ABS_NUM]) THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; LE_0] THEN ASM_MESON_TAC[LE_TRANS]);; let REAL_SUMMABLE_FINITE = prove (`!k f. FINITE k ==> real_summable k f`, REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_FINITE]);; let REAL_SUMMABLE_IFF_EVENTUALLY = prove (`!f g k. (?N. !n. N <= n /\ n IN k ==> f n = g n) ==> (real_summable k f <=> real_summable k g)`, REWRITE_TAC[REAL_SUMMABLE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SUMMABLE_IFF_EVENTUALLY THEN REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[]);; let REAL_SUMMABLE_EQ_EVENTUALLY = prove (`!f g k. (?N. !n. N <= n /\ n IN k ==> f n = g n) /\ real_summable k f ==> real_summable k g`, MESON_TAC[REAL_SUMMABLE_IFF_EVENTUALLY]);; let REAL_SUMMABLE_IFF_COFINITE = prove (`!f s t. FINITE((s DIFF t) UNION (t DIFF s)) ==> (real_summable s f <=> real_summable t f)`, SIMP_TAC[REAL_SUMMABLE] THEN MESON_TAC[SUMMABLE_IFF_COFINITE]);; let REAL_SUMMABLE_EQ_COFINITE = prove (`!f s t. FINITE((s DIFF t) UNION (t DIFF s)) /\ real_summable s f ==> real_summable t f`, MESON_TAC[REAL_SUMMABLE_IFF_COFINITE]);; let REAL_SUMMABLE_FROM_ELSEWHERE = prove (`!f m n. real_summable (from m) f ==> real_summable (from n) f`, REPEAT GEN_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_SUMMABLE_EQ_COFINITE) THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..(m+n)` THEN SIMP_TAC[FINITE_NUMSEG; SUBSET; IN_NUMSEG; IN_UNION; IN_DIFF; IN_FROM] THEN ARITH_TAC);; let REAL_SUMMABLE_FROM_ELSEWHERE_EQ = prove (`!n m f. real_summable (from m) f <=> real_summable (from n) f`, MESON_TAC[REAL_SUMMABLE_FROM_ELSEWHERE]);; let REAL_SERIES_GOESTOZERO = prove (`!s x. real_summable s x ==> !e. &0 < e ==> eventually (\n. n IN s ==> abs(x n) < e) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_SUMMABLE] THEN DISCH_THEN(MP_TAC o MATCH_MP SERIES_GOESTOZERO) THEN REWRITE_TAC[o_THM; NORM_LIFT]);; let REAL_SUMMABLE_IMP_TOZERO = prove (`!f:num->real k. real_summable k f ==> ((\n. if n IN k then f(n) else &0) ---> &0) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_SUMMABLE] THEN DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_IMP_TOZERO) THEN REWRITE_TAC[TENDSTO_REAL] THEN REWRITE_TAC[o_DEF; GSYM LIFT_NUM; GSYM COND_RAND]);; let REAL_SUMMABLE_IMP_BOUNDED = prove (`!f:num->real k. real_summable k f ==> real_bounded (IMAGE f k)`, REWRITE_TAC[REAL_BOUNDED; REAL_SUMMABLE; GSYM IMAGE_o; SUMMABLE_IMP_BOUNDED]);; let REAL_SUMMABLE_IMP_REAL_SUMS_BOUNDED = prove (`!f:num->real k. real_summable (from k) f ==> real_bounded { sum(k..n) f | n IN (:num) }`, REWRITE_TAC[real_summable; real_sums; LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_CONVERGENT_IMP_BOUNDED) THEN REWRITE_TAC[FROM_INTER_NUMSEG; SIMPLE_IMAGE]);; let REAL_SERIES_0 = prove (`!s. ((\n. &0) real_sums (&0)) s`, REWRITE_TAC[real_sums; SUM_0; REALLIM_CONST]);; let REAL_SERIES_ADD = prove (`!x x0 y y0 s. (x real_sums x0) s /\ (y real_sums y0) s ==> ((\n. x n + y n) real_sums (x0 + y0)) s`, SIMP_TAC[real_sums; FINITE_INTER_NUMSEG; SUM_ADD; REALLIM_ADD]);; let REAL_SERIES_SUB = prove (`!x x0 y y0 s. (x real_sums x0) s /\ (y real_sums y0) s ==> ((\n. x n - y n) real_sums (x0 - y0)) s`, SIMP_TAC[real_sums; FINITE_INTER_NUMSEG; SUM_SUB; REALLIM_SUB]);; let REAL_SERIES_LMUL = prove (`!x x0 c s. (x real_sums x0) s ==> ((\n. c * x n) real_sums (c * x0)) s`, SIMP_TAC[real_sums; FINITE_INTER_NUMSEG; SUM_LMUL; REALLIM_LMUL]);; let REAL_SERIES_RMUL = prove (`!x x0 c s. (x real_sums x0) s ==> ((\n. x n * c) real_sums (x0 * c)) s`, SIMP_TAC[real_sums; FINITE_INTER_NUMSEG; SUM_RMUL; REALLIM_RMUL]);; let REAL_SERIES_NEG = prove (`!x x0 s. (x real_sums x0) s ==> ((\n. --(x n)) real_sums (--x0)) s`, SIMP_TAC[real_sums; FINITE_INTER_NUMSEG; SUM_NEG; REALLIM_NEG]);; let REAL_SUMS_IFF = prove (`!f g k. (!x. x IN k ==> f x = g x) ==> ((f real_sums l) k <=> (g real_sums l) k)`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_sums] THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC SUM_EQ THEN ASM_SIMP_TAC[IN_INTER]);; let REAL_SUMS_EQ = prove (`!f g k. (!x. x IN k ==> f x = g x) /\ (f real_sums l) k ==> (g real_sums l) k`, MESON_TAC[REAL_SUMS_IFF]);; let REAL_SERIES_FINITE_SUPPORT = prove (`!f s k. FINITE (s INTER k) /\ (!x. ~(x IN s INTER k) ==> f x = &0) ==> (f real_sums sum(s INTER k) f) k`, REWRITE_TAC[real_sums; REALLIM_SEQUENTIALLY] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o ISPEC `\x:num. x` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN SUBGOAL_THEN `sum (k INTER (0..n)) (f:num->real) = sum(s INTER k) f` (fun th -> ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_NUM; th]) THEN MATCH_MP_TAC SUM_SUPERSET THEN ASM_SIMP_TAC[SUBSET; IN_INTER; IN_NUMSEG; LE_0] THEN ASM_MESON_TAC[IN_INTER; LE_TRANS]);; let REAL_SERIES_DIFFS = prove (`!f k. (f ---> &0) sequentially ==> ((\n. f(n) - f(n + 1)) real_sums f(k)) (from k)`, REWRITE_TAC[real_sums; FROM_INTER_NUMSEG; SUM_DIFFS] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN EXISTS_TAC `\n. (f:num->real) k - f(n + 1)` THEN CONJ_TAC THENL [REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `k:num` THEN SIMP_TAC[]; GEN_REWRITE_TAC LAND_CONV [GSYM REAL_SUB_RZERO] THEN MATCH_MP_TAC REALLIM_SUB THEN REWRITE_TAC[REALLIM_CONST] THEN MATCH_MP_TAC REAL_SEQ_OFFSET THEN ASM_REWRITE_TAC[]]);; let REAL_SERIES_TRIVIAL = prove (`!f. (f real_sums &0) {}`, REWRITE_TAC[real_sums; INTER_EMPTY; SUM_CLAUSES; REALLIM_CONST]);; let REAL_SERIES_RESTRICT = prove (`!f k l:real. ((\n. if n IN k then f(n) else &0) real_sums l) (:num) <=> (f real_sums l) k`, REPEAT GEN_TAC THEN REWRITE_TAC[real_sums] THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; INTER_UNIV] THEN GEN_TAC THEN MATCH_MP_TAC(MESON[] `sum s f = sum t f /\ sum t f = sum t g ==> sum s f = sum t g`) THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_SUPERSET THEN SET_TAC[]; MATCH_MP_TAC SUM_EQ THEN SIMP_TAC[IN_INTER]]);; let REAL_SERIES_SUM = prove (`!f l k s. FINITE s /\ s SUBSET k /\ (!x. ~(x IN s) ==> f x = &0) /\ sum s f = l ==> (f real_sums l) k`, REPEAT STRIP_TAC THEN EXPAND_TAC "l" THEN SUBGOAL_THEN `s INTER k = s:num->bool` ASSUME_TAC THENL [ASM SET_TAC[]; ASM_MESON_TAC [REAL_SERIES_FINITE_SUPPORT]]);; let REAL_SUMS_REINDEX = prove (`!k a l n. ((\x. a(x + k)) real_sums l) (from n) <=> (a real_sums l) (from(n + k))`, REPEAT GEN_TAC THEN REWRITE_TAC[real_sums; FROM_INTER_NUMSEG] THEN REPEAT GEN_TAC THEN REWRITE_TAC[GSYM SUM_OFFSET] THEN REWRITE_TAC[REALLIM_SEQUENTIALLY] THEN ASM_MESON_TAC[ARITH_RULE `N + k:num <= n ==> n = (n - k) + k /\ N <= n - k`; ARITH_RULE `N + k:num <= n ==> N <= n + k`]);; let REAL_SERIES_EVEN = prove (`!f l n. (f real_sums l) (from n) <=> ((\i. if EVEN i then f(i DIV 2) else &0) real_sums l) (from (2 * n))`, REWRITE_TAC[REAL_SUMS; o_DEF; COND_RAND; LIFT_NUM] THEN REWRITE_TAC[GSYM SERIES_EVEN]);; let REAL_SERIES_ODD = prove (`!f l n. (f real_sums l) (from n) <=> ((\i. if ODD i then f(i DIV 2) else &0) real_sums l) (from (2 * n + 1))`, REWRITE_TAC[REAL_SUMS; o_DEF; COND_RAND; LIFT_NUM] THEN REWRITE_TAC[GSYM SERIES_ODD]);; let REAL_INFSUM = prove (`!f s. real_summable s f ==> real_infsum s f = drop(infsum s (lift o f))`, REPEAT GEN_TAC THEN REWRITE_TAC[GSYM REAL_SUMS_INFSUM; REAL_SUMS] THEN DISCH_THEN(MP_TAC o MATCH_MP INFSUM_UNIQUE) THEN MESON_TAC[LIFT_DROP]);; let REAL_PARTIAL_SUMS_LE_INFSUM = prove (`!f s n. (!i. i IN s ==> &0 <= f i) /\ real_summable s f ==> sum (s INTER (0..n)) f <= real_infsum s f`, REPEAT GEN_TAC THEN SIMP_TAC[REAL_INFSUM] THEN REWRITE_TAC[REAL_SUMMABLE] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o BINDER_CONV o RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN REWRITE_TAC[o_DEF] THEN DISCH_THEN(MP_TAC o MATCH_MP PARTIAL_SUMS_DROP_LE_INFSUM) THEN SIMP_TAC[DROP_VSUM; FINITE_INTER; FINITE_NUMSEG; o_DEF; LIFT_DROP; ETA_AX]);; let REAL_PARTIAL_SUMS_LE_INFSUM_GEN = prove (`!f s t. FINITE t /\ t SUBSET s /\ (!i. i IN s ==> &0 <= f i) /\ real_summable s f ==> sum t f <= real_infsum s f`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o SPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN TRANS_TAC REAL_LE_TRANS `sum (s INTER (0..n)) f` THEN ASM_SIMP_TAC[REAL_PARTIAL_SUMS_LE_INFSUM] THEN MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN ASM_SIMP_TAC[IN_INTER; IN_DIFF; FINITE_INTER; FINITE_NUMSEG] THEN REWRITE_TAC[SUBSET; IN_NUMSEG; IN_INTER; LE_0] THEN ASM SET_TAC[]);; let REAL_SERIES_TERMS_TOZERO = prove (`!f l n. (f real_sums l) (from n) ==> (f ---> &0) sequentially`, REWRITE_TAC[REAL_SUMS; TENDSTO_REAL; LIFT_NUM; SERIES_TERMS_TOZERO]);; let REAL_SERIES_LE = prove (`!f g s y z. (f real_sums y) s /\ (g real_sums z) s /\ (!i. i IN s ==> f(i) <= g(i)) ==> y <= z`, REWRITE_TAC[REAL_SUMS] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[MESON[LIFT_DROP] `x = drop(lift x)`] THEN MATCH_MP_TAC SERIES_DROP_LE THEN MAP_EVERY EXISTS_TAC [`lift o (f:num->real)`; `lift o (g:num->real)`] THEN ASM_SIMP_TAC[o_THM; LIFT_DROP] THEN ASM_MESON_TAC[]);; let REAL_SERIES_POS = prove (`!f s y. (f real_sums y) s /\ (!i. i IN s ==> &0 <= f(i)) ==> &0 <= y`, REWRITE_TAC[REAL_SUMS] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM LIFT_DROP] THEN MATCH_MP_TAC SERIES_DROP_POS THEN EXISTS_TAC `lift o (f:num->real)` THEN ASM_SIMP_TAC[o_THM; LIFT_DROP] THEN ASM_MESON_TAC[]);; let REAL_SERIES_BOUND = prove (`!f g s a b. (f real_sums a) s /\ (g real_sums b) s /\ (!i. i IN s ==> abs(f i) <= g i) ==> abs(a) <= b`, REWRITE_TAC[REAL_SUMS; GSYM NORM_LIFT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_BOUND THEN EXISTS_TAC `lift o (f:num->real)` THEN REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[]);; let REAL_SERIES_COMPARISON_BOUND = prove (`!f g s a. (g real_sums a) s /\ (!i. i IN s ==> abs(f i) <= g i) ==> ?l. (f real_sums l) s /\ abs(l) <= a`, REWRITE_TAC[REAL_SUMS; GSYM EXISTS_LIFT; GSYM NORM_LIFT] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (BINDER_CONV o RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN MATCH_MP_TAC SERIES_COMPARISON_BOUND THEN EXISTS_TAC `lift o (g:num->real)` THEN ASM_SIMP_TAC[o_THM; LIFT_DROP]);; let REAL_SERIES_MUL = prove (`!x y a b. (x real_sums a) (from 0) /\ (y real_sums b) (from 0) /\ (real_summable (from 0) (\n. abs(x n)) \/ real_summable (from 0) (\n. abs(y n))) ==> ((\n. sum(0..n) (\i. x i * y(n - i))) real_sums (a * b)) (from 0)`, REPEAT GEN_TAC THEN DISCH_TAC THEN MP_TAC(ISPECL [`\x y:real^1. drop x % y`; `lift o (x:num->real)`; `lift o (y:num->real)`; `lift a`; `lift b`] SERIES_BILINEAR) THEN ASM_REWRITE_TAC[GSYM REAL_SUMMABLE; GSYM REAL_SUMS; BILINEAR_DROP_MUL] THEN RULE_ASSUM_TAC(REWRITE_RULE [REAL_SUMMABLE; REAL_SUMS; o_DEF; GSYM NORM_1]) THEN ASM_REWRITE_TAC[o_DEF; NORM_LIFT; REAL_SUMS; TENDSTO_REAL; LIFT_SUM] THEN REWRITE_TAC[DROP_CMUL; LIFT_DROP; LIFT_CMUL]);; let REAL_SERIES_MUL_UNIQUE = prove (`!x y a b c. (x real_sums a) (from 0) /\ (y real_sums b) (from 0) /\ ((\n. sum (0..n) (\i. x i * y(n - i))) real_sums c) (from 0) ==> a * b = c`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x y:real^1. drop x % y`; `lift o (x:num->real)`; `lift o (y:num->real)`; `lift a`; `lift b`; `lift c`] SERIES_BILINEAR_UNIQUE) THEN ASM_REWRITE_TAC[GSYM REAL_SUMS; BILINEAR_DROP_MUL] THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_SUMS; o_DEF; LIFT_SUM; GSYM NORM_1]) THEN ASM_REWRITE_TAC[o_DEF; DROP_CMUL; LIFT_DROP; GSYM LIFT_CMUL] THEN REWRITE_TAC[LIFT_EQ]);; (* ------------------------------------------------------------------------- *) (* Similar combining theorems just for summability. *) (* ------------------------------------------------------------------------- *) let REAL_SUMMABLE_0 = prove (`!s. real_summable s (\n. &0)`, REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_0]);; let REAL_SUMMABLE_ADD = prove (`!x y s. real_summable s x /\ real_summable s y ==> real_summable s (\n. x n + y n)`, REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_ADD]);; let REAL_SUMMABLE_SUB = prove (`!x y s. real_summable s x /\ real_summable s y ==> real_summable s (\n. x n - y n)`, REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_SUB]);; let REAL_SUMMABLE_LMUL = prove (`!s x c. real_summable s x ==> real_summable s (\n. c * x n)`, REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_LMUL]);; let REAL_SUMMABLE_RMUL = prove (`!s x c. real_summable s x ==> real_summable s (\n. x n * c)`, REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_RMUL]);; let REAL_SUMMABLE_NEG = prove (`!x s. real_summable s x ==> real_summable s (\n. --(x n))`, REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_NEG]);; let REAL_SUMMABLE_IFF = prove (`!f g k. (!x. x IN k ==> f x = g x) ==> (real_summable k f <=> real_summable k g)`, REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SUMS_IFF]);; let REAL_SUMMABLE_EQ = prove (`!f g k. (!x. x IN k ==> f x = g x) /\ real_summable k f ==> real_summable k g`, REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SUMS_EQ]);; let REAL_SERIES_SUBSET = prove (`!x s t l. s SUBSET t /\ ((\i. if i IN s then x i else &0) real_sums l) t ==> (x real_sums l) s`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[real_sums] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_SIMP_TAC[GSYM SUM_RESTRICT_SET; FINITE_INTER_NUMSEG] THEN AP_THM_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN SET_TAC[]);; let REAL_SUMMABLE_SUBSET = prove (`!x s t. s SUBSET t /\ real_summable t (\i. if i IN s then x i else &0) ==> real_summable s x`, REWRITE_TAC[real_summable] THEN MESON_TAC[REAL_SERIES_SUBSET]);; let REAL_SUMMABLE_TRIVIAL = prove (`!f. real_summable {} f`, GEN_TAC THEN REWRITE_TAC[real_summable] THEN EXISTS_TAC `&0` THEN REWRITE_TAC[REAL_SERIES_TRIVIAL]);; let REAL_SUMMABLE_RESTRICT = prove (`!f k. real_summable (:num) (\n. if n IN k then f(n) else &0) <=> real_summable k f`, REWRITE_TAC[real_summable; REAL_SERIES_RESTRICT]);; let REAL_SUMS_FINITE_DIFF = prove (`!f t s l. t SUBSET s /\ FINITE t /\ (f real_sums l) s ==> (f real_sums (l - sum t f)) (s DIFF t)`, REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN FIRST_ASSUM(MP_TAC o ISPEC `f:num->real` o MATCH_MP REAL_SERIES_FINITE) THEN ONCE_REWRITE_TAC[GSYM REAL_SERIES_RESTRICT] THEN REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_SERIES_SUB) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[IN_DIFF] THEN FIRST_ASSUM(MP_TAC o SPEC `x:num` o GEN_REWRITE_RULE I [SUBSET]) THEN MAP_EVERY ASM_CASES_TAC [`(x:num) IN s`; `(x:num) IN t`] THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; let REAL_SUMS_FINITE_UNION = prove (`!f s t l. FINITE t /\ (f real_sums l) s ==> (f real_sums (l + sum (t DIFF s) f)) (s UNION t)`, REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN FIRST_ASSUM(MP_TAC o SPEC `s:num->bool` o MATCH_MP FINITE_DIFF) THEN DISCH_THEN(MP_TAC o ISPEC `f:num->real` o MATCH_MP REAL_SERIES_FINITE) THEN ONCE_REWRITE_TAC[GSYM REAL_SERIES_RESTRICT] THEN REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_SERIES_ADD) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:num` THEN REWRITE_TAC[IN_DIFF; IN_UNION] THEN MAP_EVERY ASM_CASES_TAC [`(x:num) IN s`; `(x:num) IN t`] THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; let REAL_SUMS_OFFSET = prove (`!f l m n. (f real_sums l) (from m) /\ m < n ==> (f real_sums (l - sum(m..(n-1)) f)) (from n)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `from n = from m DIFF (m..(n-1))` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_FROM; IN_DIFF; IN_NUMSEG] THEN ASM_ARITH_TAC; MATCH_MP_TAC REAL_SUMS_FINITE_DIFF THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN SIMP_TAC[SUBSET; IN_FROM; IN_NUMSEG]]);; let REAL_SUMS_OFFSET_REV = prove (`!f l m n. (f real_sums l) (from m) /\ n < m ==> (f real_sums (l + sum(n..m-1) f)) (from n)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:num->real`; `from m`; `n..m-1`; `l:real`] REAL_SUMS_FINITE_UNION) THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC; ALL_TAC] THEN REWRITE_TAC[EXTENSION; IN_DIFF; IN_UNION; IN_FROM; IN_NUMSEG] THEN ASM_ARITH_TAC);; let REAL_SUMMABLE_EVEN = prove (`!f n. real_summable (from n) f <=> real_summable (from (2 * n)) (\i. if EVEN i then f(i DIV 2) else &0)`, REWRITE_TAC[real_summable; GSYM REAL_SERIES_EVEN]);; let REAL_SUMMABLE_ODD = prove (`!f n. real_summable (from n) f <=> real_summable (from (2 * n + 1)) (\i. if ODD i then f(i DIV 2) else &0)`, REWRITE_TAC[real_summable; GSYM REAL_SERIES_ODD]);; (* ------------------------------------------------------------------------- *) (* Similar combining theorems for infsum. *) (* ------------------------------------------------------------------------- *) let REAL_INFSUM_0 = prove (`real_infsum s (\i. &0) = &0`, MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN REWRITE_TAC[REAL_SERIES_0]);; let REAL_INFSUM_ADD = prove (`!x y s. real_summable s x /\ real_summable s y ==> real_infsum s (\i. x i + y i) = real_infsum s x + real_infsum s y`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN MATCH_MP_TAC REAL_SERIES_ADD THEN ASM_REWRITE_TAC[REAL_SUMS_INFSUM]);; let REAL_INFSUM_SUB = prove (`!x y s. real_summable s x /\ real_summable s y ==> real_infsum s (\i. x i - y i) = real_infsum s x - real_infsum s y`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN MATCH_MP_TAC REAL_SERIES_SUB THEN ASM_REWRITE_TAC[REAL_SUMS_INFSUM]);; let REAL_INFSUM_LMUL = prove (`!s x c. real_summable s x ==> real_infsum s (\n. c * x n) = c * real_infsum s x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN MATCH_MP_TAC REAL_SERIES_LMUL THEN ASM_REWRITE_TAC[REAL_SUMS_INFSUM]);; let REAL_INFSUM_RMUL = prove (`!s x c. real_summable s x ==> real_infsum s (\n. x n * c) = real_infsum s x * c`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN MATCH_MP_TAC REAL_SERIES_RMUL THEN ASM_REWRITE_TAC[REAL_SUMS_INFSUM]);; let REAL_INFSUM_NEG = prove (`!s x. real_summable s x ==> real_infsum s (\n. --(x n)) = --(real_infsum s x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN MATCH_MP_TAC REAL_SERIES_NEG THEN ASM_REWRITE_TAC[REAL_SUMS_INFSUM]);; let REAL_INFSUM_EQ = prove (`!f g k. real_summable k f /\ real_summable k g /\ (!x. x IN k ==> f x = g x) ==> real_infsum k f = real_infsum k g`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_infsum] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[REAL_SUMS_EQ; REAL_SUMS_INFSUM]);; let REAL_INFSUM_RESTRICT = prove (`!k a. real_infsum (:num) (\n. if n IN k then a n else &0) = real_infsum k a`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`a:num->real`; `k:num->bool`] REAL_SUMMABLE_RESTRICT) THEN ASM_CASES_TAC `real_summable k a` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THENL [MATCH_MP_TAC REAL_INFSUM_UNIQUE THEN ASM_REWRITE_TAC[REAL_SERIES_RESTRICT; REAL_SUMS_INFSUM]; RULE_ASSUM_TAC(REWRITE_RULE[real_summable; NOT_EXISTS_THM]) THEN ASM_REWRITE_TAC[real_infsum]]);; let REAL_INFSUM_EVEN = prove (`!f n. real_infsum (from n) f = real_infsum (from (2 * n)) (\i. if EVEN i then f(i DIV 2) else &0)`, REWRITE_TAC[real_infsum; GSYM REAL_SERIES_EVEN]);; let REAL_INFSUM_ODD = prove (`!f n. real_infsum (from n) f = real_infsum (from (2 * n + 1)) (\i. if ODD i then f(i DIV 2) else &0)`, REWRITE_TAC[real_infsum; GSYM REAL_SERIES_ODD]);; (* ------------------------------------------------------------------------- *) (* Convergence tests for real series. *) (* ------------------------------------------------------------------------- *) let REAL_SERIES_CAUCHY_UNIFORM = prove (`!P:A->bool f k. (?l. !e. &0 < e ==> ?N. !n x. N <= n /\ P x ==> abs(sum(k INTER (0..n)) (f x) - l x) < e) <=> (!e. &0 < e ==> ?N. !m n x. N <= m /\ P x ==> abs(sum(k INTER (m..n)) (f x)) < e)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`P:A->bool`; `\x:A n:num. lift(f x n)`; `k:num->bool`] SERIES_CAUCHY_UNIFORM) THEN SIMP_TAC[VSUM_REAL; FINITE_INTER; FINITE_NUMSEG] THEN REWRITE_TAC[NORM_LIFT; o_DEF; LIFT_DROP; ETA_AX] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_TAC `l:A->real`) THEN EXISTS_TAC `lift o (l:A->real)` THEN ASM_SIMP_TAC[o_THM; DIST_LIFT]; DISCH_THEN(X_CHOOSE_TAC `l:A->real^1`) THEN EXISTS_TAC `drop o (l:A->real^1)` THEN ASM_SIMP_TAC[SUM_VSUM; FINITE_INTER; FINITE_NUMSEG] THEN REWRITE_TAC[o_THM; GSYM DROP_SUB; GSYM NORM_1] THEN SIMP_TAC[GSYM dist; VSUM_REAL; FINITE_INTER; FINITE_NUMSEG] THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]]);; let REAL_SERIES_COMPARISON = prove (`!f g s. (?l. (g real_sums l) s) /\ (?N. !n. n >= N /\ n IN s ==> abs(f n) <= g n) ==> ?l. (f real_sums l) s`, REWRITE_TAC[REAL_SUMS; GSYM EXISTS_LIFT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_COMPARISON THEN EXISTS_TAC `g:num->real` THEN REWRITE_TAC[NORM_LIFT; o_THM] THEN ASM_MESON_TAC[]);; let REAL_SUMMABLE_COMPARISON = prove (`!f g s. real_summable s g /\ (?N. !n. n >= N /\ n IN s ==> abs(f n) <= g n) ==> real_summable s f`, REWRITE_TAC[real_summable; REAL_SERIES_COMPARISON]);; let REAL_SERIES_COMPARISON_UNIFORM = prove (`!f g P s. (?l. (g real_sums l) s) /\ (?N. !n x. N <= n /\ n IN s /\ P x ==> abs(f x n) <= g n) ==> ?l:A->real. !e. &0 < e ==> ?N. !n x. N <= n /\ P x ==> abs(sum(s INTER (0..n)) (f x) - l x) < e`, REPEAT GEN_TAC THEN SIMP_TAC[GE; REAL_SERIES_CAUCHY; REAL_SERIES_CAUCHY_UNIFORM] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_TAC `N1:num`)) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN EXISTS_TAC `N1 + N2:num` THEN MAP_EVERY X_GEN_TAC [`m:num`; `n:num`; `x:A`] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs (sum (s INTER (m .. n)) g)` THEN CONJ_TAC THENL [SIMP_TAC[GSYM LIFT_SUM; FINITE_INTER_NUMSEG; NORM_LIFT] THEN MATCH_MP_TAC(REAL_ARITH `x <= a ==> x <= abs(a)`) THEN MATCH_MP_TAC SUM_ABS_LE THEN REWRITE_TAC[FINITE_INTER_NUMSEG; IN_INTER; IN_NUMSEG] THEN ASM_MESON_TAC[ARITH_RULE `N1 + N2:num <= m /\ m <= x ==> N1 <= x`]; ASM_MESON_TAC[ARITH_RULE `N1 + N2:num <= m ==> N2 <= m`]]);; let REAL_SUMMABLE_POS_SUBSET = prove (`!s t f. (!x. x IN t ==> &0 <= f x) /\ real_summable t f /\ s SUBSET t ==> real_summable s f`, INTRO_TAC "!s t f; pos sum sub" THEN MATCH_MP_TAC REAL_SUMMABLE_SUBSET THEN EXISTS_TAC `t:num->bool` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_SUMMABLE_COMPARISON THEN EXISTS_TAC `f:num->real` THEN ASM_REWRITE_TAC[] THEN EXISTS_TAC `0` THEN INTRO_TAC "!n; _ n" THEN COND_CASES_TAC THEN REWRITE_TAC[REAL_ABS_0] THEN ASM_SIMP_TAC[REAL_ARITH `abs x <= x <=> &0 <= x`]);; let REAL_SERIES_RATIO = prove (`!c a s N. c < &1 /\ (!n. n >= N ==> abs(a(SUC n)) <= c * abs(a(n))) ==> ?l:real. (a real_sums l) s`, REWRITE_TAC[REAL_SUMS; GSYM EXISTS_LIFT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_RATIO THEN REWRITE_TAC[o_THM; NORM_LIFT] THEN ASM_MESON_TAC[]);; let BOUNDED_PARTIAL_REAL_SUMS = prove (`!f:num->real k. real_bounded { sum(k..n) f | n IN (:num) } ==> real_bounded { sum(m..n) f | m IN (:num) /\ n IN (:num) }`, REWRITE_TAC[REAL_BOUNDED] THEN REWRITE_TAC[SET_RULE `IMAGE f {g x | P x} = {f(g x) | P x}`; SET_RULE `IMAGE f {g x y | P x /\ Q y} = {f(g x y) | P x /\ Q y}`] THEN SIMP_TAC[LIFT_SUM; FINITE_INTER; FINITE_NUMSEG] THEN REWRITE_TAC[BOUNDED_PARTIAL_SUMS]);; let REAL_SERIES_DIRICHLET = prove (`!f:num->real g N k m. real_bounded { sum (m..n) f | n IN (:num)} /\ (!n. N <= n ==> g(n + 1) <= g(n)) /\ (g ---> &0) sequentially ==> real_summable (from k) (\n. g(n) * f(n))`, REWRITE_TAC[REAL_SUMMABLE; REAL_BOUNDED; TENDSTO_REAL] THEN REWRITE_TAC[LIFT_NUM; LIFT_CMUL; o_DEF] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_DIRICHLET THEN MAP_EVERY EXISTS_TAC [`N:num`; `m:num`] THEN ASM_REWRITE_TAC[o_DEF] THEN SIMP_TAC[VSUM_REAL; FINITE_INTER; FINITE_NUMSEG] THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX] THEN ASM_REWRITE_TAC[SET_RULE `{lift(f x) | P x} = IMAGE lift {f x | P x}`]);; let REAL_SERIES_ABSCONV_IMP_CONV = prove (`!x:num->real k. real_summable k (\n. abs(x n)) ==> real_summable k x`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_SUMMABLE_COMPARISON THEN EXISTS_TAC `\n:num. abs(x n)` THEN ASM_REWRITE_TAC[REAL_LE_REFL]);; let SERIES_NORMCONV_IMP_CONV = prove (`!s f:num->real^N. real_summable s (\n. norm(f n)) ==> summable s f`, INTRO_TAC "!s f; hp" THEN MATCH_MP_TAC SUMMABLE_COMPARISON THEN EXISTS_TAC `\n:num. norm(f n:real^N)` THEN ASM_REWRITE_TAC[GSYM REAL_SUMMABLE; REAL_LE_REFL]);; let REAL_SUMS_GP = prove (`!n x. abs(x) < &1 ==> ((\k. x pow k) real_sums (x pow n / (&1 - x))) (from n)`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`n:num`; `Cx x`] SUMS_GP) THEN ASM_REWRITE_TAC[REAL_SUMS_COMPLEX; GSYM CX_SUB; GSYM CX_POW; GSYM CX_DIV; o_DEF; COMPLEX_NORM_CX]);; let REAL_SUMMABLE_GP = prove (`!x k. abs(x) < &1 ==> real_summable k (\n. x pow n)`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`Cx x`; `k:num->bool`] SUMMABLE_GP) THEN ASM_REWRITE_TAC[REAL_SUMMABLE_COMPLEX] THEN ASM_REWRITE_TAC[COMPLEX_NORM_CX; o_DEF; CX_POW]);; let REAL_SUMMABLE_ZETA = prove (`!n x. &1 < x ==> real_summable (from n) (\k. inv(&k rpow x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_SUMMABLE_FROM_ELSEWHERE THEN EXISTS_TAC `1` THEN REWRITE_TAC[REAL_SUMMABLE_COMPLEX] THEN MP_TAC(ISPECL [`1`; `Cx x`] SUMMABLE_ZETA) THEN ASM_REWRITE_TAC[RE_CX; o_DEF] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] SUMMABLE_EQ) THEN SIMP_TAC[IN_FROM; cpow; rpow; REAL_OF_NUM_EQ; REAL_OF_NUM_LT; CX_INJ; LE_1; GSYM CX_LOG; GSYM CX_MUL; GSYM CX_EXP; GSYM CX_INV]);; let REAL_SUMMABLE_ZETA_INTEGER = prove (`!n m. 2 <= m ==> real_summable (from n) (\k. inv(&k pow m))`, REWRITE_TAC[REAL_SUMMABLE_COMPLEX; CX_INV; CX_POW; SUMMABLE_ZETA_INTEGER; o_DEF]);; let REAL_ABEL_LEMMA = prove (`!a M r r0. &0 <= r /\ r < r0 /\ (!n. n IN k ==> abs(a n) * r0 pow n <= M) ==> real_summable k (\n. abs(a(n)) * r pow n)`, REWRITE_TAC[REAL_SUMMABLE_COMPLEX] THEN REWRITE_TAC[o_DEF; CX_MUL; CX_ABS] THEN REWRITE_TAC[GSYM CX_MUL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ABEL_LEMMA THEN REWRITE_TAC[COMPLEX_NORM_CX] THEN ASM_MESON_TAC[]);; let REAL_POWER_SERIES_CONV_IMP_ABSCONV = prove (`!a k w z. real_summable k (\n. a(n) * z pow n) /\ abs(w) < abs(z) ==> real_summable k (\n. abs(a(n) * w pow n))`, REWRITE_TAC[REAL_SUMMABLE_COMPLEX; o_DEF; CX_MUL; CX_ABS; CX_POW] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC POWER_SERIES_CONV_IMP_ABSCONV THEN EXISTS_TAC `Cx z` THEN ASM_REWRITE_TAC[COMPLEX_NORM_CX]);; let POWER_REAL_SERIES_CONV_IMP_ABSCONV_WEAK = prove (`!a k w z. real_summable k (\n. a(n) * z pow n) /\ abs(w) < abs(z) ==> real_summable k (\n. abs(a n) * w pow n)`, REWRITE_TAC[REAL_SUMMABLE_COMPLEX; o_DEF; CX_MUL; CX_ABS; CX_POW] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC POWER_SERIES_CONV_IMP_ABSCONV_WEAK THEN EXISTS_TAC `Cx z` THEN ASM_REWRITE_TAC[COMPLEX_NORM_CX]);; let REAL_SUMMABLE_MUL_LEFT = prove (`!x y m n p. real_summable (from m) (\n. abs(x n)) /\ real_summable (from n) y ==> real_summable (from p) (\n. sum(0..n) (\i. x i * y(n - i)))`, ONCE_REWRITE_TAC[SPEC `0` REAL_SUMMABLE_FROM_ELSEWHERE_EQ] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_SERIES_ABSCONV_IMP_CONV) THEN UNDISCH_TAC `real_summable (from 0) y` THEN REWRITE_TAC[real_summable; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:real` THEN DISCH_TAC THEN X_GEN_TAC `a:real` THEN DISCH_TAC THEN EXISTS_TAC `a * b:real` THEN MATCH_MP_TAC REAL_SERIES_MUL THEN ASM_REWRITE_TAC[]);; let REAL_SUMMABLE_MUL_RIGHT = prove (`!x y m n p. real_summable (from m) x /\ real_summable (from n) (\n. abs(y n)) ==> real_summable (from p) (\n. sum(0..n) (\i. x i * y(n - i)))`, ONCE_REWRITE_TAC[SPEC `0` REAL_SUMMABLE_FROM_ELSEWHERE_EQ] THEN REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_SERIES_ABSCONV_IMP_CONV) THEN UNDISCH_TAC `real_summable (from 0) x` THEN REWRITE_TAC[real_summable; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `a:real` THEN DISCH_TAC THEN X_GEN_TAC `b:real` THEN DISCH_TAC THEN EXISTS_TAC `a * b:real` THEN MATCH_MP_TAC REAL_SERIES_MUL THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Nets for real limit. *) (* ------------------------------------------------------------------------- *) let atreal = new_definition `atreal a = atpointof euclideanreal a`;; let ATREAL = prove (`!a. netfilter (atreal a) = { u | real_open u /\ a IN u}`, REWRITE_TAC[atreal; ATPOINTOF; REAL_OPEN_IN]);; let NETLIMIT_ATREAL = prove (`!a. netlimit(atreal a) = a`, REWRITE_TAC[atreal; NETLIMIT_ATPOINTOF]);; let NETLIMIT_WITHINREAL = prove (`!a s. netlimit (atreal a within s) = a`, REWRITE_TAC[netlimit; NETLIMITS_WITHIN] THEN REWRITE_TAC[GSYM netlimit] THEN REWRITE_TAC[NETLIMIT_ATREAL]);; let WITHINREAL_UNIV = prove (`!x. atreal x within (:real) = atreal x`, REWRITE_TAC[NET_WITHIN_UNIV]);; let EVENTUALLY_ATREAL = prove (`!a p. eventually p (atreal a) <=> ?d. &0 < d /\ !x. &0 < abs(x - a) /\ abs(x - a) < d ==> p(x)`, REWRITE_TAC[atreal; GSYM MTOPOLOGY_REAL_EUCLIDEAN_METRIC] THEN REWRITE_TAC[EVENTUALLY_ATPOINTOF_METRIC] THEN REWRITE_TAC[REAL_EUCLIDEAN_METRIC; IN_UNIV] THEN REWRITE_TAC[REAL_ABS_SUB]);; let TRIVIAL_LIMIT_ATREAL = prove (`!a. ~(trivial_limit (atreal a))`, REWRITE_TAC[trivial_limit; EVENTUALLY_ATREAL; NOT_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real`; `d:real`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `a + d / &2`)) THEN ASM_REAL_ARITH_TAC);; let EVENTUALLY_WITHINREAL = prove (`!s a p. eventually p (atreal a within s) <=> ?d. &0 < d /\ !x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) < d ==> p(x)`, REWRITE_TAC[EVENTUALLY_WITHIN_IMP; EVENTUALLY_ATREAL] THEN MESON_TAC[]);; let EVENTUALLY_WITHINREAL_LE = prove (`!s a p. eventually p (atreal a within s) <=> ?d. &0 < d /\ !x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) <= d ==> p(x)`, REWRITE_TAC[EVENTUALLY_WITHINREAL] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`] THEN REWRITE_TAC[APPROACHABLE_LT_LE]);; (* ------------------------------------------------------------------------- *) (* Usual limit results with real domain and either vector or real range. *) (* ------------------------------------------------------------------------- *) let LIM_WITHINREAL_LE = prove (`!f:real->real^N l a s. (f --> l) (atreal a within s) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) <= d ==> dist(f(x),l) < e`, REWRITE_TAC[tendsto; EVENTUALLY_WITHINREAL_LE]);; let LIM_WITHINREAL = prove (`!f:real->real^N l a s. (f --> l) (atreal a within s) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) < d ==> dist(f(x),l) < e`, REWRITE_TAC[tendsto; EVENTUALLY_WITHINREAL] THEN MESON_TAC[]);; let LIM_ATREAL = prove (`!f l:real^N a. (f --> l) (atreal a) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. &0 < abs(x - a) /\ abs(x - a) < d ==> dist(f(x),l) < e`, REWRITE_TAC[tendsto; EVENTUALLY_ATREAL] THEN MESON_TAC[]);; let REALLIM_WITHINREAL_LE = prove (`!f l a s. (f ---> l) (atreal a within s) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) <= d ==> abs(f(x) - l) < e`, REWRITE_TAC[tendsto_real; EVENTUALLY_WITHINREAL_LE]);; let REALLIM_WITHINREAL = prove (`!f l a s. (f ---> l) (atreal a within s) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. x IN s /\ &0 < abs(x - a) /\ abs(x - a) < d ==> abs(f(x) - l) < e`, REWRITE_TAC[tendsto_real; EVENTUALLY_WITHINREAL] THEN MESON_TAC[]);; let REALLIM_ATREAL = prove (`!f l a. (f ---> l) (atreal a) <=> !e. &0 < e ==> ?d. &0 < d /\ !x. &0 < abs(x - a) /\ abs(x - a) < d ==> abs(f(x) - l) < e`, REWRITE_TAC[tendsto_real; EVENTUALLY_ATREAL] THEN MESON_TAC[]);; let REALLIM_AT_POSINFINITY = prove (`!f l. (f ---> l) at_posinfinity <=> !e. &0 < e ==> ?b. !x. x >= b ==> abs(f(x) - l) < e`, REWRITE_TAC[tendsto_real; EVENTUALLY_AT_POSINFINITY] THEN MESON_TAC[]);; let REALLIM_AT_NEGINFINITY = prove (`!f l. (f ---> l) at_neginfinity <=> !e. &0 < e ==> ?b. !x. x <= b ==> abs(f(x) - l) < e`, REWRITE_TAC[tendsto_real; EVENTUALLY_AT_NEGINFINITY] THEN MESON_TAC[]);; let LIM_ATREAL_WITHINREAL = prove (`!f l a s. (f --> l) (atreal a) ==> (f --> l) (atreal a within s)`, REWRITE_TAC[LIM_ATREAL; LIM_WITHINREAL] THEN MESON_TAC[]);; let REALLIM_AT_WITHIN = prove (`!f l a s. (f ---> l) (at a) ==> (f ---> l) (at a within s)`, REWRITE_TAC[TENDSTO_REAL; LIM_AT_WITHIN]);; let REALLIM_ATREAL_WITHINREAL = prove (`!f l a s. (f ---> l) (atreal a) ==> (f ---> l) (atreal a within s)`, REWRITE_TAC[REALLIM_ATREAL; REALLIM_WITHINREAL] THEN MESON_TAC[]);; let REALLIM_WITHIN_SUBSET = prove (`!f l a s t. (f ---> l) (at a within s) /\ t SUBSET s ==> (f ---> l) (at a within t)`, REWRITE_TAC[REALLIM_WITHIN; SUBSET] THEN MESON_TAC[]);; let REALLIM_WITHINREAL_SUBSET = prove (`!f l a s t. (f ---> l) (atreal a within s) /\ t SUBSET s ==> (f ---> l) (atreal a within t)`, REWRITE_TAC[REALLIM_WITHINREAL; SUBSET] THEN MESON_TAC[]);; let LIM_WITHINREAL_SUBSET = prove (`!f l a s t. (f --> l) (atreal a within s) /\ t SUBSET s ==> (f --> l) (atreal a within t)`, REWRITE_TAC[LIM_WITHINREAL; SUBSET] THEN MESON_TAC[]);; let REALLIM_ATREAL_ID = prove (`((\x. x) ---> a) (atreal a)`, REWRITE_TAC[REALLIM_ATREAL] THEN MESON_TAC[]);; let REALLIM_WITHINREAL_ID = prove (`!a. ((\x. x) ---> a) (atreal a within s)`, REWRITE_TAC[REALLIM_WITHINREAL] THEN MESON_TAC[]);; let LIM_TRANSFORM_WITHINREAL_SET = prove (`!f a s t. eventually (\x. x IN s <=> x IN t) (atreal a) ==> ((f --> l) (atreal a within s) <=> (f --> l) (atreal a within t))`, REPEAT GEN_TAC THEN REWRITE_TAC[EVENTUALLY_ATREAL; LIM_WITHINREAL] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN ASM_MESON_TAC[]);; let REALLIM_TRANSFORM_WITHIN_SET = prove (`!f a s t. eventually (\x. x IN s <=> x IN t) (at a) ==> ((f ---> l) (at a within s) <=> (f ---> l) (at a within t))`, REPEAT GEN_TAC THEN REWRITE_TAC[EVENTUALLY_AT; REALLIM_WITHIN] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN ASM_MESON_TAC[]);; let REALLIM_TRANSFORM_WITHINREAL_SET = prove (`!f a s t. eventually (\x. x IN s <=> x IN t) (atreal a) ==> ((f ---> l) (atreal a within s) <=> (f ---> l) (atreal a within t))`, REPEAT GEN_TAC THEN REWRITE_TAC[EVENTUALLY_ATREAL; REALLIM_WITHINREAL] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN ASM_MESON_TAC[]);; let REALLIM_TRANSFORM_WITHIN_SET_IMP = prove (`!f l a s t. eventually (\x. x IN t ==> x IN s) (at a) /\ (f ---> l) (at a within s) ==> (f ---> l) (at a within t)`, REWRITE_TAC[TENDSTO_REAL; LIM_TRANSFORM_WITHIN_SET_IMP]);; let LIM_TRANSFORM_WITHINREAL_SET_IMP = prove (`!f l a s t. eventually (\x. x IN t ==> x IN s) (atreal a) /\ (f --> l) (atreal a within s) ==> (f --> l) (atreal a within t)`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ; EVENTUALLY_ATREAL; LIM_WITHINREAL] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN ASM_MESON_TAC[]);; let REALLIM_TRANSFORM_WITHINREAL_SET_IMP = prove (`!f l a s t. eventually (\x. x IN t ==> x IN s) (atreal a) /\ (f ---> l) (atreal a within s) ==> (f ---> l) (atreal a within t)`, REWRITE_TAC[TENDSTO_REAL; LIM_TRANSFORM_WITHINREAL_SET_IMP]);; let REALLIM_COMPOSE_WITHIN = prove (`!net:A net f g s y z. (f ---> y) net /\ eventually (\w. f w IN s /\ (f w = y ==> g y = z)) net /\ (g ---> z) (atreal y within s) ==> ((g o f) ---> z) net`, REPEAT GEN_TAC THEN REWRITE_TAC[tendsto_real; CONJ_ASSOC] THEN ONCE_REWRITE_TAC[LEFT_AND_FORALL_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EVENTUALLY_WITHINREAL; GSYM DIST_NZ; o_DEF] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o SPEC `d:real`) THEN ASM_REWRITE_TAC[GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN X_GEN_TAC `x:A` THEN ASM_CASES_TAC `(f:A->real) x = y` THEN ASM_MESON_TAC[REAL_ARITH `abs(x - y) = &0 <=> x = y`; REAL_ARITH `&0 < abs(x - y) <=> ~(x = y)`]);; let REALLIM_COMPOSE_AT = prove (`!net:A net f g y z. (f ---> y) net /\ eventually (\w. f w = y ==> g y = z) net /\ (g ---> z) (atreal y) ==> ((g o f) ---> z) net`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`net:A net`; `f:A->real`; `g:real->real`; `(:real)`; `y:real`; `z:real`] REALLIM_COMPOSE_WITHIN) THEN ASM_REWRITE_TAC[IN_UNIV; WITHINREAL_UNIV]);; (* ------------------------------------------------------------------------- *) (* Summability of alternating seties. *) (* ------------------------------------------------------------------------- *) let ALTERNATING_SUM_BOUNDS = prove (`!a. (!n. abs(a(SUC n)) <= abs(a n)) /\ (!n. EVEN n ==> &0 <= a n) /\ (!n. ODD n ==> a n <= &0) ==> !m n. (EVEN m ==> &0 <= sum(m..n) a /\ sum(m..n) a <= a(m)) /\ (ODD m ==> a(m) <= sum(m..n) a /\ sum(m..n) a <= &0)`, GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[LE_EXISTS; NOT_LT] `(!m n:num. n < m ==> P m n) /\ (!n m. P m (m + n)) ==> !m n. P m n`) THEN ASM_SIMP_TAC[GSYM NUMSEG_EMPTY; SUM_CLAUSES; REAL_LE_REFL] THEN INDUCT_TAC THEN ASM_SIMP_TAC[ADD_CLAUSES; SUM_SING_NUMSEG; REAL_LE_REFL] THEN SIMP_TAC[SUM_CLAUSES_LEFT; ARITH_RULE `m <= SUC(m + n)`] THEN X_GEN_TAC `m:num` THEN SIMP_TAC[ARITH_RULE `SUC(m + n) = (m + 1) + n`] THEN CONJ_TAC THEN DISCH_TAC THEN FIRST_X_ASSUM(CONJUNCTS_THEN MP_TAC o SPEC `m + 1`) THEN ASM_REWRITE_TAC[ODD_ADD; EVEN_ADD; ARITH; NOT_ODD; NOT_EVEN] THEN SIMP_TAC[REAL_LE_ADDR; REAL_ARITH `x + y <= x <=> y <= &0`] THENL [MATCH_MP_TAC(REAL_ARITH `abs b <= abs a /\ &0 <= a ==> b <= s /\ u <= v ==> &0 <= a + s`); MATCH_MP_TAC(REAL_ARITH `abs b <= abs a /\ a <= &0 ==> u <= v /\ s <= b ==> a + s <= &0`)] THEN ASM_SIMP_TAC[GSYM ADD1]);; let ALTERNATING_SUM_BOUND = prove (`!a. (!n. abs(a(SUC n)) <= abs(a n)) /\ (!n. EVEN n ==> &0 <= a n) /\ (!n. ODD n ==> a n <= &0) ==> !m n. abs(sum(m..n) a) <= abs(a m)`, GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP ALTERNATING_SUM_BOUNDS) THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN REWRITE_TAC[GSYM NOT_EVEN] THEN ASM_CASES_TAC `EVEN m` THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; let REAL_SUMMABLE_ALTERNATING_SERIES = prove (`!a m. (!n. abs(a(SUC n)) <= abs(a n)) /\ (!n. EVEN n ==> &0 <= a n) /\ (!n. ODD n ==> a n <= &0) /\ (a ---> &0) sequentially ==> real_summable (from m) a`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_SUMMABLE_CAUCHY; FROM_INTER_NUMSEG_MAX] THEN X_GEN_TAC `e:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REALLIM_SEQUENTIALLY]) THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[GE; REAL_SUB_RZERO] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`n:num`; `p:num`] THEN DISCH_TAC THEN TRANS_TAC REAL_LET_TRANS `abs(a(MAX m n))` THEN ASM_SIMP_TAC[ALTERNATING_SUM_BOUND] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Relations between limits at real and complex limit points. *) (* ------------------------------------------------------------------------- *) let TRIVIAL_LIMIT_WITHINREAL_WITHIN = prove (`trivial_limit(atreal x within s) <=> trivial_limit(at (lift x) within (IMAGE lift s))`, REWRITE_TAC[trivial_limit; AT; WITHIN; ATREAL] THEN REWRITE_TAC[EVENTUALLY_WITHIN; EVENTUALLY_WITHINREAL] THEN REWRITE_TAC[TAUT `~(p /\ q /\ r) <=> p ==> ~(q /\ r)`] THEN REWRITE_TAC[FORALL_IN_IMAGE; DIST_LIFT]);; let TRIVIAL_LIMIT_WITHINREAL_WITHINCOMPLEX = prove (`trivial_limit(atreal x within s) <=> trivial_limit(at (Cx x) within (real INTER IMAGE Cx s))`, REWRITE_TAC[trivial_limit; AT; WITHIN; ATREAL] THEN REWRITE_TAC[EVENTUALLY_WITHIN; EVENTUALLY_WITHINREAL] THEN REWRITE_TAC[SET_RULE `(!x. ~(x IN s INTER IMAGE f t /\ P x /\ Q x)) <=> (!x. x IN t ==> ~(f x IN s /\ P(f x) /\ Q(f x)))`] THEN REWRITE_TAC[DIST_CX; REAL_CX; IN] THEN MESON_TAC[]);; let LIM_WITHINREAL_WITHINCOMPLEX = prove (`(f --> a) (atreal x within s) <=> ((f o Re) --> a) (at(Cx x) within (real INTER IMAGE Cx s))`, REWRITE_TAC[LIM_WITHINREAL; LIM_WITHIN] THEN REWRITE_TAC[SET_RULE `x IN real INTER s <=> real x /\ x IN s`] THEN REWRITE_TAC[IMP_CONJ; FORALL_REAL; MESON[IN_IMAGE; CX_INJ] `Cx x IN IMAGE Cx s <=> x IN s`] THEN REWRITE_TAC[dist; GSYM CX_SUB; o_THM; RE_CX; COMPLEX_NORM_CX]);; let LIM_ATREAL_ATCOMPLEX = prove (`(f --> a) (atreal x) <=> ((f o Re) --> a) (at (Cx x) within real)`, REWRITE_TAC[LIM_ATREAL; LIM_WITHIN] THEN REWRITE_TAC[IMP_CONJ; FORALL_REAL; IN; dist; GSYM CX_SUB; COMPLEX_NORM_CX; o_THM; RE_CX]);; (* ------------------------------------------------------------------------- *) (* Simpler theorems relating limits in real and real^1. *) (* ------------------------------------------------------------------------- *) let LIM_WITHINREAL_WITHIN = prove (`(f --> a) (atreal x within s) <=> ((f o drop) --> a) (at (lift x) within (IMAGE lift s))`, REWRITE_TAC[LIM_WITHINREAL; LIM_WITHIN] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; DIST_LIFT; o_THM; LIFT_DROP]);; let LIM_ATREAL_AT = prove (`(f --> a) (atreal x) <=> ((f o drop) --> a) (at (lift x))`, REWRITE_TAC[LIM_ATREAL; LIM_AT; FORALL_LIFT] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; DIST_LIFT; o_THM; LIFT_DROP]);; let REALLIM_WITHINREAL_WITHIN = prove (`(f ---> a) (atreal x within s) <=> ((f o drop) ---> a) (at (lift x) within (IMAGE lift s))`, REWRITE_TAC[REALLIM_WITHINREAL; REALLIM_WITHIN] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; DIST_LIFT; o_THM; LIFT_DROP]);; let REALLIM_ATREAL_AT = prove (`(f ---> a) (atreal x) <=> ((f o drop) ---> a) (at (lift x))`, REWRITE_TAC[REALLIM_ATREAL; REALLIM_AT; FORALL_LIFT] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; DIST_LIFT; o_THM; LIFT_DROP]);; let REALLIM_WITHIN_OPEN = prove (`!f:real^N->real l a s. a IN s /\ open s ==> ((f ---> l) (at a within s) <=> (f ---> l) (at a))`, REWRITE_TAC[TENDSTO_REAL; LIM_WITHIN_OPEN]);; let LIM_WITHIN_REAL_OPEN = prove (`!f:real->real^N l a s. a IN s /\ real_open s ==> ((f --> l) (atreal a within s) <=> (f --> l) (atreal a))`, REWRITE_TAC[LIM_WITHINREAL_WITHIN; LIM_ATREAL_AT; REAL_OPEN] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_WITHIN_OPEN THEN ASM SET_TAC[]);; let REALLIM_WITHIN_REAL_OPEN = prove (`!f l a s. a IN s /\ real_open s ==> ((f ---> l) (atreal a within s) <=> (f ---> l) (atreal a))`, REWRITE_TAC[TENDSTO_REAL; LIM_WITHIN_REAL_OPEN]);; let LIM_ATREAL_ZERO = prove (`!f l a. (f --> l) (atreal a) <=> ((\x. f (a + x)) --> l) (atreal (&0))`, REPEAT GEN_TAC THEN REWRITE_TAC[LIM_ATREAL_AT; LIFT_NUM; o_DEF] THEN GEN_REWRITE_TAC LAND_CONV [LIM_AT_ZERO] THEN REWRITE_TAC[LIFT_DROP; DROP_ADD]);; let REALLIM_AT_ZERO = prove (`!f l a. (f ---> l) (at a) <=> ((\x. f (a + x)) ---> l) (at (vec 0))`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN GEN_REWRITE_TAC LAND_CONV [LIM_AT_ZERO] THEN REWRITE_TAC[o_DEF]);; let REALLIM_ATREAL_ZERO = prove (`!f l a. (f ---> l) (atreal a) <=> ((\x. f (a + x)) ---> l) (atreal (&0))`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN GEN_REWRITE_TAC LAND_CONV [LIM_ATREAL_ZERO] THEN REWRITE_TAC[o_DEF]);; (* ------------------------------------------------------------------------- *) (* Additional congruence rules for simplifying limits. *) (* ------------------------------------------------------------------------- *) let LIM_CONG_WITHINREAL = prove (`(!x. ~(x = a) ==> f x = g x) ==> (((\x. f x) --> l) (atreal a within s) <=> ((g --> l) (atreal a within s)))`, SIMP_TAC[LIM_WITHINREAL; GSYM REAL_ABS_NZ; REAL_SUB_0]);; let LIM_CONG_ATREAL = prove (`(!x. ~(x = a) ==> f x = g x) ==> (((\x. f x) --> l) (atreal a) <=> ((g --> l) (atreal a)))`, SIMP_TAC[LIM_ATREAL; GSYM REAL_ABS_NZ; REAL_SUB_0]);; extend_basic_congs [LIM_CONG_WITHINREAL; LIM_CONG_ATREAL];; let REALLIM_CONG_WITHIN = prove (`(!x. ~(x = a) ==> f x = g x) ==> (((\x. f x) ---> l) (at a within s) <=> ((g ---> l) (at a within s)))`, REWRITE_TAC[REALLIM_WITHIN; GSYM DIST_NZ] THEN SIMP_TAC[]);; let REALLIM_CONG_AT = prove (`(!x. ~(x = a) ==> f x = g x) ==> (((\x. f x) ---> l) (at a) <=> ((g ---> l) (at a)))`, REWRITE_TAC[REALLIM_AT; GSYM DIST_NZ] THEN SIMP_TAC[]);; extend_basic_congs [REALLIM_CONG_WITHIN; REALLIM_CONG_AT];; let REALLIM_CONG_WITHINREAL = prove (`(!x. ~(x = a) ==> f x = g x) ==> (((\x. f x) ---> l) (atreal a within s) <=> ((g ---> l) (atreal a within s)))`, SIMP_TAC[REALLIM_WITHINREAL; GSYM REAL_ABS_NZ; REAL_SUB_0]);; let REALLIM_CONG_ATREAL = prove (`(!x. ~(x = a) ==> f x = g x) ==> (((\x. f x) ---> l) (atreal a) <=> ((g ---> l) (atreal a)))`, SIMP_TAC[REALLIM_ATREAL; GSYM REAL_ABS_NZ; REAL_SUB_0]);; extend_basic_congs [REALLIM_CONG_WITHINREAL; REALLIM_CONG_ATREAL];; (* ------------------------------------------------------------------------- *) (* Real version of Abel limit theorem. *) (* ------------------------------------------------------------------------- *) let REAL_ABEL_LIMIT_THEOREM = prove (`!s a. real_summable s a ==> (!r. abs(r) < &1 ==> real_summable s (\i. a i * r pow i)) /\ ((\r. real_infsum s (\i. a i * r pow i)) ---> real_infsum s a) (atreal (&1) within {z | z <= &1})`, REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL [`&1`; `s:num->bool`; `Cx o (a:num->real)`] ABEL_LIMIT_THEOREM_1) THEN ASM_REWRITE_TAC[GSYM REAL_SUMMABLE_COMPLEX; REAL_LT_01] THEN STRIP_TAC THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [X_GEN_TAC `r:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `Cx r`) THEN ASM_REWRITE_TAC[COMPLEX_NORM_CX; REAL_SUMMABLE_COMPLEX] THEN REWRITE_TAC[o_DEF; CX_MUL; CX_POW]; DISCH_TAC] THEN REWRITE_TAC[REALLIM_COMPLEX; LIM_WITHINREAL_WITHINCOMPLEX] THEN MATCH_MP_TAC LIM_TRANSFORM_WITHIN THEN EXISTS_TAC `\z. infsum s (\i. (Cx o a) i * z pow i)` THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN CONJ_TAC THENL [REWRITE_TAC[IMP_CONJ; IN_INTER; IN_ELIM_THM; IN_IMAGE] THEN REWRITE_TAC[IN; FORALL_REAL] THEN X_GEN_TAC `r:real` THEN REWRITE_TAC[CX_INJ; UNWIND_THM1; dist; GSYM CX_SUB; COMPLEX_NORM_CX] THEN DISCH_TAC THEN ASM_SIMP_TAC[REAL_ARITH `r <= &1 ==> (&0 < abs(r - &1) <=> r < &1)`] THEN REPEAT DISCH_TAC THEN SUBGOAL_THEN `abs(r) < &1` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[REAL_INFSUM_COMPLEX; o_THM; RE_CX] THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM REAL; o_DEF; CX_MUL; CX_POW] THEN MATCH_MP_TAC(ISPEC `sequentially` REAL_LIM) THEN EXISTS_TAC `\n. vsum(s INTER (0..n)) (\i. Cx(a i) * Cx r pow i)` THEN REWRITE_TAC[SEQUENTIALLY; TRIVIAL_LIMIT_SEQUENTIALLY; GSYM sums] THEN SIMP_TAC[GSYM CX_POW; GSYM CX_MUL; REAL_VSUM; FINITE_INTER; FINITE_NUMSEG; SUMS_INFSUM; REAL_CX; GE; EVENTUALLY_TRUE] THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN ASM_SIMP_TAC[GSYM REAL_SUMMABLE_COMPLEX]; ALL_TAC] THEN ASM_SIMP_TAC[REAL_INFSUM_COMPLEX] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LIM_WITHIN]) THEN REWRITE_TAC[LIM_WITHIN] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_MUL_LID; IN_ELIM_THM; IN_INTER; IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` (CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "*"))) THEN EXISTS_TAC `min d (&1)` THEN ASM_REWRITE_TAC[REAL_LT_MIN; REAL_LT_01] THEN REWRITE_TAC[IMP_CONJ; IN; FORALL_REAL] THEN REWRITE_TAC[CX_INJ; UNWIND_THM1; dist; GSYM CX_SUB; COMPLEX_NORM_CX] THEN X_GEN_TAC `r:real` THEN DISCH_TAC THEN ASM_SIMP_TAC[REAL_ARITH `r <= &1 ==> (&0 < abs(r - &1) <=> r < &1)`] THEN REPEAT DISCH_TAC THEN SUBGOAL_THEN `abs(r) < &1` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REMOVE_THEN "*" (MP_TAC o SPEC `Cx r`) THEN REWRITE_TAC[CX_INJ; UNWIND_THM1; dist; GSYM CX_SUB; COMPLEX_NORM_CX] THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(NORM_ARITH `b = a ==> norm(x - a) < e ==> norm(x - b) < e`) THEN REWRITE_TAC[GSYM REAL] THEN MATCH_MP_TAC(ISPEC `sequentially` REAL_LIM) THEN EXISTS_TAC `\n. vsum(s INTER (0..n)) (Cx o a)` THEN REWRITE_TAC[SEQUENTIALLY; TRIVIAL_LIMIT_SEQUENTIALLY; GSYM sums] THEN SIMP_TAC[GSYM CX_POW; GSYM CX_MUL; REAL_VSUM; FINITE_INTER; FINITE_NUMSEG; SUMS_INFSUM; REAL_CX; GE; o_DEF; EVENTUALLY_TRUE] THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN ASM_SIMP_TAC[GSYM REAL_SUMMABLE_COMPLEX]);; (* ------------------------------------------------------------------------- *) (* Continuity of a function into the reals. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("real_continuous",(12,"right"));; let real_continuous = new_definition `f real_continuous net <=> (f ---> f(netlimit net)) net`;; let REAL_CONTINUOUS_TRIVIAL_LIMIT = prove (`!f net. trivial_limit net ==> f real_continuous net`, SIMP_TAC[real_continuous; REALLIM_TRIVIAL]);; let REAL_CONTINUOUS_WITHIN = prove (`!f x:real^N s. f real_continuous (at x within s) <=> (f ---> f(x)) (at x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous] THEN ASM_CASES_TAC `trivial_limit(at(x:real^N) within s)` THEN ASM_SIMP_TAC[REALLIM_TRIVIAL; NETLIMIT_WITHIN]);; let REAL_CONTINUOUS_AT = prove (`!f x. f real_continuous (at x) <=> (f ---> f(x)) (at x)`, ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[REAL_CONTINUOUS_WITHIN; IN_UNIV]);; let REAL_CONTINUOUS_WITHINREAL = prove (`!f x s. f real_continuous (atreal x within s) <=> (f ---> f(x)) (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous] THEN ASM_CASES_TAC `trivial_limit(atreal x within s)` THEN ASM_SIMP_TAC[REALLIM_TRIVIAL; NETLIMIT_WITHINREAL]);; let REAL_CONTINUOUS_ATREAL = prove (`!f x. f real_continuous (atreal x) <=> (f ---> f(x)) (atreal x)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[REAL_CONTINUOUS_WITHINREAL; IN_UNIV]);; let CONTINUOUS_WITHINREAL = prove (`!f x s. f continuous (atreal x within s) <=> (f --> f(x)) (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous] THEN ASM_CASES_TAC `trivial_limit(atreal x within s)` THEN ASM_SIMP_TAC[REALLIM_TRIVIAL; NETLIMIT_WITHINREAL]);; let CONTINUOUS_ATREAL = prove (`!f x. f continuous (atreal x) <=> (f --> f(x)) (atreal x)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[CONTINUOUS_WITHINREAL; IN_UNIV]);; let real_continuous_within = prove (`f real_continuous (at x within s) <=> !e. &0 < e ==> ?d. &0 < d /\ (!x'. x' IN s /\ dist(x',x) < d ==> abs(f x' - f x) < e)`, REWRITE_TAC[REAL_CONTINUOUS_WITHIN; REALLIM_WITHIN] THEN REWRITE_TAC[GSYM DIST_NZ] THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN ASM_MESON_TAC[REAL_ARITH `abs(x - x) = &0`]);; let real_continuous_at = prove (`f real_continuous (at x) <=> !e. &0 < e ==> ?d. &0 < d /\ (!x'. dist(x',x) < d ==> abs(f x' - f x) < e)`, ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[real_continuous_within; IN_UNIV]);; let real_continuous_withinreal = prove (`f real_continuous (atreal x within s) <=> !e. &0 < e ==> ?d. &0 < d /\ (!x'. x' IN s /\ abs(x' - x) < d ==> abs(f x' - f x) < e)`, REWRITE_TAC[REAL_CONTINUOUS_WITHINREAL; REALLIM_WITHINREAL] THEN REWRITE_TAC[REAL_ARITH `&0 < abs(x - y) <=> ~(x = y)`] THEN EQ_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_FORALL THEN ASM_MESON_TAC[REAL_ARITH `abs(x - x) = &0`]);; let real_continuous_atreal = prove (`f real_continuous (atreal x) <=> !e. &0 < e ==> ?d. &0 < d /\ (!x'. abs(x' - x) < d ==> abs(f x' - f x) < e)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[real_continuous_withinreal; IN_UNIV]);; let REAL_CONTINUOUS_AT_WITHIN = prove (`!f s x. f real_continuous (at x) ==> f real_continuous (at x within s)`, REWRITE_TAC[real_continuous_within; real_continuous_at] THEN MESON_TAC[]);; let REAL_CONTINUOUS_ATREAL_WITHINREAL = prove (`!f s x. f real_continuous (atreal x) ==> f real_continuous (atreal x within s)`, REWRITE_TAC[real_continuous_withinreal; real_continuous_atreal] THEN MESON_TAC[]);; let REAL_CONTINUOUS_WITHINREAL_SUBSET = prove (`!f s t. f real_continuous (atreal x within s) /\ t SUBSET s ==> f real_continuous (atreal x within t)`, REWRITE_TAC[REAL_CONTINUOUS_WITHINREAL; REALLIM_WITHINREAL_SUBSET]);; let REAL_CONTINUOUS_WITHIN_SUBSET = prove (`!f s t. f real_continuous (at x within s) /\ t SUBSET s ==> f real_continuous (at x within t)`, REWRITE_TAC[REAL_CONTINUOUS_WITHIN; REALLIM_WITHIN_SUBSET]);; let CONTINUOUS_WITHINREAL_SUBSET = prove (`!f s t. f continuous (atreal x within s) /\ t SUBSET s ==> f continuous (atreal x within t)`, REWRITE_TAC[CONTINUOUS_WITHINREAL; LIM_WITHINREAL_SUBSET]);; let continuous_withinreal = prove (`f continuous (atreal x within s) <=> !e. &0 < e ==> ?d. &0 < d /\ (!x'. x' IN s /\ abs(x' - x) < d ==> dist(f x',f x) < e)`, REWRITE_TAC[CONTINUOUS_WITHINREAL; LIM_WITHINREAL] THEN REWRITE_TAC[REAL_ARITH `&0 < abs(x - y) <=> ~(x = y)`] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `d:real` THEN ASM_CASES_TAC `&0 < d` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[DIST_REFL]);; let continuous_atreal = prove (`f continuous (atreal x) <=> !e. &0 < e ==> ?d. &0 < d /\ (!x'. abs(x' - x) < d ==> dist(f x',f x) < e)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[continuous_withinreal; IN_UNIV]);; let CONTINUOUS_ATREAL_WITHINREAL = prove (`!f x s. f continuous (atreal x) ==> f continuous (atreal x within s)`, SIMP_TAC[continuous_atreal; continuous_withinreal] THEN MESON_TAC[]);; let CONTINUOUS_CX_ATREAL = prove (`!x. Cx continuous (atreal x)`, GEN_TAC THEN REWRITE_TAC[continuous_atreal; dist] THEN REWRITE_TAC[COMPLEX_NORM_CX; GSYM CX_SUB] THEN MESON_TAC[]);; let CONTINUOUS_CX_WITHINREAL = prove (`!s x. Cx continuous (atreal x within s)`, SIMP_TAC[CONTINUOUS_ATREAL_WITHINREAL; CONTINUOUS_CX_ATREAL]);; let REAL_CONTINUOUS_TRANSFORM_WITHIN = prove (`!f g s:real^N->bool x d. &0 < d /\ x IN s /\ (!x'. x' IN s /\ dist(x',x) < d ==> f x' = g x') /\ f real_continuous at x within s ==> g real_continuous at x within s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous_within] THEN STRIP_TAC THEN X_GEN_TAC `k:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d e:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN ASM_MESON_TAC[DIST_REFL]);; let REAL_CONTINUOUS_TRANSFORM_WITHINREAL = prove (`!f g s x d. &0 < d /\ x IN s /\ (!x'. x' IN s /\ abs(x' - x) < d ==> f x' = g x') /\ f real_continuous atreal x within s ==> g real_continuous atreal x within s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous_withinreal] THEN STRIP_TAC THEN X_GEN_TAC `k:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `k:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `e:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d e:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN ASM_MESON_TAC[REAL_ARITH `abs(x - x) = &0`]);; let REAL_CONTINUOUS_TRANSFORM_AT = prove (`!f g x:real^N d. &0 < d /\ (!x'. dist(x',x) < d ==> f x' = g x') /\ f real_continuous at x ==> g real_continuous at x`, MP_TAC REAL_CONTINUOUS_TRANSFORM_WITHIN THEN REPLICATE_TAC 2 (MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(MP_TAC o SPEC `(:real^N)`) THEN REWRITE_TAC[IN_UNIV; WITHIN_UNIV]);; let REAL_CONTINUOUS_TRANSFORM_ATREAL = prove (`!f g x d. &0 < d /\ (!x'. abs(x' - x) < d ==> f x' = g x') /\ f real_continuous (atreal x) ==> g real_continuous (atreal x)`, MP_TAC REAL_CONTINUOUS_TRANSFORM_WITHINREAL THEN REPLICATE_TAC 2 (MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(MP_TAC o SPEC `(:real)`) THEN REWRITE_TAC[IN_UNIV; WITHINREAL_UNIV]);; (* ------------------------------------------------------------------------- *) (* Arithmetic combining theorems. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_CONST = prove (`!net c. (\x. c) real_continuous net`, REWRITE_TAC[real_continuous; REALLIM_CONST]);; let REAL_CONTINUOUS_LMUL = prove (`!f c net. f real_continuous net ==> (\x. c * f(x)) real_continuous net`, REWRITE_TAC[real_continuous; REALLIM_LMUL]);; let REAL_CONTINUOUS_RMUL = prove (`!f c net. f real_continuous net ==> (\x. f(x) * c) real_continuous net`, REWRITE_TAC[real_continuous; REALLIM_RMUL]);; let REAL_CONTINUOUS_NEG = prove (`!f net. f real_continuous net ==> (\x. --(f x)) real_continuous net`, REWRITE_TAC[real_continuous; REALLIM_NEG]);; let REAL_CONTINUOUS_ADD = prove (`!f g net. f real_continuous net /\ g real_continuous net ==> (\x. f(x) + g(x)) real_continuous net`, REWRITE_TAC[real_continuous; REALLIM_ADD]);; let REAL_CONTINUOUS_SUB = prove (`!f g net. f real_continuous net /\ g real_continuous net ==> (\x. f(x) - g(x)) real_continuous net`, REWRITE_TAC[real_continuous; REALLIM_SUB]);; let REAL_CONTINUOUS_MUL = prove (`!net f g. f real_continuous net /\ g real_continuous net ==> (\x. f(x) * g(x)) real_continuous net`, SIMP_TAC[real_continuous; REALLIM_MUL]);; let REAL_CONTINUOUS_INV = prove (`!net f. f real_continuous net /\ ~(f(netlimit net) = &0) ==> (\x. inv(f x)) real_continuous net`, SIMP_TAC[real_continuous; REALLIM_INV]);; let REAL_CONTINUOUS_DIV = prove (`!net f g. f real_continuous net /\ g real_continuous net /\ ~(g(netlimit net) = &0) ==> (\x. f(x) / g(x)) real_continuous net`, SIMP_TAC[real_continuous; REALLIM_DIV]);; let REAL_CONTINUOUS_POW = prove (`!net f n. f real_continuous net ==> (\x. f(x) pow n) real_continuous net`, SIMP_TAC[real_continuous; REALLIM_POW]);; let REAL_CONTINUOUS_ABS = prove (`!net f. f real_continuous net ==> (\x. abs(f(x))) real_continuous net`, REWRITE_TAC[real_continuous; REALLIM_ABS]);; let REAL_CONTINUOUS_MAX = prove (`!f g net. f real_continuous net /\ g real_continuous net ==> (\x. max (f x) (g x)) real_continuous net`, REWRITE_TAC[real_continuous; REALLIM_MAX]);; let REAL_CONTINUOUS_MIN = prove (`!f g net. f real_continuous net /\ g real_continuous net ==> (\x. min (f x) (g x)) real_continuous net`, REWRITE_TAC[real_continuous; REALLIM_MIN]);; (* ------------------------------------------------------------------------- *) (* Some of these without netlimit, but with many different cases. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_WITHIN_ID = prove (`!x s. (\x. x) real_continuous (atreal x within s)`, REWRITE_TAC[real_continuous_withinreal] THEN MESON_TAC[]);; let REAL_CONTINUOUS_AT_ID = prove (`!x. (\x. x) real_continuous (atreal x)`, REWRITE_TAC[real_continuous_atreal] THEN MESON_TAC[]);; let REAL_CONTINUOUS_INV_WITHIN = prove (`!f s a. f real_continuous (at a within s) /\ ~(f a = &0) ==> (\x. inv(f x)) real_continuous (at a within s)`, MESON_TAC[REAL_CONTINUOUS_INV; REAL_CONTINUOUS_TRIVIAL_LIMIT; NETLIMIT_WITHIN]);; let REAL_CONTINUOUS_INV_AT = prove (`!f a. f real_continuous (at a) /\ ~(f a = &0) ==> (\x. inv(f x)) real_continuous (at a)`, ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[REAL_CONTINUOUS_INV_WITHIN]);; let REAL_CONTINUOUS_INV_WITHINREAL = prove (`!f s a. f real_continuous (atreal a within s) /\ ~(f a = &0) ==> (\x. inv(f x)) real_continuous (atreal a within s)`, MESON_TAC[REAL_CONTINUOUS_INV; REAL_CONTINUOUS_TRIVIAL_LIMIT; NETLIMIT_WITHINREAL]);; let REAL_CONTINUOUS_INV_ATREAL = prove (`!f a. f real_continuous (atreal a) /\ ~(f a = &0) ==> (\x. inv(f x)) real_continuous (atreal a)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[REAL_CONTINUOUS_INV_WITHINREAL]);; let REAL_CONTINUOUS_DIV_WITHIN = prove (`!f s a. f real_continuous (at a within s) /\ g real_continuous (at a within s) /\ ~(g a = &0) ==> (\x. f x / g x) real_continuous (at a within s)`, MESON_TAC[REAL_CONTINUOUS_DIV; REAL_CONTINUOUS_TRIVIAL_LIMIT; NETLIMIT_WITHIN]);; let REAL_CONTINUOUS_DIV_AT = prove (`!f a. f real_continuous (at a) /\ g real_continuous (at a) /\ ~(g a = &0) ==> (\x. f x / g x) real_continuous (at a)`, ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[REAL_CONTINUOUS_DIV_WITHIN]);; let REAL_CONTINUOUS_DIV_WITHINREAL = prove (`!f s a. f real_continuous (atreal a within s) /\ g real_continuous (atreal a within s) /\ ~(g a = &0) ==> (\x. f x / g x) real_continuous (atreal a within s)`, MESON_TAC[REAL_CONTINUOUS_DIV; REAL_CONTINUOUS_TRIVIAL_LIMIT; NETLIMIT_WITHINREAL]);; let REAL_CONTINUOUS_DIV_ATREAL = prove (`!f a. f real_continuous (atreal a) /\ g real_continuous (atreal a) /\ ~(g a = &0) ==> (\x. f x / g x) real_continuous (atreal a)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[REAL_CONTINUOUS_DIV_WITHINREAL]);; (* ------------------------------------------------------------------------- *) (* Composition of (real->real) o (real->real) functions. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_WITHINREAL_COMPOSE = prove (`!f g x s. f real_continuous (atreal x within s) /\ g real_continuous (atreal (f x) within IMAGE f s) ==> (g o f) real_continuous (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous_withinreal; o_THM; IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);; let REAL_CONTINUOUS_ATREAL_COMPOSE = prove (`!f g x. f real_continuous (atreal x) /\ g real_continuous (atreal (f x)) ==> (g o f) real_continuous (atreal x)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous_atreal; o_THM; IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Composition of (real->real) o (real^N->real) functions. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_WITHIN_COMPOSE = prove (`!f g x s. f real_continuous (at x within s) /\ g real_continuous (atreal (f x) within IMAGE f s) ==> (g o f) real_continuous (at x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous_withinreal; real_continuous_within; o_THM; IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);; let REAL_CONTINUOUS_AT_COMPOSE = prove (`!f g x. f real_continuous (at x) /\ g real_continuous (atreal (f x) within IMAGE f (:real^N)) ==> (g o f) real_continuous (at x)`, ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[REAL_CONTINUOUS_WITHIN_COMPOSE]);; (* ------------------------------------------------------------------------- *) (* Composition of (real^N->real) o (real^M->real^N) functions. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_CONTINUOUS_WITHIN_COMPOSE = prove (`!f g x s. f continuous (at x within s) /\ g real_continuous (at (f x) within IMAGE f s) ==> (g o f) real_continuous (at x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous_within; continuous_within; o_THM; IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);; let REAL_CONTINUOUS_CONTINUOUS_AT_COMPOSE = prove (`!f g x. f continuous (at x) /\ g real_continuous (at (f x) within IMAGE f (:real^N)) ==> (g o f) real_continuous (at x)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[WITHIN_WITHIN; INTER_UNIV] THEN REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_WITHIN_COMPOSE]);; (* ------------------------------------------------------------------------- *) (* Composition of (real^N->real) o (real->real^N) functions. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_CONTINUOUS_WITHINREAL_COMPOSE = prove (`!f g x s. f continuous (atreal x within s) /\ g real_continuous (at (f x) within IMAGE f s) ==> (g o f) real_continuous (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous_within; continuous_withinreal; real_continuous_withinreal; o_THM; IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);; let REAL_CONTINUOUS_CONTINUOUS_ATREAL_COMPOSE = prove (`!f g x. f continuous (atreal x) /\ g real_continuous (at (f x) within IMAGE f (:real)) ==> (g o f) real_continuous (atreal x)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_WITHINREAL_COMPOSE]);; (* ------------------------------------------------------------------------- *) (* Composition of (real->real^N) o (real->real) functions. *) (* ------------------------------------------------------------------------- *) let CONTINUOUS_REAL_CONTINUOUS_WITHINREAL_COMPOSE = prove (`!f g x s. f real_continuous (atreal x within s) /\ g continuous (atreal (f x) within IMAGE f s) ==> (g o f) continuous (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_continuous_within; continuous_withinreal; real_continuous_withinreal; o_THM; IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);; let CONTINUOUS_REAL_CONTINUOUS_ATREAL_COMPOSE = prove (`!f g x. f real_continuous (atreal x) /\ g continuous (atreal (f x) within IMAGE f (:real)) ==> (g o f) continuous (atreal x)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[WITHIN_WITHIN; INTER_UNIV] THEN REWRITE_TAC[CONTINUOUS_REAL_CONTINUOUS_WITHINREAL_COMPOSE]);; (* ------------------------------------------------------------------------- *) (* Composition of (real^M->real^N) o (real->real^M) functions. *) (* ------------------------------------------------------------------------- *) let CONTINUOUS_WITHINREAL_COMPOSE = prove (`!f g x s. f continuous (atreal x within s) /\ g continuous (at (f x) within IMAGE f s) ==> (g o f) continuous (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous_within; continuous_withinreal; o_THM; IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);; let CONTINUOUS_ATREAL_COMPOSE = prove (`!f g x. f continuous (atreal x) /\ g continuous (at (f x) within IMAGE f (:real)) ==> (g o f) continuous (atreal x)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[WITHIN_WITHIN; INTER_UNIV] THEN REWRITE_TAC[CONTINUOUS_WITHINREAL_COMPOSE]);; (* ------------------------------------------------------------------------- *) (* Composition of (real->real^N) o (real^M->real) functions. *) (* ------------------------------------------------------------------------- *) let CONTINUOUS_REAL_CONTINUOUS_WITHIN_COMPOSE = prove (`!f g x s. f real_continuous (at x within s) /\ g continuous (atreal (f x) within IMAGE f s) ==> (g o f) continuous (at x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[continuous_within; real_continuous_within; continuous_withinreal; o_THM; IN_IMAGE] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_MESON_TAC[]);; let CONTINUOUS_REAL_CONTINUOUS_AT_COMPOSE = prove (`!f g x. f real_continuous (at x) /\ g continuous (atreal (f x) within IMAGE f (:real^M)) ==> (g o f) continuous (at x)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM WITHIN_UNIV] THEN REWRITE_TAC[WITHIN_WITHIN; INTER_UNIV] THEN REWRITE_TAC[CONTINUOUS_REAL_CONTINUOUS_WITHIN_COMPOSE]);; (* ------------------------------------------------------------------------- *) (* Continuity of a real->real function on a set. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("real_continuous_on",(12,"right"));; let real_continuous_on = new_definition `f real_continuous_on s <=> !x. x IN s ==> !e. &0 < e ==> ?d. &0 < d /\ !x'. x' IN s /\ abs(x' - x) < d ==> abs(f(x') - f(x)) < e`;; let REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN = prove (`!f s. f real_continuous_on s <=> !x. x IN s ==> f real_continuous (atreal x within s)`, REWRITE_TAC[real_continuous_on; real_continuous_withinreal]);; let REAL_CONTINUOUS_ON_SUBSET = prove (`!f s t. f real_continuous_on s /\ t SUBSET s ==> f real_continuous_on t`, REWRITE_TAC[real_continuous_on; SUBSET] THEN MESON_TAC[]);; let REAL_CONTINUOUS_ON_COMPOSE = prove (`!f g s. f real_continuous_on s /\ g real_continuous_on (IMAGE f s) ==> (g o f) real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN MESON_TAC[IN_IMAGE; REAL_CONTINUOUS_WITHINREAL_COMPOSE]);; let REAL_CONTINUOUS_ON = prove (`!f s. f real_continuous_on s <=> (lift o f o drop) continuous_on (IMAGE lift s)`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_WITHINREAL; CONTINUOUS_WITHIN; FORALL_IN_IMAGE; REALLIM_WITHINREAL_WITHIN; TENDSTO_REAL] THEN REWRITE_TAC[o_THM; LIFT_DROP]);; let REAL_CONTINUOUS_ON_CONST = prove (`!s c. (\x. c) real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_CONST]);; let REAL_CONTINUOUS_ON_ID = prove (`!s. (\x. x) real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_WITHIN_ID]);; let REAL_CONTINUOUS_ON_LMUL = prove (`!f c s. f real_continuous_on s ==> (\x. c * f(x)) real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_LMUL]);; let REAL_CONTINUOUS_ON_RMUL = prove (`!f c s. f real_continuous_on s ==> (\x. f(x) * c) real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_RMUL]);; let REAL_CONTINUOUS_ON_NEG = prove (`!f s. f real_continuous_on s ==> (\x. --(f x)) real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_NEG]);; let REAL_CONTINUOUS_ON_ADD = prove (`!f g s. f real_continuous_on s /\ g real_continuous_on s ==> (\x. f(x) + g(x)) real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_ADD]);; let REAL_CONTINUOUS_ON_SUB = prove (`!f g s. f real_continuous_on s /\ g real_continuous_on s ==> (\x. f(x) - g(x)) real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_SUB]);; let REAL_CONTINUOUS_ON_MUL = prove (`!f g s. f real_continuous_on s /\ g real_continuous_on s ==> (\x. f(x) * g(x)) real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_MUL]);; let REAL_CONTINUOUS_ON_POW = prove (`!f n s. f real_continuous_on s ==> (\x. f(x) pow n) real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_POW]);; let REAL_CONTINUOUS_ON_INV = prove (`!f s. f real_continuous_on s /\ (!x. x IN s ==> ~(f x = &0)) ==> (\x. inv(f x)) real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_INV_WITHINREAL]);; let REAL_CONTINUOUS_ON_DIV = prove (`!f g s. f real_continuous_on s /\ g real_continuous_on s /\ (!x. x IN s ==> ~(g x = &0)) ==> (\x. f x / g x) real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_DIV_WITHINREAL]);; let REAL_CONTINUOUS_ON_ABS = prove (`!f s. f real_continuous_on s ==> (\x. abs(f x)) real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN SIMP_TAC[REAL_CONTINUOUS_ABS]);; let REAL_CONTINUOUS_ON_MAX = prove (`!f g s. f real_continuous_on s /\ g real_continuous_on s ==> (\x. max (f x) (g x)) real_continuous_on s`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH `max a b = inv(&2) * (a + b + abs(b - a))`] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_LMUL THEN REPEAT(MATCH_MP_TAC REAL_CONTINUOUS_ON_ADD THEN ASM_REWRITE_TAC[]) THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_ABS THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_SUB THEN ASM_REWRITE_TAC[]);; let REAL_CONTINUOUS_ON_MIN = prove (`!f g s. f real_continuous_on s /\ g real_continuous_on s ==> (\x. min (f x) (g x)) real_continuous_on s`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH `min a b = --(max (--a) (--b))`] THEN ASM_SIMP_TAC[REAL_CONTINUOUS_ON_MAX; REAL_CONTINUOUS_ON_NEG]);; let REAL_CONTINUOUS_ON_EQ = prove (`!f g s. (!x. x IN s ==> f(x) = g(x)) /\ f real_continuous_on s ==> g real_continuous_on s`, SIMP_TAC[real_continuous_on; IMP_CONJ]);; let REAL_CONTINUOUS_ON_UNION = prove (`!f s t. real_closed s /\ real_closed t /\ f real_continuous_on s /\ f real_continuous_on t ==> f real_continuous_on (s UNION t)`, REWRITE_TAC[REAL_CLOSED; REAL_CONTINUOUS_ON; IMAGE_UNION; CONTINUOUS_ON_UNION]);; let REAL_CONTINUOUS_ON_UNION_OPEN = prove (`!f s t. real_open s /\ real_open t /\ f real_continuous_on s /\ f real_continuous_on t ==> f real_continuous_on (s UNION t)`, REWRITE_TAC[REAL_OPEN; REAL_CONTINUOUS_ON; IMAGE_UNION; CONTINUOUS_ON_UNION_OPEN]);; let REAL_CONTINUOUS_ON_CASES = prove (`!P f g s t. real_closed s /\ real_closed t /\ f real_continuous_on s /\ g real_continuous_on t /\ (!x. x IN s /\ ~P x \/ x IN t /\ P x ==> f x = g x) ==> (\x. if P x then f x else g x) real_continuous_on (s UNION t)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_UNION THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_EQ THENL [EXISTS_TAC `f:real->real`; EXISTS_TAC `g:real->real`] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);; let REAL_CONTINUOUS_ON_CASES_OPEN = prove (`!P f g s t. real_open s /\ real_open t /\ f real_continuous_on s /\ g real_continuous_on t /\ (!x. x IN s /\ ~P x \/ x IN t /\ P x ==> f x = g x) ==> (\x. if P x then f x else g x) real_continuous_on (s UNION t)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_UNION_OPEN THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_EQ THENL [EXISTS_TAC `f:real->real`; EXISTS_TAC `g:real->real`] THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);; let REAL_CONTINUOUS_SUM = prove (`!net f s. FINITE s /\ (!a. a IN s ==> f a real_continuous net) ==> (\x. sum s (\a. f a x)) real_continuous net`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; SUM_CLAUSES; REAL_CONTINUOUS_CONST; REAL_CONTINUOUS_ADD; ETA_AX]);; let REAL_CONTINUOUS_PRODUCT = prove (`!net f s. FINITE s /\ (!a. a IN s ==> f a real_continuous net) ==> (\x. product s (\a. f a x)) real_continuous net`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; PRODUCT_CLAUSES; REAL_CONTINUOUS_CONST; REAL_CONTINUOUS_MUL; ETA_AX]);; let REAL_CONTINUOUS_ON_SUM = prove (`!t f s. FINITE s /\ (!a. a IN s ==> f a real_continuous_on t) ==> (\x. sum s (\a. f a x)) real_continuous_on t`, REPEAT GEN_TAC THEN SIMP_TAC[REAL_CONTINUOUS_ON; o_DEF; LIFT_SUM] THEN DISCH_THEN(MP_TAC o MATCH_MP CONTINUOUS_ON_VSUM) THEN REWRITE_TAC[]);; let REAL_CONTINUOUS_ON_PRODUCT = prove (`!t f s. FINITE s /\ (!a. a IN s ==> f a real_continuous_on t) ==> (\x. product s (\a. f a x)) real_continuous_on t`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; PRODUCT_CLAUSES; REAL_CONTINUOUS_ON_CONST; REAL_CONTINUOUS_ON_MUL; ETA_AX]);; let REALLIM_CONTINUOUS_FUNCTION = prove (`!f net g l. f continuous (atreal l) /\ (g ---> l) net ==> ((\x. f(g x)) --> f l) net`, REWRITE_TAC[tendsto_real; tendsto; continuous_atreal; eventually] THEN MESON_TAC[]);; let LIM_REAL_CONTINUOUS_FUNCTION = prove (`!f net g l. f real_continuous (at l) /\ (g --> l) net ==> ((\x. f(g x)) ---> f l) net`, REWRITE_TAC[tendsto_real; tendsto; real_continuous_at; eventually] THEN MESON_TAC[]);; let REALLIM_REAL_CONTINUOUS_FUNCTION = prove (`!f net g l. f real_continuous (atreal l) /\ (g ---> l) net ==> ((\x. f(g x)) ---> f l) net`, REWRITE_TAC[tendsto_real; real_continuous_atreal; eventually] THEN MESON_TAC[]);; let REAL_CONTINUOUS_ON_EQ_REAL_CONTINUOUS_AT = prove (`!f s. real_open s ==> (f real_continuous_on s <=> !x. x IN s ==> f real_continuous atreal x)`, SIMP_TAC[REAL_CONTINUOUS_ATREAL; REAL_CONTINUOUS_WITHINREAL; REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REALLIM_WITHIN_REAL_OPEN]);; let REAL_CONTINUOUS_ATTAINS_SUP = prove (`!f s. real_compact s /\ ~(s = {}) /\ f real_continuous_on s ==> ?x. x IN s /\ (!y. y IN s ==> f y <= f x)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`(f:real->real) o drop`; `IMAGE lift s`] CONTINUOUS_ATTAINS_SUP) THEN ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; GSYM real_compact] THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_THM; LIFT_DROP]);; let REAL_CONTINUOUS_ATTAINS_INF = prove (`!f s. real_compact s /\ ~(s = {}) /\ f real_continuous_on s ==> ?x. x IN s /\ (!y. y IN s ==> f x <= f y)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`(f:real->real) o drop`; `IMAGE lift s`] CONTINUOUS_ATTAINS_INF) THEN ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; GSYM real_compact] THEN ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_THM; LIFT_DROP]);; (* ------------------------------------------------------------------------- *) (* Real version of uniform continuity. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("real_uniformly_continuous_on",(12,"right"));; let real_uniformly_continuous_on = new_definition `f real_uniformly_continuous_on s <=> !e. &0 < e ==> ?d. &0 < d /\ !x x'. x IN s /\ x' IN s /\ abs(x' - x) < d ==> abs(f x' - f x) < e`;; let REAL_UNIFORMLY_CONTINUOUS_ON = prove (`!f s. f real_uniformly_continuous_on s <=> (lift o f o drop) uniformly_continuous_on (IMAGE lift s)`, REWRITE_TAC[real_uniformly_continuous_on; uniformly_continuous_on] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_THM; DIST_LIFT; LIFT_DROP]);; let REAL_UNIFORMLY_CONTINUOUS_IMP_REAL_CONTINUOUS = prove (`!f s. f real_uniformly_continuous_on s ==> f real_continuous_on s`, REWRITE_TAC[real_uniformly_continuous_on; real_continuous_on] THEN MESON_TAC[]);; let REAL_UNIFORMLY_CONTINUOUS_ON_SEQUENTIALLY = prove (`!f s. f real_uniformly_continuous_on s <=> !x y. (!n. x(n) IN s) /\ (!n. y(n) IN s) /\ ((\n. x(n) - y(n)) ---> &0) sequentially ==> ((\n. f(x(n)) - f(y(n))) ---> &0) sequentially`, REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON] THEN REWRITE_TAC[UNIFORMLY_CONTINUOUS_ON_SEQUENTIALLY; REAL_TENDSTO] THEN REWRITE_TAC[o_DEF; LIFT_DROP; IN_IMAGE_LIFT_DROP; DROP_SUB; DROP_VEC] THEN REWRITE_TAC[FORALL_LIFT_FUN; o_THM; LIFT_DROP]);; let REAL_UNIFORMLY_CONTINUOUS_ON_SUBSET = prove (`!f s t. f real_uniformly_continuous_on s /\ t SUBSET s ==> f real_uniformly_continuous_on t`, REWRITE_TAC[real_uniformly_continuous_on; SUBSET] THEN MESON_TAC[]);; let REAL_UNIFORMLY_CONTINUOUS_ON_COMPOSE = prove (`!f g s. f real_uniformly_continuous_on s /\ g real_uniformly_continuous_on (IMAGE f s) ==> (g o f) real_uniformly_continuous_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON] THEN SUBGOAL_THEN `IMAGE lift (IMAGE f s) = IMAGE (lift o f o drop) (IMAGE lift s)` SUBST1_TAC THENL [ALL_TAC; DISCH_THEN(MP_TAC o MATCH_MP UNIFORMLY_CONTINUOUS_ON_COMPOSE)] THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; LIFT_DROP]);; let REAL_UNIFORMLY_CONTINUOUS_ON_CONST = prove (`!s c. (\x. c) real_uniformly_continuous_on s`, REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON_SEQUENTIALLY; o_DEF; REAL_SUB_REFL; REALLIM_CONST]);; let REAL_UNIFORMLY_CONTINUOUS_ON_LMUL = prove (`!f c s. f real_uniformly_continuous_on s ==> (\x. c * f(x)) real_uniformly_continuous_on s`, REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON] THEN REWRITE_TAC[o_DEF; LIFT_CMUL; UNIFORMLY_CONTINUOUS_ON_CMUL]);; let REAL_UNIFORMLY_CONTINUOUS_ON_RMUL = prove (`!f c s. f real_uniformly_continuous_on s ==> (\x. f(x) * c) real_uniformly_continuous_on s`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON_LMUL]);; let REAL_UNIFORMLY_CONTINUOUS_ON_ID = prove (`!s. (\x. x) real_uniformly_continuous_on s`, REWRITE_TAC[real_uniformly_continuous_on] THEN MESON_TAC[]);; let REAL_UNIFORMLY_CONTINUOUS_ON_NEG = prove (`!f s. f real_uniformly_continuous_on s ==> (\x. --(f x)) real_uniformly_continuous_on s`, ONCE_REWRITE_TAC[REAL_ARITH `--x = -- &1 * x`] THEN REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON_LMUL]);; let REAL_UNIFORMLY_CONTINUOUS_ON_ADD = prove (`!f g s. f real_uniformly_continuous_on s /\ g real_uniformly_continuous_on s ==> (\x. f(x) + g(x)) real_uniformly_continuous_on s`, REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON; o_DEF; LIFT_ADD] THEN REWRITE_TAC[UNIFORMLY_CONTINUOUS_ON_ADD]);; let REAL_UNIFORMLY_CONTINUOUS_ON_SUB = prove (`!f g s. f real_uniformly_continuous_on s /\ g real_uniformly_continuous_on s ==> (\x. f(x) - g(x)) real_uniformly_continuous_on s`, REWRITE_TAC[REAL_UNIFORMLY_CONTINUOUS_ON; o_DEF; LIFT_SUB] THEN REWRITE_TAC[UNIFORMLY_CONTINUOUS_ON_SUB]);; let REAL_UNIFORMLY_CONTINUOUS_ON_SUM = prove (`!t f s. FINITE s /\ (!a. a IN s ==> f a real_uniformly_continuous_on t) ==> (\x. sum s (\a. f a x)) real_uniformly_continuous_on t`, REPEAT GEN_TAC THEN SIMP_TAC[REAL_UNIFORMLY_CONTINUOUS_ON; o_DEF; LIFT_SUM] THEN DISCH_THEN(MP_TAC o MATCH_MP UNIFORMLY_CONTINUOUS_ON_VSUM) THEN REWRITE_TAC[]);; let REAL_COMPACT_UNIFORMLY_CONTINUOUS = prove (`!f s. f real_continuous_on s /\ real_compact s ==> f real_uniformly_continuous_on s`, REWRITE_TAC[real_compact; REAL_CONTINUOUS_ON; REAL_UNIFORMLY_CONTINUOUS_ON; COMPACT_UNIFORMLY_CONTINUOUS]);; let REAL_COMPACT_CONTINUOUS_IMAGE = prove (`!f s. f real_continuous_on s /\ real_compact s ==> real_compact (IMAGE f s)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_compact; REAL_CONTINUOUS_ON] THEN DISCH_THEN(MP_TAC o MATCH_MP COMPACT_CONTINUOUS_IMAGE) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; LIFT_DROP]);; let REAL_DINI = prove (`!f g s. real_compact s /\ (!n. (f n) real_continuous_on s) /\ g real_continuous_on s /\ (!x. x IN s ==> ((\n. (f n x)) ---> g x) sequentially) /\ (!n x. x IN s ==> f n x <= f (n + 1) x) ==> !e. &0 < e ==> eventually (\n. !x. x IN s ==> abs(f n x - g x) < e) sequentially`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\n:num. lift o f n o drop`; `lift o g o drop`; `IMAGE lift s`] DINI) THEN ASM_REWRITE_TAC[GSYM real_compact; GSYM REAL_CONTINUOUS_ON] THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_DEF; LIFT_DROP; REAL_TENDSTO] THEN ASM_SIMP_TAC[GSYM LIFT_SUB; NORM_LIFT]);; (* ------------------------------------------------------------------------- *) (* Continuity versus componentwise continuity. *) (* ------------------------------------------------------------------------- *) let CONTINUOUS_COMPONENTWISE = prove (`!net f:A->real^N. f continuous net <=> !i. 1 <= i /\ i <= dimindex(:N) ==> (\x. (f x)$i) real_continuous net`, REWRITE_TAC[real_continuous; continuous; LIM_COMPONENTWISE]);; let REAL_CONTINUOUS_COMPLEX_COMPONENTS_AT = prove (`!z. Re real_continuous (at z) /\ Im real_continuous (at z)`, GEN_TAC THEN MP_TAC(ISPECL [`at(z:complex)`; `\z:complex. z`] CONTINUOUS_COMPONENTWISE) THEN REWRITE_TAC[CONTINUOUS_AT_ID; DIMINDEX_2; FORALL_2] THEN REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; ETA_AX]);; let REAL_CONTINUOUS_COMPLEX_COMPONENTS_WITHIN = prove (`!s z. Re real_continuous (at z within s) /\ Im real_continuous (at z within s)`, MESON_TAC[REAL_CONTINUOUS_COMPLEX_COMPONENTS_AT; REAL_CONTINUOUS_AT_WITHIN]);; let REAL_CONTINUOUS_NORM_AT = prove (`!z. norm real_continuous (at z)`, REWRITE_TAC[real_continuous_at; dist] THEN GEN_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN NORM_ARITH_TAC);; let REAL_CONTINUOUS_NORM_WITHIN = prove (`!s z. norm real_continuous (at z within s)`, MESON_TAC[REAL_CONTINUOUS_NORM_AT; REAL_CONTINUOUS_AT_WITHIN]);; let REAL_CONTINUOUS_DIST_AT = prove (`!a z. (\x. dist(a,x)) real_continuous (at z)`, REWRITE_TAC[real_continuous_at; dist] THEN GEN_TAC THEN GEN_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e:real` THEN ASM_REWRITE_TAC[] THEN NORM_ARITH_TAC);; let REAL_CONTINUOUS_DIST_WITHIN = prove (`!a s z. (\x. dist(a,x)) real_continuous (at z within s)`, MESON_TAC[REAL_CONTINUOUS_DIST_AT; REAL_CONTINUOUS_AT_WITHIN]);; (* ------------------------------------------------------------------------- *) (* Derivative of real->real function. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("has_real_derivative",(12,"right"));; parse_as_infix ("real_differentiable",(12,"right"));; parse_as_infix ("real_differentiable_on",(12,"right"));; let has_real_derivative = new_definition `(f has_real_derivative f') net <=> ((\x. inv(x - netlimit net) * (f x - (f(netlimit net) + f' * (x - netlimit net)))) ---> &0) net`;; let real_differentiable = new_definition `f real_differentiable net <=> ?f'. (f has_real_derivative f') net`;; let real_derivative = new_definition `real_derivative f x = @f'. (f has_real_derivative f') (atreal x)`;; let higher_real_derivative = define `higher_real_derivative 0 f = f /\ (!n. higher_real_derivative (SUC n) f = real_derivative (higher_real_derivative n f))`;; let real_differentiable_on = new_definition `f real_differentiable_on s <=> !x. x IN s ==> ?f'. (f has_real_derivative f') (atreal x within s)`;; (* ------------------------------------------------------------------------- *) (* Basic limit definitions in the useful cases. *) (* ------------------------------------------------------------------------- *) let HAS_REAL_DERIVATIVE_WITHINREAL = prove (`(f has_real_derivative f') (atreal a within s) <=> ((\x. (f x - f a) / (x - a)) ---> f') (atreal a within s)`, REWRITE_TAC[has_real_derivative] THEN ASM_CASES_TAC `trivial_limit(atreal a within s)` THEN ASM_SIMP_TAC[REALLIM_TRIVIAL; NETLIMIT_WITHINREAL] THEN ASM_SIMP_TAC[NETLIMIT_WITHINREAL] THEN GEN_REWRITE_TAC RAND_CONV [REALLIM_NULL] THEN REWRITE_TAC[REALLIM_WITHINREAL; REAL_SUB_RZERO] THEN SIMP_TAC[REAL_FIELD `&0 < abs(x - a) ==> (fy - fa) / (x - a) - f' = inv(x - a) * (fy - (fa + f' * (x - a)))`]);; let HAS_REAL_DERIVATIVE_ATREAL = prove (`(f has_real_derivative f') (atreal a) <=> ((\x. (f x - f a) / (x - a)) ---> f') (atreal a)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_WITHINREAL]);; (* ------------------------------------------------------------------------- *) (* Relation to Frechet derivative. *) (* ------------------------------------------------------------------------- *) let HAS_REAL_FRECHET_DERIVATIVE_WITHIN = prove (`(f has_real_derivative f') (atreal x within s) <=> ((lift o f o drop) has_derivative (\x. f' % x)) (at (lift x) within (IMAGE lift s))`, REWRITE_TAC[has_derivative_within; HAS_REAL_DERIVATIVE_WITHINREAL] THEN REWRITE_TAC[o_THM; LIFT_DROP; LIM_WITHIN; REALLIM_WITHINREAL] THEN SIMP_TAC[LINEAR_COMPOSE_CMUL; LINEAR_ID; IMP_CONJ] THEN REWRITE_TAC[FORALL_IN_IMAGE; DIST_LIFT; GSYM LIFT_SUB; LIFT_DROP; NORM_ARITH `dist(x,vec 0) = norm x`; GSYM LIFT_CMUL; GSYM LIFT_ADD; NORM_LIFT] THEN SIMP_TAC[REAL_FIELD `&0 < abs(y - x) ==> fy - (fx + f' * (y - x)) = (y - x) * ((fy - fx) / (y - x) - f')`] THEN REWRITE_TAC[REAL_ABS_MUL; REAL_MUL_ASSOC; REAL_ABS_INV; REAL_ABS_ABS] THEN SIMP_TAC[REAL_LT_IMP_NZ; REAL_MUL_LINV; REAL_MUL_LID]);; let HAS_REAL_FRECHET_DERIVATIVE_AT = prove (`(f has_real_derivative f') (atreal x) <=> ((lift o f o drop) has_derivative (\x. f' % x)) (at (lift x))`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV; GSYM WITHIN_UNIV] THEN REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN REWRITE_TAC[IMAGE_LIFT_UNIV]);; let HAS_REAL_VECTOR_DERIVATIVE_WITHIN = prove (`(f has_real_derivative f') (atreal x within s) <=> ((lift o f o drop) has_vector_derivative (lift f')) (at (lift x) within (IMAGE lift s))`, REWRITE_TAC[has_vector_derivative; HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; FORALL_LIFT; GSYM LIFT_CMUL] THEN REWRITE_TAC[LIFT_DROP; LIFT_EQ; REAL_MUL_SYM]);; let HAS_REAL_VECTOR_DERIVATIVE_AT = prove (`(f has_real_derivative f') (atreal x) <=> ((lift o f o drop) has_vector_derivative (lift f')) (at (lift x))`, REWRITE_TAC[has_vector_derivative; HAS_REAL_FRECHET_DERIVATIVE_AT] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; FORALL_LIFT; GSYM LIFT_CMUL] THEN REWRITE_TAC[LIFT_DROP; LIFT_EQ; REAL_MUL_SYM]);; let REAL_DIFFERENTIABLE_AT = prove (`!f x. f real_differentiable (atreal x) <=> (lift o f o drop) differentiable (at(lift x))`, REWRITE_TAC[real_differentiable; HAS_REAL_FRECHET_DERIVATIVE_AT] THEN REWRITE_TAC[differentiable; has_derivative; LINEAR_SCALING] THEN REWRITE_TAC[LINEAR_1; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2]);; let REAL_DIFFERENTIABLE_WITHIN = prove (`!f x s. f real_differentiable (atreal x within s) <=> (lift o f o drop) differentiable (at(lift x) within IMAGE lift s)`, REWRITE_TAC[real_differentiable; HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN REWRITE_TAC[differentiable; has_derivative; LINEAR_SCALING] THEN REWRITE_TAC[LINEAR_1; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2]);; let REAL_DIFFERENTIABLE_ON = prove (`!f s. f real_differentiable_on s <=> (lift o f o drop) differentiable_on (IMAGE lift s)`, REWRITE_TAC[real_differentiable_on; differentiable_on; GSYM real_differentiable] THEN REWRITE_TAC[FORALL_IN_IMAGE; REAL_DIFFERENTIABLE_WITHIN]);; (* ------------------------------------------------------------------------- *) (* Relation to complex derivative. *) (* ------------------------------------------------------------------------- *) let HAS_REAL_COMPLEX_DERIVATIVE_WITHIN = prove (`(f has_real_derivative f') (atreal a within s) <=> ((Cx o f o Re) has_complex_derivative (Cx f')) (at (Cx a) within {z | real z /\ Re z IN s})`, REWRITE_TAC[HAS_REAL_DERIVATIVE_WITHINREAL; HAS_COMPLEX_DERIVATIVE_WITHIN; LIM_WITHIN; IN_ELIM_THM; IMP_CONJ; FORALL_REAL] THEN REWRITE_TAC[RE_CX; dist; GSYM CX_SUB; COMPLEX_NORM_CX; o_THM; GSYM CX_DIV; REALLIM_WITHINREAL] THEN MESON_TAC[]);; let HAS_REAL_COMPLEX_DERIVATIVE_AT = prove (`(f has_real_derivative f') (atreal a) <=> ((Cx o f o Re) has_complex_derivative (Cx f')) (at (Cx a) within real)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE = prove (`!f s. f real_differentiable_on s <=> !x. x IN s ==> f real_differentiable (atreal x within s)`, REWRITE_TAC[real_differentiable_on; real_differentiable]);; let REAL_DIFFERENTIABLE_ON_REAL_OPEN = prove (`!f s. real_open s ==> (f real_differentiable_on s <=> !x. x IN s ==> ?f'. (f has_real_derivative f') (atreal x))`, REWRITE_TAC[real_differentiable_on; HAS_REAL_DERIVATIVE_WITHINREAL; HAS_REAL_DERIVATIVE_ATREAL] THEN SIMP_TAC[REALLIM_WITHIN_REAL_OPEN]);; let REAL_DIFFERENTIABLE_ON_IMP_DIFFERENTIABLE_WITHIN = prove (`!f s x. f real_differentiable_on s /\ x IN s ==> f real_differentiable (atreal x within s)`, MESON_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE]);; let REAL_DIFFERENTIABLE_ON_IMP_DIFFERENTIABLE_ATREAL = prove (`!f s x. f real_differentiable_on s /\ real_open s /\ x IN s ==> f real_differentiable (atreal x)`, MESON_TAC[REAL_DIFFERENTIABLE_ON_REAL_OPEN; real_differentiable]);; let HAS_COMPLEX_REAL_DERIVATIVE_WITHIN_GEN = prove (`!f g h s d. &0 < d /\ x IN s /\ (h has_complex_derivative Cx(g)) (at (Cx x) within {z | real z /\ Re(z) IN s}) /\ (!y. y IN s /\ abs(y - x) < d ==> h(Cx y) = Cx(f y)) ==> (f has_real_derivative g) (atreal x within s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_TRANSFORM_WITHIN THEN MAP_EVERY EXISTS_TAC [`h:complex->complex`; `d:real`] THEN ASM_REWRITE_TAC[IN_ELIM_THM; o_THM; REAL_CX; RE_CX; dist] THEN X_GEN_TAC `w:complex` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `Re w`) THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o GEN_REWRITE_RULE I [REAL]) THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM CX_SUB; COMPLEX_NORM_CX]) THEN ASM_REWRITE_TAC[RE_CX]);; let HAS_COMPLEX_REAL_DERIVATIVE_AT_GEN = prove (`!f g h d. &0 < d /\ (h has_complex_derivative Cx(g)) (at (Cx x) within real) /\ (!y. abs(y - x) < d ==> h(Cx y) = Cx(f y)) ==> (f has_real_derivative g) (atreal x)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_WITHIN_GEN THEN MAP_EVERY EXISTS_TAC [`h:complex->complex`; `d:real`] THEN ASM_REWRITE_TAC[IN_UNIV; ETA_AX; SET_RULE `{x | r x} = r`]);; let HAS_COMPLEX_REAL_DERIVATIVE_WITHIN = prove (`!f g h s. x IN s /\ (h has_complex_derivative Cx(g)) (at (Cx x) within {z | real z /\ Re(z) IN s}) /\ (!y. y IN s ==> h(Cx y) = Cx(f y)) ==> (f has_real_derivative g) (atreal x within s)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_WITHIN_GEN THEN MAP_EVERY EXISTS_TAC [`h:complex->complex`; `&1`] THEN ASM_SIMP_TAC[REAL_LT_01]);; let HAS_COMPLEX_REAL_DERIVATIVE_AT = prove (`!f g h. (h has_complex_derivative Cx(g)) (at (Cx x) within real) /\ (!y. h(Cx y) = Cx(f y)) ==> (f has_real_derivative g) (atreal x)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_WITHIN THEN EXISTS_TAC `h:complex->complex` THEN ASM_REWRITE_TAC[IN_UNIV; ETA_AX; SET_RULE `{x | r x} = r`]);; let HAS_REAL_DERIVATIVE_FROM_COMPLEX_AT = prove (`!f f' x. (f has_complex_derivative f') (at (Cx x)) /\ (!z. real z ==> real(f z)) ==> ((Re o f o Cx) has_real_derivative (Re f')) (atreal x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN EXISTS_TAC `f:complex->complex` THEN REWRITE_TAC[o_DEF] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL; REAL_CX; RE_CX]] THEN FIRST_X_ASSUM(ASSUME_TAC o SPEC `real` o MATCH_MP HAS_COMPLEX_DERIVATIVE_AT_WITHIN) THEN SUBGOAL_THEN `real f'` (fun th -> ASM_MESON_TAC[REAL; th]) THEN MATCH_MP_TAC(ISPEC `at (Cx x) within real` REAL_LIM) THEN EXISTS_TAC `\y. ((f:complex->complex) y - f (Cx x)) / (y - Cx x)` THEN ASM_REWRITE_TAC[GSYM HAS_COMPLEX_DERIVATIVE_WITHIN] THEN REWRITE_TAC[TRIVIAL_LIMIT_WITHIN_REAL; REAL_CX] THEN REWRITE_TAC[EVENTUALLY_WITHIN] THEN EXISTS_TAC `&1` THEN ASM_SIMP_TAC[IN; REAL_CX; REAL_SUB; REAL_DIV; REAL_LT_01]);; let REAL_DIFFERENTIABLE_FROM_COMPLEX_AT = prove (`!f x. f complex_differentiable at (Cx x) /\ (!z. real z ==> real(f z)) ==> (Re o f o Cx) real_differentiable (atreal x)`, REWRITE_TAC[complex_differentiable; real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_FROM_COMPLEX_AT]);; (* ------------------------------------------------------------------------- *) (* Caratheodory characterization. *) (* ------------------------------------------------------------------------- *) let HAS_REAL_DERIVATIVE_CARATHEODORY_ATREAL = prove (`!f f' z. (f has_real_derivative f') (atreal z) <=> ?g. (!w. f(w) - f(z) = g(w) * (w - z)) /\ g real_continuous atreal z /\ g(z) = f'`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_RING `w' - z':real = a <=> w' = z' + a`] THEN SIMP_TAC[GSYM FUN_EQ_THM; HAS_REAL_DERIVATIVE_ATREAL; REAL_CONTINUOUS_ATREAL] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [EXISTS_TAC `\w. if w = z then f':real else (f(w) - f(z)) / (w - z)` THEN ASM_SIMP_TAC[FUN_EQ_THM; COND_RAND; COND_RATOR; REAL_SUB_REFL] THEN CONV_TAC REAL_FIELD; FIRST_X_ASSUM SUBST_ALL_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN ASM_SIMP_TAC[REAL_RING `(z + a) - (z + b * (w - w)):real = a`] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] REALLIM_TRANSFORM)) THEN SIMP_TAC[REALLIM_CONST; REAL_FIELD `~(w = z) ==> x - (x * (w - z)) / (w - z) = &0`]]);; let HAS_REAL_DERIVATIVE_CARATHEODORY_WITHINREAL = prove (`!f f' z s. (f has_real_derivative f') (atreal z within s) <=> ?g. (!w. f(w) - f(z) = g(w) * (w - z)) /\ g real_continuous (atreal z within s) /\ g(z) = f'`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_RING `w' - z':real = a <=> w' = z' + a`] THEN SIMP_TAC[GSYM FUN_EQ_THM; HAS_REAL_DERIVATIVE_WITHINREAL; REAL_CONTINUOUS_WITHINREAL] THEN EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [EXISTS_TAC `\w. if w = z then f':real else (f(w) - f(z)) / (w - z)` THEN ASM_SIMP_TAC[FUN_EQ_THM; COND_RAND; COND_RATOR; REAL_SUB_REFL] THEN CONV_TAC REAL_FIELD; FIRST_X_ASSUM SUBST_ALL_TAC THEN FIRST_X_ASSUM SUBST1_TAC THEN ASM_SIMP_TAC[REAL_RING `(z + a) - (z + b * (w - w)):real = a`] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] REALLIM_TRANSFORM)) THEN SIMP_TAC[REALLIM_CONST; REAL_FIELD `~(w = z) ==> x - (x * (w - z)) / (w - z) = &0`]]);; let REAL_DIFFERENTIABLE_CARATHEODORY_ATREAL = prove (`!f z. f real_differentiable atreal z <=> ?g. (!w. f(w) - f(z) = g(w) * (w - z)) /\ g real_continuous atreal z`, SIMP_TAC[real_differentiable; HAS_REAL_DERIVATIVE_CARATHEODORY_ATREAL] THEN MESON_TAC[]);; let REAL_DIFFERENTIABLE_CARATHEODORY_WITHINREAL = prove (`!f z s. f real_differentiable (atreal z within s) <=> ?g. (!w. f(w) - f(z) = g(w) * (w - z)) /\ g real_continuous (atreal z within s)`, SIMP_TAC[real_differentiable; HAS_REAL_DERIVATIVE_CARATHEODORY_WITHINREAL] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Property of being an interval (equivalent to convex or connected). *) (* ------------------------------------------------------------------------- *) let IS_REALINTERVAL_CONVEX = prove (`!s. is_realinterval s <=> convex(IMAGE lift s)`, REWRITE_TAC[IS_REALINTERVAL_IS_INTERVAL; IS_INTERVAL_CONVEX_1]);; let IS_REALINTERVAL_CONNECTED = prove (`!s. is_realinterval s <=> connected(IMAGE lift s)`, REWRITE_TAC[IS_REALINTERVAL_IS_INTERVAL; IS_INTERVAL_CONNECTED_1]);; let TRIVIAL_LIMIT_WITHIN_REALINTERVAL = prove (`!s x. is_realinterval s /\ x IN s ==> (trivial_limit(atreal x within s) <=> s = {x})`, REWRITE_TAC[TRIVIAL_LIMIT_WITHINREAL_WITHIN; IS_REALINTERVAL_CONVEX] THEN REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP; LIFT_DROP] THEN SIMP_TAC[TRIVIAL_LIMIT_WITHIN_CONVEX] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; IN_IMAGE_LIFT_DROP; IN_SING] THEN MESON_TAC[LIFT_DROP]);; let IS_REAL_INTERVAL_CASES = prove (`!s. is_realinterval s <=> s = {} \/ s = (:real) \/ (?a. s = {x | a < x}) \/ (?a. s = {x | a <= x}) \/ (?b. s = {x | x <= b}) \/ (?b. s = {x | x < b}) \/ (?a b. s = {x | a < x /\ x < b}) \/ (?a b. s = {x | a < x /\ x <= b}) \/ (?a b. s = {x | a <= x /\ x < b}) \/ (?a b. s = {x | a <= x /\ x <= b})`, REWRITE_TAC[IS_REALINTERVAL_IS_INTERVAL; IS_INTERVAL_1_CASES] THEN REWRITE_TAC[EXTENSION; IN_IMAGE_LIFT_DROP; IN_ELIM_THM] THEN REWRITE_TAC[GSYM FORALL_DROP; IN_UNIV; NOT_IN_EMPTY]);; let IS_REALINTERVAL_CLAUSES = prove (`is_realinterval {} /\ is_realinterval (:real) /\ (!a. is_realinterval {x | a < x}) /\ (!a. is_realinterval {x | a <= x}) /\ (!b. is_realinterval {x | x < b}) /\ (!b. is_realinterval {x | x <= b}) /\ (!a b. is_realinterval {x | a < x /\ x < b}) /\ (!a b. is_realinterval {x | a < x /\ x <= b}) /\ (!a b. is_realinterval {x | a <= x /\ x < b}) /\ (!a b. is_realinterval {x | a <= x /\ x <= b})`, REWRITE_TAC[is_realinterval; IN_ELIM_THM; IN_UNIV; NOT_IN_EMPTY] THEN REAL_ARITH_TAC);; let REAL_CONVEX = prove (`!s. is_realinterval s <=> !x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1 ==> (u * x + v * y) IN s`, REWRITE_TAC[IS_REALINTERVAL_CONVEX; convex] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE_LIFT_DROP; DROP_ADD; DROP_CMUL; LIFT_DROP]);; let REAL_CONVEX_ALT = prove (`!s. is_realinterval s <=> !x y u. x IN s /\ y IN s /\ &0 <= u /\ u <= &1 ==> ((&1 - u) * x + u * y) IN s`, REWRITE_TAC[IS_REALINTERVAL_CONVEX; CONVEX_ALT] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE_LIFT_DROP; DROP_ADD; DROP_CMUL; LIFT_DROP]);; let REAL_MIDPOINT_IN_CONVEX = prove (`!s x y. is_realinterval s /\ x IN s /\ y IN s ==> ((x + y) / &2) IN s`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH `(x + y) / &2 = inv(&2) * x + inv(&2) * y`] THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [REAL_CONVEX]) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[]);; let IS_REALINTERVAL_CONVEX_COMPLEX = prove (`!s. is_realinterval s <=> convex {z | real z /\ Re z IN s}`, GEN_TAC THEN REWRITE_TAC[GSYM IMAGE_CX; IS_REALINTERVAL_CONVEX] THEN EQ_TAC THENL [DISCH_THEN(MP_TAC o ISPEC `Cx o drop` o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONVEX_LINEAR_IMAGE)) THEN REWRITE_TAC[GSYM IMAGE_o; GSYM o_ASSOC] THEN ONCE_REWRITE_TAC[IMAGE_o] THEN REWRITE_TAC[IMAGE_LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[linear; o_THM; CX_ADD; CX_MUL; DROP_ADD; DROP_CMUL; COMPLEX_CMUL]; DISCH_THEN(MP_TAC o ISPEC `lift o Re` o MATCH_MP (REWRITE_RULE[IMP_CONJ] CONVEX_LINEAR_IMAGE)) THEN REWRITE_TAC[GSYM IMAGE_o; GSYM o_ASSOC] THEN ONCE_REWRITE_TAC[IMAGE_o] THEN REWRITE_TAC[o_DEF; RE_CX; SET_RULE `IMAGE (\x. x) s = s`] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[linear; o_THM; RE_CMUL; RE_ADD; RE_MUL_CX; LIFT_ADD; LIFT_CMUL]]);; let IMAGE_AFFINITY_REAL_INTERVAL = prove (`!a b m c. IMAGE (\x. m * x + c) (real_interval[a,b]) = (if real_interval[a,b] = {} then {} else if &0 <= m then real_interval[m * a + c,m * b + c] else real_interval[m * b + c,m * a + c])`, REWRITE_TAC[REAL_INTERVAL_INTERVAL; GSYM IMAGE_o; o_DEF; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[FORALL_DROP; LIFT_DROP; GSYM DROP_CMUL; GSYM DROP_ADD] THEN REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN REWRITE_TAC[IMAGE_o; IMAGE_AFFINITY_INTERVAL] THEN MESON_TAC[IMAGE_CLAUSES]);; let IMAGE_STRETCH_REAL_INTERVAL = prove (`!a b m. IMAGE (\x. m * x) (real_interval[a,b]) = (if real_interval[a,b] = {} then {} else if &0 <= m then real_interval[m * a,m * b] else real_interval[m * b,m * a])`, ONCE_REWRITE_TAC[REAL_ARITH `m * x = m * x + &0`] THEN REWRITE_TAC[IMAGE_AFFINITY_REAL_INTERVAL]);; let REAL_INTERVAL_TRANSLATION = prove (`(!c a b. real_interval[c + a,c + b] = IMAGE (\x. c + x) (real_interval[a,b])) /\ (!c a b. real_interval(c + a,c + b) = IMAGE (\x. c + x) (real_interval(a,b)))`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[REAL_ARITH `c + x:real = y <=> x = y - c`; EXISTS_REFL] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Real continuity and differentiability. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_CONTINUOUS = prove (`f real_continuous net <=> (Cx o f) continuous net`, REWRITE_TAC[real_continuous; continuous; REALLIM_COMPLEX; o_THM]);; let REAL_CONTINUOUS_CONTINUOUS1 = prove (`f real_continuous net <=> (lift o f) continuous net`, REWRITE_TAC[real_continuous; continuous; TENDSTO_REAL; o_THM]);; let REAL_CONTINUOUS_CONTINUOUS_ATREAL = prove (`f real_continuous (atreal x) <=> (lift o f o drop) continuous (at(lift x))`, REWRITE_TAC[REAL_CONTINUOUS_ATREAL; REALLIM_ATREAL_AT; CONTINUOUS_AT; TENDSTO_REAL; o_THM; LIFT_DROP]);; let REAL_CONTINUOUS_CONTINUOUS_WITHINREAL = prove (`f real_continuous (atreal x within s) <=> (lift o f o drop) continuous (at(lift x) within IMAGE lift s)`, REWRITE_TAC[REAL_CONTINUOUS_WITHINREAL; REALLIM_WITHINREAL_WITHIN] THEN REWRITE_TAC[TENDSTO_REAL; CONTINUOUS_WITHIN; o_THM; LIFT_DROP]);; let REAL_COMPLEX_CONTINUOUS_WITHINREAL = prove (`f real_continuous (atreal x within s) <=> (Cx o f o Re) continuous (at (Cx x) within (real INTER IMAGE Cx s))`, REWRITE_TAC[real_continuous; continuous; REALLIM_COMPLEX; LIM_WITHINREAL_WITHINCOMPLEX; NETLIMIT_WITHINREAL; GSYM o_ASSOC] THEN ASM_CASES_TAC `trivial_limit(at(Cx x) within (real INTER IMAGE Cx s))` THEN ASM_SIMP_TAC[LIM_TRIVIAL] THEN ASM_SIMP_TAC[TRIVIAL_LIMIT_WITHINREAL_WITHINCOMPLEX; NETLIMIT_WITHIN; NETLIMIT_WITHINREAL; RE_CX; o_THM]);; let REAL_COMPLEX_CONTINUOUS_ATREAL = prove (`f real_continuous (atreal x) <=> (Cx o f o Re) continuous (at (Cx x) within real)`, REWRITE_TAC[real_continuous; continuous; REALLIM_COMPLEX; LIM_ATREAL_ATCOMPLEX; NETLIMIT_ATREAL; GSYM o_ASSOC] THEN ASM_CASES_TAC `trivial_limit(at(Cx x) within real)` THEN ASM_SIMP_TAC[LIM_TRIVIAL] THEN ASM_SIMP_TAC[NETLIMIT_WITHIN; RE_CX; o_THM]);; let CONTINUOUS_CONTINUOUS_WITHINREAL = prove (`!f x s. f continuous (atreal x within s) <=> (f o drop) continuous (at (lift x) within IMAGE lift s)`, REWRITE_TAC[REALLIM_WITHINREAL_WITHIN; CONTINUOUS_WITHIN; CONTINUOUS_WITHINREAL; o_DEF; LIFT_DROP; LIM_WITHINREAL_WITHIN]);; let CONTINUOUS_CONTINUOUS_ATREAL = prove (`!f x. f continuous (atreal x) <=> (f o drop) continuous (at (lift x))`, REWRITE_TAC[REALLIM_ATREAL_AT; CONTINUOUS_AT; CONTINUOUS_ATREAL; o_DEF; LIFT_DROP; LIM_ATREAL_AT]);; let REAL_CONTINUOUS_REAL_CONTINUOUS_WITHINREAL = prove (`!f x s. f real_continuous (atreal x within s) <=> (f o drop) real_continuous (at (lift x) within IMAGE lift s)`, REWRITE_TAC[REALLIM_WITHINREAL_WITHIN; REAL_CONTINUOUS_WITHIN; REAL_CONTINUOUS_WITHINREAL; o_DEF; LIFT_DROP; LIM_WITHINREAL_WITHIN]);; let REAL_CONTINUOUS_REAL_CONTINUOUS_ATREAL = prove (`!f x. f real_continuous (atreal x) <=> (f o drop) real_continuous (at (lift x))`, REWRITE_TAC[REALLIM_ATREAL_AT; REAL_CONTINUOUS_AT; REAL_CONTINUOUS_ATREAL; o_DEF; LIFT_DROP; LIM_ATREAL_AT]);; let HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_WITHINREAL = prove (`!f f' x s. (f has_real_derivative f') (atreal x within s) ==> f real_continuous (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN; REAL_COMPLEX_CONTINUOUS_WITHINREAL] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_COMPLEX_DERIVATIVE_IMP_CONTINUOUS_WITHIN) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; IN_IMAGE] THEN MESON_TAC[REAL; RE_CX; REAL_CX; IN]);; let REAL_DIFFERENTIABLE_IMP_CONTINUOUS_WITHINREAL = prove (`!f x s. f real_differentiable (atreal x within s) ==> f real_continuous (atreal x within s)`, MESON_TAC[HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_WITHINREAL; real_differentiable]);; let HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL = prove (`!f f' x. (f has_real_derivative f') (atreal x) ==> f real_continuous (atreal x)`, REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_AT; REAL_COMPLEX_CONTINUOUS_ATREAL; HAS_COMPLEX_DERIVATIVE_IMP_CONTINUOUS_WITHIN]);; let REAL_DIFFERENTIABLE_IMP_CONTINUOUS_ATREAL = prove (`!f x. f real_differentiable atreal x ==> f real_continuous atreal x`, MESON_TAC[HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL; real_differentiable]);; let REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON = prove (`!f s. f real_differentiable_on s ==> f real_continuous_on s`, REWRITE_TAC[real_differentiable_on; REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN MESON_TAC[REAL_DIFFERENTIABLE_IMP_CONTINUOUS_WITHINREAL; real_differentiable]);; let REAL_CONTINUOUS_AT_COMPONENT = prove (`!i a. 1 <= i /\ i <= dimindex(:N) ==> (\x:real^N. x$i) real_continuous at a`, REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF; CONTINUOUS_AT_LIFT_COMPONENT]);; let REAL_CONTINUOUS_AT_TRANSLATION = prove (`!a z f:real^N->real. f real_continuous at (a + z) <=> (\x. f(a + x)) real_continuous at z`, REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF; CONTINUOUS_AT_TRANSLATION]);; add_translation_invariants [REAL_CONTINUOUS_AT_TRANSLATION];; let REAL_CONTINUOUS_AT_LINEAR_IMAGE = prove (`!h:real^N->real^N z f:real^N->real. linear h /\ (!x. norm(h x) = norm x) ==> (f real_continuous at (h z) <=> (\x. f(h x)) real_continuous at z)`, REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF; CONTINUOUS_AT_LINEAR_IMAGE]);; add_linear_invariants [REAL_CONTINUOUS_AT_LINEAR_IMAGE];; let REAL_CONTINUOUS_AT_ARG = prove (`!z. ~(real z /\ &0 <= Re z) ==> Arg real_continuous (at z)`, REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS; CONTINUOUS_AT_ARG]);; let REAL_CONTINUOUS_TRANSFORM_WITHIN_SET_IMP = prove (`!f a s t. eventually (\x. x IN t ==> x IN s) (at a) /\ f real_continuous (at a within s) ==> f real_continuous (at a within t)`, REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; CONTINUOUS_TRANSFORM_WITHIN_SET_IMP]);; let CONTINUOUS_TRANSFORM_WITHINREAL_SET_IMP = prove (`!f a s t. eventually (\x. x IN t ==> x IN s) (atreal a) /\ f continuous (atreal a within s) ==> f continuous (atreal a within t)`, REWRITE_TAC[CONTINUOUS_WITHINREAL; LIM_TRANSFORM_WITHINREAL_SET_IMP]);; let REAL_CONTINUOUS_TRANSFORM_WITHINREAL_SET_IMP = prove (`!f a s t. eventually (\x. x IN t ==> x IN s) (atreal a) /\ f real_continuous (atreal a within s) ==> f real_continuous (atreal a within t)`, REWRITE_TAC[REAL_CONTINUOUS_WITHINREAL; REALLIM_TRANSFORM_WITHINREAL_SET_IMP]);; (* ------------------------------------------------------------------------- *) (* More basics about real derivatives. *) (* ------------------------------------------------------------------------- *) let HAS_REAL_DERIVATIVE_WITHIN_SUBSET = prove (`!f s t x. (f has_real_derivative f') (atreal x within s) /\ t SUBSET s ==> (f has_real_derivative f') (atreal x within t)`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HAS_COMPLEX_DERIVATIVE_WITHIN_SUBSET) THEN ASM SET_TAC[]);; let REAL_DIFFERENTIABLE_ON_SUBSET = prove (`!f s t. f real_differentiable_on s /\ t SUBSET s ==> f real_differentiable_on t`, REWRITE_TAC[real_differentiable_on] THEN MESON_TAC[SUBSET; HAS_REAL_DERIVATIVE_WITHIN_SUBSET]);; let REAL_DIFFERENTIABLE_WITHIN_SUBSET = prove (`!f s t. f real_differentiable (atreal x within s) /\ t SUBSET s ==> f real_differentiable (atreal x within t)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_WITHIN_SUBSET]);; let HAS_REAL_DERIVATIVE_ATREAL_WITHIN = prove (`!f f' x s. (f has_real_derivative f') (atreal x) ==> (f has_real_derivative f') (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN; HAS_REAL_COMPLEX_DERIVATIVE_AT] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HAS_COMPLEX_DERIVATIVE_WITHIN_SUBSET) THEN ASM SET_TAC[]);; let HAS_REAL_DERIVATIVE_WITHIN_REAL_OPEN = prove (`!f f' a s. a IN s /\ real_open s ==> ((f has_real_derivative f') (atreal a within s) <=> (f has_real_derivative f') (atreal a))`, REPEAT GEN_TAC THEN ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_WITHINREAL; HAS_REAL_DERIVATIVE_ATREAL; REALLIM_WITHIN_REAL_OPEN]);; let REAL_DIFFERENTIABLE_ATREAL_WITHIN = prove (`!f s z. f real_differentiable (atreal z) ==> f real_differentiable (atreal z within s)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_ATREAL_WITHIN]);; let HAS_REAL_DERIVATIVE_TRANSFORM_WITHIN = prove (`!f f' g x s d. &0 < d /\ x IN s /\ (!x'. x' IN s /\ abs(x' - x) < d ==> f x' = g x') /\ (f has_real_derivative f') (atreal x within s) ==> (g has_real_derivative f') (atreal x within s)`, REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN MATCH_MP_TAC(ONCE_REWRITE_RULE [TAUT `a /\ b /\ c /\ d ==> e <=> a /\ b /\ c ==> d ==> e`] HAS_COMPLEX_DERIVATIVE_TRANSFORM_WITHIN) THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[IN_ELIM_THM; REAL_CX; RE_CX] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[o_THM] THEN AP_TERM_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NORM_ARITH `dist(a,b) < d ==> z <= norm(a - b) ==> z < d`)) THEN W(MP_TAC o PART_MATCH (rand o rand) COMPLEX_NORM_GE_RE_IM o rand o snd) THEN SIMP_TAC[RE_SUB; RE_CX]);; let HAS_REAL_DERIVATIVE_TRANSFORM_ATREAL = prove (`!f f' g x d. &0 < d /\ (!x'. abs(x' - x) < d ==> f x' = g x') /\ (f has_real_derivative f') (atreal x) ==> (g has_real_derivative f') (atreal x)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN MESON_TAC[HAS_REAL_DERIVATIVE_TRANSFORM_WITHIN; IN_UNIV]);; let HAS_REAL_DERIVATIVE_ZERO_CONSTANT = prove (`!f s. is_realinterval s /\ (!x. x IN s ==> (f has_real_derivative (&0)) (atreal x within s)) ==> ?c. !x. x IN s ==> f(x) = c`, REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`Cx o f o Re`; `{z | real z /\ Re z IN s}`] HAS_COMPLEX_DERIVATIVE_ZERO_CONSTANT) THEN ASM_REWRITE_TAC[IN_ELIM_THM; IMP_CONJ; FORALL_REAL; RE_CX; o_THM] THEN ASM_REWRITE_TAC[GSYM IS_REALINTERVAL_CONVEX_COMPLEX] THEN MESON_TAC[RE_CX]);; let HAS_REAL_DERIVATIVE_ZERO_UNIQUE = prove (`!f s c a. is_realinterval s /\ a IN s /\ f a = c /\ (!x. x IN s ==> (f has_real_derivative (&0)) (atreal x within s)) ==> !x. x IN s ==> f(x) = c`, MESON_TAC[HAS_REAL_DERIVATIVE_ZERO_CONSTANT]);; let REAL_DIFF_CHAIN_WITHIN = prove (`!f g f' g' x s. (f has_real_derivative f') (atreal x within s) /\ (g has_real_derivative g') (atreal (f x) within (IMAGE f s)) ==> ((g o f) has_real_derivative (g' * f'))(atreal x within s)`, REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `Cx o (g o f) o Re = (Cx o g o Re) o (Cx o f o Re)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; RE_CX]; ALL_TAC] THEN REWRITE_TAC[CX_MUL] THEN MATCH_MP_TAC COMPLEX_DIFF_CHAIN_WITHIN THEN ASM_REWRITE_TAC[o_THM; RE_CX] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] HAS_COMPLEX_DERIVATIVE_WITHIN_SUBSET)) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_ELIM_THM; o_THM; REAL_CX; RE_CX] THEN SET_TAC[]);; let REAL_DIFF_CHAIN_ATREAL = prove (`!f g f' g' x. (f has_real_derivative f') (atreal x) /\ (g has_real_derivative g') (atreal (f x)) ==> ((g o f) has_real_derivative (g' * f')) (atreal x)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN ASM_MESON_TAC[REAL_DIFF_CHAIN_WITHIN; SUBSET_UNIV; HAS_REAL_DERIVATIVE_WITHIN_SUBSET]);; let HAS_REAL_DERIVATIVE_CHAIN = prove (`!P f g. (!x. P x ==> (g has_real_derivative g'(x)) (atreal x)) ==> (!x s. (f has_real_derivative f') (atreal x within s) /\ P(f x) ==> ((\x. g(f x)) has_real_derivative f' * g'(f x)) (atreal x within s)) /\ (!x. (f has_real_derivative f') (atreal x) /\ P(f x) ==> ((\x. g(f x)) has_real_derivative f' * g'(f x)) (atreal x))`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM o_DEF] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_MESON_TAC[REAL_DIFF_CHAIN_WITHIN; REAL_DIFF_CHAIN_ATREAL; HAS_REAL_DERIVATIVE_ATREAL_WITHIN]);; let HAS_REAL_DERIVATIVE_CHAIN_UNIV = prove (`!f g. (!x. (g has_real_derivative g'(x)) (atreal x)) ==> (!x s. (f has_real_derivative f') (atreal x within s) ==> ((\x. g(f x)) has_real_derivative f' * g'(f x)) (atreal x within s)) /\ (!x. (f has_real_derivative f') (atreal x) ==> ((\x. g(f x)) has_real_derivative f' * g'(f x)) (atreal x))`, MP_TAC(SPEC `\x:real. T` HAS_REAL_DERIVATIVE_CHAIN) THEN SIMP_TAC[]);; let REAL_DERIVATIVE_UNIQUE_ATREAL = prove (`!f z f' f''. (f has_real_derivative f') (atreal z) /\ (f has_real_derivative f'') (atreal z) ==> f' = f''`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_AT] THEN DISCH_THEN(MP_TAC o MATCH_MP FRECHET_DERIVATIVE_UNIQUE_AT) THEN DISCH_THEN(MP_TAC o C AP_THM `vec 1:real^1`) THEN REWRITE_TAC[VECTOR_MUL_RCANCEL; VEC_EQ; ARITH_EQ]);; (* ------------------------------------------------------------------------- *) (* Some handy theorems about the actual differentition function. *) (* ------------------------------------------------------------------------- *) let HAS_REAL_DERIVATIVE_DERIVATIVE = prove (`!f f' x. (f has_real_derivative f') (atreal x) ==> real_derivative f x = f'`, REWRITE_TAC[real_derivative] THEN MESON_TAC[REAL_DERIVATIVE_UNIQUE_ATREAL]);; let HAS_REAL_DERIVATIVE_DIFFERENTIABLE = prove (`!f x. (f has_real_derivative (real_derivative f x)) (atreal x) <=> f real_differentiable atreal x`, REWRITE_TAC[real_differentiable; real_derivative] THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Arithmetical combining theorems. *) (* ------------------------------------------------------------------------- *) let HAS_REAL_DERIVATIVE_LMUL_WITHIN = prove (`!f f' c x s. (f has_real_derivative f') (atreal x within s) ==> ((\x. c * f(x)) has_real_derivative (c * f')) (atreal x within s)`, REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN REWRITE_TAC[o_DEF; CX_MUL; HAS_COMPLEX_DERIVATIVE_LMUL_WITHIN]);; let HAS_REAL_DERIVATIVE_LMUL_ATREAL = prove (`!f f' c x. (f has_real_derivative f') (atreal x) ==> ((\x. c * f(x)) has_real_derivative (c * f')) (atreal x)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_LMUL_WITHIN]);; let HAS_REAL_DERIVATIVE_RMUL_WITHIN = prove (`!f f' c x s. (f has_real_derivative f') (atreal x within s) ==> ((\x. f(x) * c) has_real_derivative (f' * c)) (atreal x within s)`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_LMUL_WITHIN]);; let HAS_REAL_DERIVATIVE_RMUL_ATREAL = prove (`!f f' c x. (f has_real_derivative f') (atreal x) ==> ((\x. f(x) * c) has_real_derivative (f' * c)) (atreal x)`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_LMUL_ATREAL]);; let HAS_REAL_DERIVATIVE_CDIV_WITHIN = prove (`!f f' c x s. (f has_real_derivative f') (atreal x within s) ==> ((\x. f(x) / c) has_real_derivative (f' / c)) (atreal x within s)`, SIMP_TAC[real_div; HAS_REAL_DERIVATIVE_RMUL_WITHIN]);; let HAS_REAL_DERIVATIVE_CDIV_ATREAL = prove (`!f f' c x. (f has_real_derivative f') (atreal x) ==> ((\x. f(x) / c) has_real_derivative (f' / c)) (atreal x)`, SIMP_TAC[real_div; HAS_REAL_DERIVATIVE_RMUL_ATREAL]);; let HAS_REAL_DERIVATIVE_ID = prove (`!net. ((\x. x) has_real_derivative &1) net`, REWRITE_TAC[has_real_derivative; TENDSTO_REAL; REAL_ARITH `x - (a + &1 * (x - a)) = &0`] THEN REWRITE_TAC[REAL_MUL_RZERO; LIM_CONST; o_DEF]);; let HAS_REAL_DERIVATIVE_CONST = prove (`!c net. ((\x. c) has_real_derivative &0) net`, REWRITE_TAC[has_real_derivative; REAL_MUL_LZERO; REAL_ADD_RID; REAL_SUB_REFL; REAL_MUL_RZERO; REALLIM_CONST]);; let HAS_REAL_DERIVATIVE_NEG = prove (`!f f' net. (f has_real_derivative f') net ==> ((\x. --(f(x))) has_real_derivative (--f')) net`, REPEAT GEN_TAC THEN REWRITE_TAC[has_real_derivative] THEN DISCH_THEN(MP_TAC o MATCH_MP REALLIM_NEG) THEN REWRITE_TAC[REAL_NEG_0; REAL_ARITH `a * (--b - (--c + --d * e:real)) = --(a * (b - (c + d * e)))`]);; let HAS_REAL_DERIVATIVE_ADD = prove (`!f f' g g' net. (f has_real_derivative f') net /\ (g has_real_derivative g') net ==> ((\x. f(x) + g(x)) has_real_derivative (f' + g')) net`, REPEAT GEN_TAC THEN REWRITE_TAC[has_real_derivative] THEN DISCH_THEN(MP_TAC o MATCH_MP REALLIM_ADD) THEN REWRITE_TAC[GSYM REAL_ADD_LDISTRIB; REAL_ADD_RID] THEN REWRITE_TAC[REAL_ARITH `(fx - (fa + f' * (x - a))) + (gx - (ga + g' * (x - a))):real = (fx + gx) - ((fa + ga) + (f' + g') * (x - a))`]);; let HAS_REAL_DERIVATIVE_SUB = prove (`!f f' g g' net. (f has_real_derivative f') net /\ (g has_real_derivative g') net ==> ((\x. f(x) - g(x)) has_real_derivative (f' - g')) net`, SIMP_TAC[real_sub; HAS_REAL_DERIVATIVE_ADD; HAS_REAL_DERIVATIVE_NEG]);; let HAS_REAL_DERIVATIVE_MUL_WITHIN = prove (`!f f' g g' x s. (f has_real_derivative f') (atreal x within s) /\ (g has_real_derivative g') (atreal x within s) ==> ((\x. f(x) * g(x)) has_real_derivative (f(x) * g' + f' * g(x))) (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_COMPLEX_DERIVATIVE_MUL_WITHIN) THEN REWRITE_TAC[o_DEF; CX_MUL; CX_ADD; RE_CX]);; let HAS_REAL_DERIVATIVE_MUL_ATREAL = prove (`!f f' g g' x. (f has_real_derivative f') (atreal x) /\ (g has_real_derivative g') (atreal x) ==> ((\x. f(x) * g(x)) has_real_derivative (f(x) * g' + f' * g(x))) (atreal x)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_MUL_WITHIN]);; let HAS_REAL_DERIVATIVE_POW_WITHIN = prove (`!f f' x s n. (f has_real_derivative f') (atreal x within s) ==> ((\x. f(x) pow n) has_real_derivative (&n * f(x) pow (n - 1) * f')) (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_WITHIN] THEN DISCH_THEN(MP_TAC o SPEC `n:num` o MATCH_MP HAS_COMPLEX_DERIVATIVE_POW_WITHIN) THEN REWRITE_TAC[o_DEF; CX_MUL; CX_POW; RE_CX]);; let HAS_REAL_DERIVATIVE_POW_ATREAL = prove (`!f f' x n. (f has_real_derivative f') (atreal x) ==> ((\x. f(x) pow n) has_real_derivative (&n * f(x) pow (n - 1) * f')) (atreal x)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_POW_WITHIN]);; let HAS_REAL_DERIVATIVE_INV_BASIC = prove (`!x. ~(x = &0) ==> ((inv) has_real_derivative (--inv(x pow 2))) (atreal x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[HAS_REAL_COMPLEX_DERIVATIVE_AT] THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_TRANSFORM_WITHIN THEN EXISTS_TAC `inv:complex->complex` THEN ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_INV_BASIC; CX_INJ; CX_NEG; CX_INV; CX_POW; HAS_COMPLEX_DERIVATIVE_AT_WITHIN] THEN SIMP_TAC[IN; FORALL_REAL; IMP_CONJ; o_DEF; REAL_CX; RE_CX; CX_INV] THEN MESON_TAC[REAL_LT_01]);; let HAS_REAL_DERIVATIVE_INV_WITHIN = prove (`!f f' x s. (f has_real_derivative f') (atreal x within s) /\ ~(f x = &0) ==> ((\x. inv(f(x))) has_real_derivative (--f' / f(x) pow 2)) (atreal x within s)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN ASM_SIMP_TAC[REAL_FIELD `~(g = &0) ==> --f / g pow 2 = --inv(g pow 2) * f`] THEN MATCH_MP_TAC REAL_DIFF_CHAIN_WITHIN THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_ATREAL_WITHIN THEN ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_INV_BASIC]);; let HAS_REAL_DERIVATIVE_INV_ATREAL = prove (`!f f' x. (f has_real_derivative f') (atreal x) /\ ~(f x = &0) ==> ((\x. inv(f(x))) has_real_derivative (--f' / f(x) pow 2)) (atreal x)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_INV_WITHIN]);; let HAS_REAL_DERIVATIVE_DIV_WITHIN = prove (`!f f' g g' x s. (f has_real_derivative f') (atreal x within s) /\ (g has_real_derivative g') (atreal x within s) /\ ~(g(x) = &0) ==> ((\x. f(x) / g(x)) has_real_derivative (f' * g(x) - f(x) * g') / g(x) pow 2) (atreal x within s)`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT2 th) THEN MP_TAC th) THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_DERIVATIVE_INV_WITHIN) THEN UNDISCH_TAC `(f has_real_derivative f') (atreal x within s)` THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_DERIVATIVE_MUL_WITHIN) THEN REWRITE_TAC[GSYM real_div] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN CONV_TAC REAL_FIELD);; let HAS_REAL_DERIVATIVE_DIV_ATREAL = prove (`!f f' g g' x. (f has_real_derivative f') (atreal x) /\ (g has_real_derivative g') (atreal x) /\ ~(g(x) = &0) ==> ((\x. f(x) / g(x)) has_real_derivative (f' * g(x) - f(x) * g') / g(x) pow 2) (atreal x)`, ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_DIV_WITHIN]);; let HAS_REAL_DERIVATIVE_SUM = prove (`!f net s. FINITE s /\ (!a. a IN s ==> (f a has_real_derivative f' a) net) ==> ((\x. sum s (\a. f a x)) has_real_derivative (sum s f')) net`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; SUM_CLAUSES] THEN SIMP_TAC[HAS_REAL_DERIVATIVE_CONST; HAS_REAL_DERIVATIVE_ADD; ETA_AX]);; (* ------------------------------------------------------------------------- *) (* Same thing just for real differentiability. *) (* ------------------------------------------------------------------------- *) let REAL_DIFFERENTIABLE_CONST = prove (`!c net. (\z. c) real_differentiable net`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_CONST]);; let REAL_DIFFERENTIABLE_ID = prove (`!net. (\z. z) real_differentiable net`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_ID]);; let REAL_DIFFERENTIABLE_NEG = prove (`!f net. f real_differentiable net ==> (\z. --(f z)) real_differentiable net`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_NEG]);; let REAL_DIFFERENTIABLE_ADD = prove (`!f g net. f real_differentiable net /\ g real_differentiable net ==> (\z. f z + g z) real_differentiable net`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_ADD]);; let REAL_DIFFERENTIABLE_SUB = prove (`!f g net. f real_differentiable net /\ g real_differentiable net ==> (\z. f z - g z) real_differentiable net`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_SUB]);; let REAL_DIFFERENTIABLE_INV_WITHIN = prove (`!f z s. f real_differentiable (atreal z within s) /\ ~(f z = &0) ==> (\z. inv(f z)) real_differentiable (atreal z within s)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_INV_WITHIN]);; let REAL_DIFFERENTIABLE_MUL_WITHIN = prove (`!f g z s. f real_differentiable (atreal z within s) /\ g real_differentiable (atreal z within s) ==> (\z. f z * g z) real_differentiable (atreal z within s)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_MUL_WITHIN]);; let REAL_DIFFERENTIABLE_DIV_WITHIN = prove (`!f g z s. f real_differentiable (atreal z within s) /\ g real_differentiable (atreal z within s) /\ ~(g z = &0) ==> (\z. f z / g z) real_differentiable (atreal z within s)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_DIV_WITHIN]);; let REAL_DIFFERENTIABLE_POW_WITHIN = prove (`!f n z s. f real_differentiable (atreal z within s) ==> (\z. f z pow n) real_differentiable (atreal z within s)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_POW_WITHIN]);; let REAL_DIFFERENTIABLE_TRANSFORM_WITHIN = prove (`!f g x s d. &0 < d /\ x IN s /\ (!x'. x' IN s /\ abs(x' - x) < d ==> f x' = g x') /\ f real_differentiable (atreal x within s) ==> g real_differentiable (atreal x within s)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_TRANSFORM_WITHIN]);; let REAL_DIFFERENTIABLE_TRANSFORM = prove (`!f g s. (!x. x IN s ==> f x = g x) /\ f real_differentiable_on s ==> g real_differentiable_on s`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[real_differentiable_on; GSYM real_differentiable] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_DIFFERENTIABLE_TRANSFORM_WITHIN THEN MAP_EVERY EXISTS_TAC [`f:real->real`; `&1`] THEN ASM_SIMP_TAC[REAL_LT_01]);; let REAL_DIFFERENTIABLE_EQ = prove (`!f g s. (!x. x IN s ==> f x = g x) ==> (f real_differentiable_on s <=> g real_differentiable_on s)`, MESON_TAC[REAL_DIFFERENTIABLE_TRANSFORM]);; let REAL_DIFFERENTIABLE_INV_ATREAL = prove (`!f z. f real_differentiable atreal z /\ ~(f z = &0) ==> (\z. inv(f z)) real_differentiable atreal z`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_INV_ATREAL]);; let REAL_DIFFERENTIABLE_MUL_ATREAL = prove (`!f g z. f real_differentiable atreal z /\ g real_differentiable atreal z ==> (\z. f z * g z) real_differentiable atreal z`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_MUL_ATREAL]);; let REAL_DIFFERENTIABLE_DIV_ATREAL = prove (`!f g z. f real_differentiable atreal z /\ g real_differentiable atreal z /\ ~(g z = &0) ==> (\z. f z / g z) real_differentiable atreal z`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_DIV_ATREAL]);; let REAL_DIFFERENTIABLE_POW_ATREAL = prove (`!f n z. f real_differentiable atreal z ==> (\z. f z pow n) real_differentiable atreal z`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_POW_ATREAL]);; let REAL_DIFFERENTIABLE_TRANSFORM_ATREAL = prove (`!f g x d. &0 < d /\ (!x'. abs(x' - x) < d ==> f x' = g x') /\ f real_differentiable atreal x ==> g real_differentiable atreal x`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_TRANSFORM_ATREAL]);; let REAL_DIFFERENTIABLE_COMPOSE_WITHIN = prove (`!f g x s. f real_differentiable (atreal x within s) /\ g real_differentiable (atreal (f x) within IMAGE f s) ==> (g o f) real_differentiable (atreal x within s)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[REAL_DIFF_CHAIN_WITHIN]);; let REAL_DIFFERENTIABLE_COMPOSE_ATREAL = prove (`!f g x. f real_differentiable (atreal x) /\ g real_differentiable (atreal (f x)) ==> (g o f) real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[REAL_DIFF_CHAIN_ATREAL]);; (* ------------------------------------------------------------------------- *) (* Same again for being differentiable on a set. *) (* ------------------------------------------------------------------------- *) let REAL_DIFFERENTIABLE_ON_CONST = prove (`!c s. (\z. c) real_differentiable_on s`, REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_CONST]);; let REAL_DIFFERENTIABLE_ON_ID = prove (`!s. (\z. z) real_differentiable_on s`, REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_ID]);; let REAL_DIFFERENTIABLE_ON_COMPOSE = prove (`!f g s. f real_differentiable_on s /\ g real_differentiable_on (IMAGE f s) ==> (g o f) real_differentiable_on s`, SIMP_TAC[real_differentiable_on; GSYM real_differentiable; FORALL_IN_IMAGE] THEN MESON_TAC[REAL_DIFFERENTIABLE_COMPOSE_WITHIN]);; let REAL_DIFFERENTIABLE_ON_NEG = prove (`!f s. f real_differentiable_on s ==> (\z. --(f z)) real_differentiable_on s`, SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_NEG]);; let REAL_DIFFERENTIABLE_ON_ADD = prove (`!f g s. f real_differentiable_on s /\ g real_differentiable_on s ==> (\z. f z + g z) real_differentiable_on s`, SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_ADD]);; let REAL_DIFFERENTIABLE_ON_SUB = prove (`!f g s. f real_differentiable_on s /\ g real_differentiable_on s ==> (\z. f z - g z) real_differentiable_on s`, SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_SUB]);; let REAL_DIFFERENTIABLE_ON_MUL = prove (`!f g s. f real_differentiable_on s /\ g real_differentiable_on s ==> (\z. f z * g z) real_differentiable_on s`, SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_MUL_WITHIN]);; let REAL_DIFFERENTIABLE_ON_INV = prove (`!f s. f real_differentiable_on s /\ (!z. z IN s ==> ~(f z = &0)) ==> (\z. inv(f z)) real_differentiable_on s`, SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_INV_WITHIN]);; let REAL_DIFFERENTIABLE_ON_DIV = prove (`!f g s. f real_differentiable_on s /\ g real_differentiable_on s /\ (!z. z IN s ==> ~(g z = &0)) ==> (\z. f z / g z) real_differentiable_on s`, SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_DIV_WITHIN]);; let REAL_DIFFERENTIABLE_ON_POW = prove (`!f s n. f real_differentiable_on s ==> (\z. (f z) pow n) real_differentiable_on s`, SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_POW_WITHIN]);; let REAL_DIFFERENTIABLE_ON_SUM = prove (`!f s k. FINITE k /\ (!a. a IN k ==> (f a) real_differentiable_on s) ==> (\x. sum k (\a. f a x)) real_differentiable_on s`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES] THEN SIMP_TAC[REAL_DIFFERENTIABLE_ON_CONST; IN_INSERT; NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_ADD THEN ASM_SIMP_TAC[ETA_AX]);; (* ------------------------------------------------------------------------- *) (* Derivative (and continuity) theorems for real transcendental functions. *) (* ------------------------------------------------------------------------- *) let HAS_REAL_DERIVATIVE_EXP = prove (`!x. (exp has_real_derivative exp(x)) (atreal x)`, GEN_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN EXISTS_TAC `cexp` THEN ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN; HAS_COMPLEX_DERIVATIVE_CEXP; CX_EXP]);; let REAL_DIFFERENTIABLE_AT_EXP = prove (`!x. exp real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_EXP]);; let REAL_DIFFERENTIABLE_WITHIN_EXP = prove (`!s x. exp real_differentiable (atreal x within s)`, MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN; REAL_DIFFERENTIABLE_AT_EXP]);; let REAL_CONTINUOUS_AT_EXP = prove (`!x. exp real_continuous (atreal x)`, MESON_TAC[HAS_REAL_DERIVATIVE_EXP; HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);; let REAL_CONTINUOUS_WITHIN_EXP = prove (`!s x. exp real_continuous (atreal x within s)`, MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; REAL_CONTINUOUS_AT_EXP]);; let REAL_CONTINUOUS_ON_EXP = prove (`!s. exp real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_WITHIN_EXP]);; let HAS_REAL_DERIVATIVE_SIN = prove (`!x. (sin has_real_derivative cos(x)) (atreal x)`, GEN_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN EXISTS_TAC `csin` THEN ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN; HAS_COMPLEX_DERIVATIVE_CSIN; CX_SIN; CX_COS]);; let REAL_DIFFERENTIABLE_AT_SIN = prove (`!x. sin real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_SIN]);; let REAL_DIFFERENTIABLE_WITHIN_SIN = prove (`!s x. sin real_differentiable (atreal x within s)`, MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN; REAL_DIFFERENTIABLE_AT_SIN]);; let REAL_CONTINUOUS_AT_SIN = prove (`!x. sin real_continuous (atreal x)`, MESON_TAC[HAS_REAL_DERIVATIVE_SIN; HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);; let REAL_CONTINUOUS_WITHIN_SIN = prove (`!s x. sin real_continuous (atreal x within s)`, MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; REAL_CONTINUOUS_AT_SIN]);; let REAL_CONTINUOUS_ON_SIN = prove (`!s. sin real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_WITHIN_SIN]);; let HAS_REAL_DERIVATIVE_COS = prove (`!x. (cos has_real_derivative --sin(x)) (atreal x)`, GEN_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN EXISTS_TAC `ccos` THEN ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN; HAS_COMPLEX_DERIVATIVE_CCOS; CX_SIN; CX_COS; CX_NEG]);; let REAL_DIFFERENTIABLE_AT_COS = prove (`!x. cos real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_COS]);; let REAL_DIFFERENTIABLE_WITHIN_COS = prove (`!s x. cos real_differentiable (atreal x within s)`, MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN; REAL_DIFFERENTIABLE_AT_COS]);; let REAL_CONTINUOUS_AT_COS = prove (`!x. cos real_continuous (atreal x)`, MESON_TAC[HAS_REAL_DERIVATIVE_COS; HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);; let REAL_CONTINUOUS_WITHIN_COS = prove (`!s x. cos real_continuous (atreal x within s)`, MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; REAL_CONTINUOUS_AT_COS]);; let REAL_CONTINUOUS_ON_COS = prove (`!s. cos real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_WITHIN_COS]);; let HAS_REAL_DERIVATIVE_TAN = prove (`!x. ~(cos x = &0) ==> (tan has_real_derivative inv(cos(x) pow 2)) (atreal x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN EXISTS_TAC `ctan` THEN REWRITE_TAC[CX_INV; CX_POW; CX_COS] THEN ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN; HAS_COMPLEX_DERIVATIVE_CTAN; GSYM CX_COS; CX_INJ; CX_TAN]);; let REAL_DIFFERENTIABLE_AT_TAN = prove (`!x. ~(cos x = &0) ==> tan real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_TAN]);; let REAL_DIFFERENTIABLE_WITHIN_TAN = prove (`!s x. ~(cos x = &0) ==> tan real_differentiable (atreal x within s)`, MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN; REAL_DIFFERENTIABLE_AT_TAN]);; let REAL_CONTINUOUS_AT_TAN = prove (`!x. ~(cos x = &0) ==> tan real_continuous (atreal x)`, MESON_TAC[HAS_REAL_DERIVATIVE_TAN; HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);; let REAL_CONTINUOUS_WITHIN_TAN = prove (`!s x. ~(cos x = &0) ==> tan real_continuous (atreal x within s)`, MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; REAL_CONTINUOUS_AT_TAN]);; let REAL_CONTINUOUS_ON_TAN = prove (`!s. (!x. x IN s ==> ~(cos x = &0)) ==> tan real_continuous_on s`, MESON_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_WITHIN_TAN]);; let HAS_REAL_DERIVATIVE_LOG = prove (`!x. &0 < x ==> (log has_real_derivative inv(x)) (atreal x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT_GEN THEN MAP_EVERY EXISTS_TAC [`clog`; `x:real`] THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL [REWRITE_TAC[CX_INV] THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_CLOG THEN ASM_REWRITE_TAC[RE_CX]; MATCH_MP_TAC(GSYM CX_LOG) THEN ASM_REAL_ARITH_TAC]);; let REAL_DIFFERENTIABLE_AT_LOG = prove (`!x. &0 < x ==> log real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_LOG]);; let REAL_DIFFERENTIABLE_WITHIN_LOG = prove (`!s x. &0 < x ==> log real_differentiable (atreal x within s)`, MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN; REAL_DIFFERENTIABLE_AT_LOG]);; let REAL_CONTINUOUS_AT_LOG = prove (`!x. &0 < x ==> log real_continuous (atreal x)`, MESON_TAC[HAS_REAL_DERIVATIVE_LOG; HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);; let REAL_CONTINUOUS_WITHIN_LOG = prove (`!s x. &0 < x ==> log real_continuous (atreal x within s)`, MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; REAL_CONTINUOUS_AT_LOG]);; let REAL_CONTINUOUS_ON_LOG = prove (`!s. (!x. x IN s ==> &0 < x) ==> log real_continuous_on s`, MESON_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_WITHIN_LOG]);; let HAS_REAL_DERIVATIVE_SQRT = prove (`!x. &0 < x ==> (sqrt has_real_derivative inv(&2 * sqrt x)) (atreal x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT_GEN THEN MAP_EVERY EXISTS_TAC [`csqrt`; `x:real`] THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THENL [ASM_SIMP_TAC[CX_INV; CX_MUL; CX_SQRT; REAL_LT_IMP_LE] THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_CSQRT THEN ASM_SIMP_TAC[RE_CX]; MATCH_MP_TAC(GSYM CX_SQRT) THEN ASM_REAL_ARITH_TAC]);; let REAL_DIFFERENTIABLE_AT_SQRT = prove (`!x. &0 < x ==> sqrt real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_SQRT]);; let REAL_DIFFERENTIABLE_WITHIN_SQRT = prove (`!s x. &0 < x ==> sqrt real_differentiable (atreal x within s)`, MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN; REAL_DIFFERENTIABLE_AT_SQRT]);; let REAL_CONTINUOUS_AT_SQRT = prove (`!x. sqrt real_continuous (atreal x)`, REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_ATREAL; CONTINUOUS_AT_SQRT]);; let REAL_CONTINUOUS_WITHIN_SQRT = prove (`!s x. sqrt real_continuous (atreal x within s)`, MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; REAL_CONTINUOUS_AT_SQRT]);; let REAL_CONTINUOUS_WITHIN_SQRT_COMPOSE = prove (`!f s a:real^N. f real_continuous (at a within s) ==> (\x. sqrt(f x)) real_continuous (at a within s)`, REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF] THEN REWRITE_TAC[CONTINUOUS_WITHIN_SQRT_COMPOSE]);; let REAL_CONTINUOUS_AT_SQRT_COMPOSE = prove (`!f a:real^N. f real_continuous (at a) ==> (\x. sqrt(f x)) real_continuous (at a)`, REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF] THEN REWRITE_TAC[CONTINUOUS_AT_SQRT_COMPOSE]);; let CONTINUOUS_WITHINREAL_SQRT_COMPOSE = prove (`!f s a. (\x. lift(f x)) continuous (atreal a within s) ==> (\x. lift(sqrt(f x))) continuous (atreal a within s)`, REWRITE_TAC[CONTINUOUS_CONTINUOUS_WITHINREAL] THEN REWRITE_TAC[o_DEF] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CONTINUOUS_WITHIN_SQRT_COMPOSE THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP]);; let CONTINUOUS_ATREAL_SQRT_COMPOSE = prove (`!f a. (\x. lift(f x)) continuous (atreal a) ==> (\x. lift(sqrt(f x))) continuous (atreal a)`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`f:real->real`; `(:real)`; `a:real`] CONTINUOUS_WITHINREAL_SQRT_COMPOSE) THEN REWRITE_TAC[WITHINREAL_UNIV; IN_UNIV]);; let REAL_CONTINUOUS_WITHINREAL_SQRT_COMPOSE = prove (`!f s a. f real_continuous (atreal a within s) ==> (\x. sqrt(f x)) real_continuous (atreal a within s)`, REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF] THEN REWRITE_TAC[CONTINUOUS_WITHINREAL_SQRT_COMPOSE]);; let REAL_CONTINUOUS_ATREAL_SQRT_COMPOSE = prove (`!f a. f real_continuous (atreal a) ==> (\x. sqrt(f x)) real_continuous (atreal a)`, REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; o_DEF] THEN REWRITE_TAC[CONTINUOUS_ATREAL_SQRT_COMPOSE]);; let REAL_CONTINUOUS_ON_SQRT = prove (`!s. sqrt real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_WITHIN_SQRT]);; let HAS_REAL_DERIVATIVE_ATN = prove (`!x. (atn has_real_derivative inv(&1 + x pow 2)) (atreal x)`, GEN_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT THEN EXISTS_TAC `catn` THEN REWRITE_TAC[CX_INV; CX_ADD; CX_ATN; CX_POW] THEN ASM_SIMP_TAC[HAS_COMPLEX_DERIVATIVE_AT_WITHIN; HAS_COMPLEX_DERIVATIVE_CATN; IM_CX; REAL_ABS_NUM; REAL_LT_01]);; let REAL_DIFFERENTIABLE_AT_ATN = prove (`!x. atn real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_ATN]);; let REAL_DIFFERENTIABLE_WITHIN_ATN = prove (`!s x. atn real_differentiable (atreal x within s)`, MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN; REAL_DIFFERENTIABLE_AT_ATN]);; let REAL_CONTINUOUS_AT_ATN = prove (`!x. atn real_continuous (atreal x)`, MESON_TAC[HAS_REAL_DERIVATIVE_ATN; HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);; let REAL_CONTINUOUS_WITHIN_ATN = prove (`!s x. atn real_continuous (atreal x within s)`, MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; REAL_CONTINUOUS_AT_ATN]);; let REAL_CONTINUOUS_ON_ATN = prove (`!s. atn real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_WITHIN_ATN]);; let HAS_REAL_DERIVATIVE_ASN_COS = prove (`!x. abs(x) < &1 ==> (asn has_real_derivative inv(cos(asn x))) (atreal x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT_GEN THEN MAP_EVERY EXISTS_TAC [`casn`; `&1 - abs x`] THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN REPEAT STRIP_TAC THENL [ASM_SIMP_TAC[CX_INV; CX_COS; CX_ASN; REAL_LT_IMP_LE] THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_CASN THEN ASM_REWRITE_TAC[RE_CX]; MATCH_MP_TAC(GSYM CX_ASN) THEN ASM_REAL_ARITH_TAC]);; let HAS_REAL_DERIVATIVE_ASN = prove (`!x. abs(x) < &1 ==> (asn has_real_derivative inv(sqrt(&1 - x pow 2))) (atreal x)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HAS_REAL_DERIVATIVE_ASN_COS) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC COS_ASN THEN ASM_REAL_ARITH_TAC);; let REAL_DIFFERENTIABLE_AT_ASN = prove (`!x. abs(x) < &1 ==> asn real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_ASN]);; let REAL_DIFFERENTIABLE_WITHIN_ASN = prove (`!s x. abs(x) < &1 ==> asn real_differentiable (atreal x within s)`, MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN; REAL_DIFFERENTIABLE_AT_ASN]);; let REAL_CONTINUOUS_AT_ASN = prove (`!x. abs(x) < &1 ==> asn real_continuous (atreal x)`, MESON_TAC[HAS_REAL_DERIVATIVE_ASN; HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);; let REAL_CONTINUOUS_WITHIN_ASN = prove (`!s x. abs(x) < &1 ==> asn real_continuous (atreal x within s)`, MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; REAL_CONTINUOUS_AT_ASN]);; let HAS_REAL_DERIVATIVE_ACS_SIN = prove (`!x. abs(x) < &1 ==> (acs has_real_derivative --inv(sin(acs x))) (atreal x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_COMPLEX_REAL_DERIVATIVE_AT_GEN THEN MAP_EVERY EXISTS_TAC [`cacs`; `&1 - abs x`] THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN REPEAT STRIP_TAC THENL [ASM_SIMP_TAC[CX_INV; CX_SIN; CX_ACS; CX_NEG; REAL_LT_IMP_LE] THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_AT_WITHIN THEN MATCH_MP_TAC HAS_COMPLEX_DERIVATIVE_CACS THEN ASM_REWRITE_TAC[RE_CX]; MATCH_MP_TAC(GSYM CX_ACS) THEN ASM_REAL_ARITH_TAC]);; let HAS_REAL_DERIVATIVE_ACS = prove (`!x. abs(x) < &1 ==> (acs has_real_derivative --inv(sqrt(&1 - x pow 2))) (atreal x)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP HAS_REAL_DERIVATIVE_ACS_SIN) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SIN_ACS THEN ASM_REAL_ARITH_TAC);; let REAL_DIFFERENTIABLE_AT_ACS = prove (`!x. abs(x) < &1 ==> acs real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_ACS]);; let REAL_DIFFERENTIABLE_WITHIN_ACS = prove (`!s x. abs(x) < &1 ==> acs real_differentiable (atreal x within s)`, MESON_TAC[REAL_DIFFERENTIABLE_ATREAL_WITHIN; REAL_DIFFERENTIABLE_AT_ACS]);; let REAL_CONTINUOUS_AT_ACS = prove (`!x. abs(x) < &1 ==> acs real_continuous (atreal x)`, MESON_TAC[HAS_REAL_DERIVATIVE_ACS; HAS_REAL_DERIVATIVE_IMP_CONTINUOUS_ATREAL]);; let REAL_CONTINUOUS_WITHIN_ACS = prove (`!s x. abs(x) < &1 ==> acs real_continuous (atreal x within s)`, MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; REAL_CONTINUOUS_AT_ACS]);; (* ------------------------------------------------------------------------- *) (* Hence differentiation of the norm. *) (* ------------------------------------------------------------------------- *) let DIFFERENTIABLE_NORM_AT = prove (`!a:real^N. ~(a = vec 0) ==> (\x. lift(norm x)) differentiable (at a)`, REPEAT STRIP_TAC THEN REWRITE_TAC[vector_norm] THEN SUBGOAL_THEN `(\x:real^N. lift(sqrt(x dot x))) = (lift o sqrt o drop) o (\x. lift(x dot x))` SUBST1_TAC THENL [REWRITE_TAC[o_DEF; LIFT_DROP]; ALL_TAC] THEN MATCH_MP_TAC DIFFERENTIABLE_CHAIN_AT THEN REWRITE_TAC[DIFFERENTIABLE_SQNORM_AT; GSYM NORM_POW_2] THEN MP_TAC(ISPEC `norm(a:real^N) pow 2` REAL_DIFFERENTIABLE_AT_SQRT) THEN ASM_SIMP_TAC[REAL_POW_LT; NORM_POS_LT; REAL_DIFFERENTIABLE_AT]);; let DIFFERENTIABLE_ON_NORM = prove (`!s:real^N->bool. ~(vec 0 IN s) ==> (\x. lift(norm x)) differentiable_on s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC DIFFERENTIABLE_AT_IMP_DIFFERENTIABLE_ON THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC DIFFERENTIABLE_NORM_AT THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Some somewhat sharper continuity theorems including endpoints. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_WITHIN_ASN_STRONG = prove (`!x. asn real_continuous (atreal x within {t | abs(t) <= &1})`, GEN_TAC THEN REWRITE_TAC[REAL_COMPLEX_CONTINUOUS_WITHINREAL] THEN ASM_CASES_TAC `x IN {t | abs(t) <= &1}` THENL [MATCH_MP_TAC CONTINUOUS_TRANSFORM_WITHIN THEN MAP_EVERY EXISTS_TAC [`casn`; `&1`] THEN REWRITE_TAC[IMAGE_CX; IN_ELIM_THM; CONTINUOUS_WITHIN_CASN_REAL; REAL_LT_01; SET_RULE `real INTER {z | real z /\ P z} = {z | real z /\ P z}`] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN ASM_REWRITE_TAC[REAL_CX; RE_CX; IMP_CONJ; FORALL_REAL; o_THM] THEN SIMP_TAC[CX_ASN]; MATCH_MP_TAC CONTINUOUS_WITHIN_CLOSED_NONTRIVIAL THEN CONJ_TAC THENL [SUBGOAL_THEN `real INTER IMAGE Cx {t | abs t <= &1} = real INTER cball(Cx(&0),&1)` (fun th -> SIMP_TAC[th; CLOSED_INTER; CLOSED_REAL; CLOSED_CBALL]) THEN REWRITE_TAC[EXTENSION; IMAGE_CX; IN_ELIM_THM; IN_CBALL; IN_INTER] THEN REWRITE_TAC[dist; COMPLEX_SUB_LZERO; NORM_NEG; IN] THEN MESON_TAC[REAL_NORM]; MATCH_MP_TAC(SET_RULE `(!x y. f x = f y ==> x = y) /\ ~(x IN s) ==> ~(f x IN t INTER IMAGE f s)`) THEN ASM_REWRITE_TAC[CX_INJ]]]);; let REAL_CONTINUOUS_ON_ASN = prove (`!s. (!x. x IN s ==> abs(x) <= &1) ==> asn real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_WITHINREAL_SUBSET THEN EXISTS_TAC `{x | abs(x) <= &1}` THEN ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM; REAL_CONTINUOUS_WITHIN_ASN_STRONG]);; let REAL_CONTINUOUS_WITHIN_ACS_STRONG = prove (`!x. acs real_continuous (atreal x within {t | abs(t) <= &1})`, GEN_TAC THEN REWRITE_TAC[REAL_COMPLEX_CONTINUOUS_WITHINREAL] THEN ASM_CASES_TAC `x IN {t | abs(t) <= &1}` THENL [MATCH_MP_TAC CONTINUOUS_TRANSFORM_WITHIN THEN MAP_EVERY EXISTS_TAC [`cacs`; `&1`] THEN REWRITE_TAC[IMAGE_CX; IN_ELIM_THM; CONTINUOUS_WITHIN_CACS_REAL; REAL_LT_01; SET_RULE `real INTER {z | real z /\ P z} = {z | real z /\ P z}`] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM]) THEN ASM_REWRITE_TAC[REAL_CX; RE_CX; IMP_CONJ; FORALL_REAL; o_THM] THEN SIMP_TAC[CX_ACS]; MATCH_MP_TAC CONTINUOUS_WITHIN_CLOSED_NONTRIVIAL THEN CONJ_TAC THENL [SUBGOAL_THEN `real INTER IMAGE Cx {t | abs t <= &1} = real INTER cball(Cx(&0),&1)` (fun th -> SIMP_TAC[th; CLOSED_INTER; CLOSED_REAL; CLOSED_CBALL]) THEN REWRITE_TAC[EXTENSION; IMAGE_CX; IN_ELIM_THM; IN_CBALL; IN_INTER] THEN REWRITE_TAC[dist; COMPLEX_SUB_LZERO; NORM_NEG; IN] THEN MESON_TAC[REAL_NORM]; MATCH_MP_TAC(SET_RULE `(!x y. f x = f y ==> x = y) /\ ~(x IN s) ==> ~(f x IN t INTER IMAGE f s)`) THEN ASM_REWRITE_TAC[CX_INJ]]]);; let REAL_CONTINUOUS_ON_ACS = prove (`!s. (!x. x IN s ==> abs(x) <= &1) ==> acs real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_WITHINREAL_SUBSET THEN EXISTS_TAC `{x | abs(x) <= &1}` THEN ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM; REAL_CONTINUOUS_WITHIN_ACS_STRONG]);; (* ------------------------------------------------------------------------- *) (* Differentiation conversion. *) (* ------------------------------------------------------------------------- *) let real_differentiation_theorems = ref [];; let add_real_differentiation_theorems = let ETA_THM = prove (`(f has_real_derivative f') net <=> ((\x. f x) has_real_derivative f') net`, REWRITE_TAC[ETA_AX]) in let ETA_TWEAK = PURE_REWRITE_RULE [IMP_CONJ] o GEN_REWRITE_RULE (LAND_CONV o ONCE_DEPTH_CONV) [ETA_THM] o SPEC_ALL in fun l -> real_differentiation_theorems := !real_differentiation_theorems @ map ETA_TWEAK l;; add_real_differentiation_theorems ([HAS_REAL_DERIVATIVE_LMUL_WITHIN; HAS_REAL_DERIVATIVE_LMUL_ATREAL; HAS_REAL_DERIVATIVE_RMUL_WITHIN; HAS_REAL_DERIVATIVE_RMUL_ATREAL; HAS_REAL_DERIVATIVE_CDIV_WITHIN; HAS_REAL_DERIVATIVE_CDIV_ATREAL; HAS_REAL_DERIVATIVE_ID; HAS_REAL_DERIVATIVE_CONST; HAS_REAL_DERIVATIVE_NEG; HAS_REAL_DERIVATIVE_ADD; HAS_REAL_DERIVATIVE_SUB; HAS_REAL_DERIVATIVE_MUL_WITHIN; HAS_REAL_DERIVATIVE_MUL_ATREAL; HAS_REAL_DERIVATIVE_DIV_WITHIN; HAS_REAL_DERIVATIVE_DIV_ATREAL; HAS_REAL_DERIVATIVE_POW_WITHIN; HAS_REAL_DERIVATIVE_POW_ATREAL; HAS_REAL_DERIVATIVE_INV_WITHIN; HAS_REAL_DERIVATIVE_INV_ATREAL] @ (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN_UNIV HAS_REAL_DERIVATIVE_EXP))) @ (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN_UNIV HAS_REAL_DERIVATIVE_SIN))) @ (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN_UNIV HAS_REAL_DERIVATIVE_COS))) @ (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN HAS_REAL_DERIVATIVE_TAN))) @ (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN HAS_REAL_DERIVATIVE_LOG))) @ (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN HAS_REAL_DERIVATIVE_SQRT))) @ (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN_UNIV HAS_REAL_DERIVATIVE_ATN))) @ (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN HAS_REAL_DERIVATIVE_ASN))) @ (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN HAS_REAL_DERIVATIVE_ACS))));; let REAL_DIFF_CONV = let partfn tm = let l,r = dest_comb tm in mk_pair(lhand l,r) and is_deriv = can (term_match [] `(f has_real_derivative f') net`) in let rec REAL_DIFF_CONV tm = try tryfind (fun th -> PART_MATCH partfn th (partfn tm)) (!real_differentiation_theorems) with Failure _ -> let ith = tryfind (fun th -> PART_MATCH (partfn o repeat (snd o dest_imp)) th (partfn tm)) (!real_differentiation_theorems) in REAL_DIFF_ELIM ith and REAL_DIFF_ELIM th = let tm = concl th in if not(is_imp tm) then th else let t = lhand tm in if not(is_deriv t) then UNDISCH th else REAL_DIFF_ELIM (MATCH_MP th (REAL_DIFF_CONV t)) in REAL_DIFF_CONV;; (* ------------------------------------------------------------------------- *) (* Hence a tactic. *) (* ------------------------------------------------------------------------- *) let REAL_DIFF_TAC = let pth = MESON[] `(f has_real_derivative f') net ==> f' = g' ==> (f has_real_derivative g') net` in W(fun (asl,w) -> let th = MATCH_MP pth (REAL_DIFF_CONV w) in MATCH_MP_TAC(repeat (GEN_REWRITE_RULE I [IMP_IMP]) (DISCH_ALL th)));; let REAL_DIFFERENTIABLE_TAC = let DISCH_FIRST th = DISCH (hd(hyp th)) th in GEN_REWRITE_TAC I [real_differentiable] THEN W(fun (asl,w) -> let th = REAL_DIFF_CONV(snd(dest_exists w)) in let f' = rand(rator(concl th)) in EXISTS_TAC f' THEN (if hyp th = [] then MATCH_ACCEPT_TAC th else let th' = repeat (GEN_REWRITE_RULE I [IMP_IMP] o DISCH_FIRST) (DISCH_FIRST th) in MATCH_MP_TAC th'));; (* ------------------------------------------------------------------------- *) (* Some real limits involving transcendentals. *) (* ------------------------------------------------------------------------- *) let REALLIM_1_OVER_N_OFFSET = prove (`!a. ((\n. inv(&n + a)) ---> &0) sequentially`, REWRITE_TAC[REALLIM_COMPLEX; o_DEF; CX_INV; CX_ADD; LIM_INV_N_OFFSET]);; let REALLIM_1_OVER_N = prove (`((\n. inv(&n)) ---> &0) sequentially`, REWRITE_TAC[REALLIM_COMPLEX; o_DEF; CX_INV; LIM_INV_N]);; let REALLIM_1_OVER_POW = prove (`!k. 1 <= k ==> ((\n. inv(&n pow k)) ---> &0) sequentially`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REALLIM_NULL_COMPARISON THEN EXISTS_TAC `\n. inv(&n pow 1)` THEN CONJ_TAC THENL [REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ABS_INV; REAL_ABS_POW] THEN MATCH_MP_TAC REAL_LE_INV2 THEN REWRITE_TAC[REAL_ABS_NUM] THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_POW_LT; MATCH_MP_TAC REAL_POW_MONO] THEN ASM_SIMP_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_LT; LE_1]; REWRITE_TAC[REAL_POW_1; REALLIM_1_OVER_N]]);; let REALLIM_LOG_OVER_N = prove (`((\n. log(&n) / &n) ---> &0) sequentially`, REWRITE_TAC[REALLIM_COMPLEX] THEN MP_TAC LIM_LOG_OVER_N THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN SIMP_TAC[o_DEF; CX_DIV; CX_LOG; REAL_OF_NUM_LT; ARITH_RULE `1 <= n ==> 0 < n`]);; let REALLIM_1_OVER_LOG = prove (`((\n. inv(log(&n))) ---> &0) sequentially`, REWRITE_TAC[REALLIM_COMPLEX] THEN MP_TAC LIM_1_OVER_LOG THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN REWRITE_TAC[o_DEF; complex_div; COMPLEX_MUL_LID; CX_INV] THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN SIMP_TAC[CX_LOG; REAL_OF_NUM_LT; ARITH_RULE `1 <= n ==> 0 < n`]);; let REALLIM_POWN = prove (`!z. abs(z) < &1 ==> ((\n. z pow n) ---> &0) sequentially`, REWRITE_TAC[REALLIM_COMPLEX; o_DEF; CX_POW] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIM_POWN THEN ASM_REWRITE_TAC[COMPLEX_NORM_CX]);; let REALLIM_X_TIMES_LOG = prove (`((\x. x * log x) ---> &0) (atreal(&0) within {x | &0 <= x})`, MP_TAC LIM_Z_TIMES_CLOG THEN REWRITE_TAC[REALLIM_WITHINREAL; LIM_AT] THEN REWRITE_TAC[IN_ELIM_THM; REAL_SUB_RZERO; dist; COMPLEX_SUB_RZERO] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN ASM_CASES_TAC `&0 < d` THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN X_GEN_TAC `x:real` THEN ASM_CASES_TAC `x = &0` THENL [ASM_REAL_ARITH_TAC; STRIP_TAC] THEN SUBGOAL_THEN `&0 < x` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `Cx x`) THEN ASM_SIMP_TAC[COMPLEX_NORM_MUL; GSYM CX_LOG; COMPLEX_NORM_CX] THEN REWRITE_TAC[REAL_ABS_MUL]);; let REALLIM_ROOT_REFL = prove (`((\n. root n (&n)) ---> &1) sequentially`, MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN EXISTS_TAC `\n. exp(log(&n) / &n)` THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN CONJ_TAC THENL [EXISTS_TAC `1` THEN INTRO_TAC "!n; n" THEN MATCH_MP_TAC (GSYM ROOT_EXP_LOG) THEN ASM_REWRITE_TAC[REAL_OF_NUM_LT] THEN ASM_ARITH_TAC; REWRITE_TAC[GSYM REAL_EXP_0] THEN MATCH_MP_TAC REALLIM_REAL_CONTINUOUS_FUNCTION THEN REWRITE_TAC[REAL_CONTINUOUS_AT_EXP; REALLIM_LOG_OVER_N]]);; (* ------------------------------------------------------------------------- *) (* Analytic results for real power function. *) (* ------------------------------------------------------------------------- *) let REALLIM_RPOW_COMPOSE = prove (`!net:A net f g l m. (f ---> l) net /\ (g ---> m) net /\ &0 < l ==> ((\x. (f x) rpow (g x)) ---> l rpow m) net`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN EXISTS_TAC `\x:A. exp(g x * log(f x))` THEN CONJ_TAC THENL [MATCH_MP_TAC EVENTUALLY_MONO THEN EXISTS_TAC `\x:A. &0 < f x` THEN SIMP_TAC[rpow] THEN UNDISCH_TAC `(f ---> l) (net:A net)` THEN REWRITE_TAC[tendsto_real] THEN DISCH_THEN(MP_TAC o SPEC `l:real`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REAL_ARITH_TAC; ASM_REWRITE_TAC[rpow] THEN MATCH_MP_TAC(SPEC `exp` REALLIM_REAL_CONTINUOUS_FUNCTION) THEN REWRITE_TAC[REAL_CONTINUOUS_AT_EXP] THEN MATCH_MP_TAC REALLIM_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(SPEC `log` REALLIM_REAL_CONTINUOUS_FUNCTION) THEN ASM_SIMP_TAC[REAL_CONTINUOUS_AT_LOG]]);; let REAL_CONTINUOUS_RPOW_COMPOSE_WITHIN = prove (`!f g s a:real^N. f real_continuous (at a within s) /\ g real_continuous (at a within s) /\ &0 < f a ==> (\x. (f x) rpow (g x)) real_continuous (at a within s)`, REWRITE_TAC[REAL_CONTINUOUS_WITHIN; REALLIM_RPOW_COMPOSE]);; let HAS_REAL_DERIVATIVE_RPOW = prove (`!x y. &0 < x ==> ((\x. x rpow y) has_real_derivative y * x rpow (y - &1)) (atreal x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_TRANSFORM_ATREAL THEN EXISTS_TAC `\x. exp(y * log x)` THEN EXISTS_TAC `x:real` THEN ASM_SIMP_TAC[rpow; REAL_ARITH `&0 < x ==> (abs(y - x) < x <=> &0 < y /\ y < &2 * x)`] THEN REAL_DIFF_TAC THEN ASM_SIMP_TAC[REAL_SUB_RDISTRIB; REAL_EXP_SUB; REAL_MUL_LID; EXP_LOG] THEN REAL_ARITH_TAC);; add_real_differentiation_theorems (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (GEN `y:real` (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN (SPEC `y:real` (ONCE_REWRITE_RULE[SWAP_FORALL_THM] HAS_REAL_DERIVATIVE_RPOW))))));; let HAS_REAL_DERIVATIVE_RPOW_RIGHT = prove (`!a x. &0 < a ==> ((\x. a rpow x) has_real_derivative log(a) * a rpow x) (atreal x)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[rpow] THEN REAL_DIFF_TAC THEN REAL_ARITH_TAC);; add_real_differentiation_theorems (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN (SPEC `a:real` HAS_REAL_DERIVATIVE_RPOW_RIGHT))));; let REAL_DIFFERENTIABLE_AT_RPOW = prove (`!x y. ~(x = &0) ==> (\x. x rpow y) real_differentiable atreal x`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_ARITH `~(x = &0) <=> &0 < x \/ &0 < --x`] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_DIFFERENTIABLE_TRANSFORM_ATREAL THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN EXISTS_TAC `abs x` THENL [EXISTS_TAC `\x. exp(y * log x)` THEN ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> &0 < abs x`] THEN CONJ_TAC THENL [X_GEN_TAC `z:real` THEN DISCH_TAC THEN SUBGOAL_THEN `&0 < z` (fun th -> REWRITE_TAC[rpow; th]) THEN ASM_REAL_ARITH_TAC; REAL_DIFFERENTIABLE_TAC THEN ASM_REAL_ARITH_TAC]; ASM_CASES_TAC `?m n. ODD m /\ ODD n /\ abs y = &m / &n` THENL [EXISTS_TAC `\x. --(exp(y * log(--x)))`; EXISTS_TAC `\x. exp(y * log(--x))`] THEN (ASM_SIMP_TAC[REAL_ARITH `&0 < --x ==> &0 < abs x`] THEN CONJ_TAC THENL [X_GEN_TAC `z:real` THEN DISCH_TAC THEN SUBGOAL_THEN `~(&0 < z) /\ ~(z = &0)` (fun th -> ASM_REWRITE_TAC[rpow; th]) THEN ASM_REAL_ARITH_TAC; REAL_DIFFERENTIABLE_TAC THEN ASM_REAL_ARITH_TAC])]);; let REAL_DIFFERENTIABLE_AT_RPOW_RIGHT = prove (`!a x. &0 < a ==> (\x. a rpow x) real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_RPOW_RIGHT]);; let REAL_CONTINUOUS_AT_RPOW = prove (`!x y. (x = &0 ==> &0 <= y) ==> (\x. x rpow y) real_continuous (atreal x)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `y = &0` THEN ASM_REWRITE_TAC[RPOW_POW; real_pow; REAL_CONTINUOUS_CONST] THEN ASM_CASES_TAC `x = &0` THENL [ASM_REWRITE_TAC[real_continuous_atreal; RPOW_ZERO] THEN REWRITE_TAC[REAL_SUB_RZERO; REAL_ABS_RPOW] THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `e rpow inv(y)` THEN ASM_SIMP_TAC[RPOW_POS_LT] THEN X_GEN_TAC `z:real` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_LTE_TRANS THEN EXISTS_TAC `e rpow inv y rpow y` THEN CONJ_TAC THENL [MATCH_MP_TAC RPOW_LT2 THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[RPOW_RPOW; REAL_LT_IMP_LE; REAL_MUL_LINV] THEN REWRITE_TAC[RPOW_POW; REAL_POW_1; REAL_LE_REFL]]; ASM_SIMP_TAC[REAL_DIFFERENTIABLE_IMP_CONTINUOUS_ATREAL; REAL_DIFFERENTIABLE_AT_RPOW]]);; let REAL_CONTINUOUS_WITHIN_RPOW = prove (`!s x y. (x = &0 ==> &0 <= y) ==> (\x. x rpow y) real_continuous (atreal x within s)`, MESON_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; REAL_CONTINUOUS_AT_RPOW]);; let REAL_CONTINUOUS_ON_RPOW = prove (`!s y. (&0 IN s ==> &0 <= y) ==> (\x. x rpow y) real_continuous_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_WITHIN_RPOW THEN ASM_MESON_TAC[]);; let REAL_CONTINUOUS_AT_RPOW_RIGHT = prove (`!a x. &0 < a ==> (\x. a rpow x) real_continuous (atreal x)`, SIMP_TAC[REAL_DIFFERENTIABLE_IMP_CONTINUOUS_ATREAL; REAL_DIFFERENTIABLE_AT_RPOW_RIGHT]);; let REALLIM_RPOW = prove (`!net f l n. (f ---> l) net /\ (l = &0 ==> &0 <= n) ==> ((\x. f x rpow n) ---> l rpow n) net`, REPEAT STRIP_TAC THEN MATCH_MP_TAC (REWRITE_RULE[] (ISPEC `\x. x rpow n` REALLIM_REAL_CONTINUOUS_FUNCTION)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN ASM_REWRITE_TAC[]);; let REALLIM_NULL_POW_EQ = prove (`!net f n. ~(n = 0) ==> (((\x. f x pow n) ---> &0) net <=> (f ---> &0) net)`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[REALLIM_NULL_POW] THEN DISCH_THEN(MP_TAC o ISPEC `(\x. x rpow (inv(&n))) o abs` o MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] REALLIM_REAL_CONTINUOUS_FUNCTION)) THEN REWRITE_TAC[o_THM] THEN ASM_REWRITE_TAC[RPOW_ZERO; REAL_INV_EQ_0; REAL_OF_NUM_EQ; REAL_ABS_NUM] THEN SIMP_TAC[GSYM RPOW_POW; RPOW_RPOW; REAL_ABS_POS; REAL_ABS_RPOW] THEN ASM_SIMP_TAC[REAL_MUL_RINV; REAL_OF_NUM_EQ] THEN REWRITE_TAC[REALLIM_NULL_ABS; RPOW_POW; REAL_POW_1] THEN DISCH_THEN MATCH_MP_TAC THEN ONCE_REWRITE_TAC[GSYM WITHINREAL_UNIV] THEN MATCH_MP_TAC REAL_CONTINUOUS_WITHINREAL_COMPOSE THEN CONJ_TAC THENL [GEN_REWRITE_TAC LAND_CONV [GSYM ETA_AX] THEN MATCH_MP_TAC REAL_CONTINUOUS_ABS THEN REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID]; MATCH_MP_TAC REAL_CONTINUOUS_WITHIN_RPOW THEN REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS]]);; let LIM_NULL_COMPLEX_POW_EQ = prove (`!net f n. ~(n = 0) ==> (((\x. f x pow n) --> Cx(&0)) net <=> (f --> Cx(&0)) net)`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM COMPLEX_VEC_0] THEN ONCE_REWRITE_TAC[LIM_NULL_NORM] THEN REWRITE_TAC[COMPLEX_NORM_POW; REAL_TENDSTO; o_DEF; LIFT_DROP] THEN ASM_SIMP_TAC[REALLIM_NULL_POW_EQ; DROP_VEC]);; let LIM_NULL_RPOW = prove (`!net p x:A->real. ((lift o x) --> vec 0) net /\ &0 < p ==> ((\i. lift(x(i) rpow p)) --> vec 0) net`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(MP_TAC o ISPEC `lift o (\x. x rpow p) o drop` o MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] LIM_CONTINUOUS_FUNCTION)) THEN ASM_SIMP_TAC[o_THM; DROP_VEC; RPOW_ZERO; REAL_LT_IMP_NZ; LIFT_NUM] THEN REWRITE_TAC[LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Analytic result for "frac". *) (* ------------------------------------------------------------------------- *) let HAS_REAL_DERIVATIVE_FRAC = prove (`!x. ~(integer x) ==> (frac has_real_derivative (&1)) (atreal x)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_TRANSFORM_ATREAL THEN EXISTS_TAC `\y. y - floor x` THEN EXISTS_TAC `min (frac x) (floor x + &1 - x)` THEN ASM_REWRITE_TAC[REAL_LT_MIN; REAL_FRAC_POS_LT] THEN REWRITE_TAC[REAL_ARITH `&0 < x + &1 - y <=> y < x + &1`; FLOOR] THEN CONJ_TAC THENL [ALL_TAC; REAL_DIFF_TAC THEN REAL_ARITH_TAC] THEN X_GEN_TAC `y:real` THEN DISCH_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM FRAC_UNIQUE; REAL_ARITH `y - (y - x):real = x`] THEN MP_TAC(SPEC `x:real` FLOOR_FRAC) THEN SIMP_TAC[] THEN ASM_REAL_ARITH_TAC);; let REAL_DIFFERENTIABLE_FRAC = prove (`!x. ~(integer x) ==> frac real_differentiable (atreal x)`, REWRITE_TAC[real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_FRAC]);; add_real_differentiation_theorems (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN HAS_REAL_DERIVATIVE_FRAC)));; (* ------------------------------------------------------------------------- *) (* Polynomials are differentiable and continuous. *) (* ------------------------------------------------------------------------- *) let REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_ATREAL = prove (`!p x. polynomial_function p ==> p real_differentiable atreal x`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC POLYNOMIAL_FUNCTION_INDUCT THEN SIMP_TAC[REAL_DIFFERENTIABLE_CONST; REAL_DIFFERENTIABLE_ID; REAL_DIFFERENTIABLE_ADD; REAL_DIFFERENTIABLE_MUL_ATREAL]);; let REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_WITHIN = prove (`!p s x. polynomial_function p ==> p real_differentiable atreal x within s`, SIMP_TAC[REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_ATREAL; REAL_DIFFERENTIABLE_ATREAL_WITHIN]);; let REAL_DIFFERENTIABLE_ON_POLYNOMIAL_FUNCTION = prove (`!p s. polynomial_function p ==> p real_differentiable_on s`, SIMP_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_WITHIN]);; let REAL_CONTINUOUS_POLYNOMIAL_FUNCTION_ATREAL = prove (`!p x. polynomial_function p ==> p real_continuous atreal x`, SIMP_TAC[REAL_DIFFERENTIABLE_IMP_CONTINUOUS_ATREAL; REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_ATREAL]);; let REAL_CONTINUOUS_POLYNOMIAL_FUNCTION_WITHIN = prove (`!p s x. polynomial_function p ==> p real_continuous atreal x within s`, SIMP_TAC[REAL_DIFFERENTIABLE_IMP_CONTINUOUS_WITHINREAL; REAL_DIFFERENTIABLE_POLYNOMIAL_FUNCTION_WITHIN]);; let REAL_CONTINUOUS_ON_POLYNOMIAL_FUNCTION = prove (`!p s. polynomial_function p ==> p real_continuous_on s`, SIMP_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; REAL_CONTINUOUS_POLYNOMIAL_FUNCTION_WITHIN]);; (* ------------------------------------------------------------------------- *) (* Intermediate Value Theorem. *) (* ------------------------------------------------------------------------- *) let REAL_IVT_INCREASING = prove (`!f a b y. a <= b /\ f real_continuous_on real_interval[a,b] /\ f a <= y /\ y <= f b ==> ?x. x IN real_interval [a,b] /\ f x = y`, REWRITE_TAC[REAL_CONTINUOUS_ON; IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`; `y:real`; `1`] IVT_INCREASING_COMPONENT_ON_1) THEN ASM_REWRITE_TAC[GSYM drop; o_THM; LIFT_DROP; DIMINDEX_1; LE_REFL] THEN REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; EXISTS_IN_IMAGE; LIFT_DROP]);; let REAL_IVT_DECREASING = prove (`!f a b y. a <= b /\ f real_continuous_on real_interval[a,b] /\ f b <= y /\ y <= f a ==> ?x. x IN real_interval [a,b] /\ f x = y`, REWRITE_TAC[REAL_CONTINUOUS_ON; IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`; `y:real`; `1`] IVT_DECREASING_COMPONENT_ON_1) THEN ASM_REWRITE_TAC[GSYM drop; o_THM; LIFT_DROP; DIMINDEX_1; LE_REFL] THEN REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; EXISTS_IN_IMAGE; LIFT_DROP]);; let IS_REALINTERVAL_CONTINUOUS_IMAGE = prove (`!s. f real_continuous_on s /\ is_realinterval s ==> is_realinterval(IMAGE f s)`, GEN_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_ON; IS_REALINTERVAL_CONNECTED] THEN DISCH_THEN(MP_TAC o MATCH_MP CONNECTED_CONTINUOUS_IMAGE) THEN REWRITE_TAC[IMAGE_o; REWRITE_RULE[IMAGE_o] IMAGE_LIFT_DROP]);; (* ------------------------------------------------------------------------- *) (* Zeroness (or sign at boundary) of derivative at local extremum. *) (* ------------------------------------------------------------------------- *) let REAL_DERIVATIVE_POS_LEFT_MINIMUM = prove (`!f f' a b e. a < b /\ &0 < e /\ (f has_real_derivative f') (atreal a within real_interval[a,b]) /\ (!x. x IN real_interval[a,b] /\ abs(x - a) < e ==> f a <= f x) ==> &0 <= f'`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1. f' % x`; `lift a`; `interval[lift a,lift b]`; `e:real`] DROP_DIFFERENTIAL_POS_AT_MINIMUM) THEN ASM_REWRITE_TAC[ENDS_IN_INTERVAL; CONVEX_INTERVAL; IN_INTER; IMP_CONJ] THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY; GSYM HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; IN_BALL; DIST_LIFT; REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN ANTS_TAC THENL [ASM_MESON_TAC[REAL_ABS_SUB]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `b:real`) THEN ASM_SIMP_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN ASM_SIMP_TAC[DROP_CMUL; DROP_SUB; LIFT_DROP; REAL_LE_MUL_EQ; REAL_SUB_LT]);; let REAL_DERIVATIVE_NEG_LEFT_MAXIMUM = prove (`!f f' a b e. a < b /\ &0 < e /\ (f has_real_derivative f') (atreal a within real_interval[a,b]) /\ (!x. x IN real_interval[a,b] /\ abs(x - a) < e ==> f x <= f a) ==> f' <= &0`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1. f' % x`; `lift a`; `interval[lift a,lift b]`; `e:real`] DROP_DIFFERENTIAL_NEG_AT_MAXIMUM) THEN ASM_REWRITE_TAC[ENDS_IN_INTERVAL; CONVEX_INTERVAL; IN_INTER; IMP_CONJ] THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY; GSYM HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; IN_BALL; DIST_LIFT; REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN ANTS_TAC THENL [ASM_MESON_TAC[REAL_ABS_SUB]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `b:real`) THEN ASM_SIMP_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN ASM_SIMP_TAC[DROP_CMUL; DROP_SUB; LIFT_DROP; REAL_LE_MUL_EQ; REAL_SUB_LT; REAL_ARITH `f * ba <= &0 <=> &0 <= --f * ba`] THEN REAL_ARITH_TAC);; let REAL_DERIVATIVE_POS_RIGHT_MAXIMUM = prove (`!f f' a b e. a < b /\ &0 < e /\ (f has_real_derivative f') (atreal b within real_interval[a,b]) /\ (!x. x IN real_interval[a,b] /\ abs(x - b) < e ==> f x <= f b) ==> &0 <= f'`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1. f' % x`; `lift b`; `interval[lift a,lift b]`; `e:real`] DROP_DIFFERENTIAL_NEG_AT_MAXIMUM) THEN ASM_REWRITE_TAC[ENDS_IN_INTERVAL; CONVEX_INTERVAL; IN_INTER; IMP_CONJ] THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY; GSYM HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; IN_BALL; DIST_LIFT; REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN ANTS_TAC THENL [ASM_MESON_TAC[REAL_ABS_SUB]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `a:real`) THEN ASM_SIMP_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN ASM_SIMP_TAC[DROP_CMUL; DROP_SUB; LIFT_DROP; REAL_LE_MUL_EQ; REAL_SUB_LT; REAL_ARITH `f * (a - b) <= &0 <=> &0 <= f * (b - a)`]);; let REAL_DERIVATIVE_NEG_RIGHT_MINIMUM = prove (`!f f' a b e. a < b /\ &0 < e /\ (f has_real_derivative f') (atreal b within real_interval[a,b]) /\ (!x. x IN real_interval[a,b] /\ abs(x - b) < e ==> f b <= f x) ==> f' <= &0`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1. f' % x`; `lift b`; `interval[lift a,lift b]`; `e:real`] DROP_DIFFERENTIAL_POS_AT_MINIMUM) THEN ASM_REWRITE_TAC[ENDS_IN_INTERVAL; CONVEX_INTERVAL; IN_INTER; IMP_CONJ] THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY; GSYM HAS_REAL_FRECHET_DERIVATIVE_WITHIN] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; IN_BALL; DIST_LIFT; REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN ANTS_TAC THENL [ASM_MESON_TAC[REAL_ABS_SUB]; ALL_TAC] THEN DISCH_THEN(MP_TAC o SPEC `a:real`) THEN ASM_SIMP_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY; REAL_LT_IMP_LE] THEN ASM_SIMP_TAC[DROP_CMUL; DROP_SUB; LIFT_DROP] THEN ONCE_REWRITE_TAC[REAL_ARITH `&0 <= f * (a - b) <=> &0 <= --f * (b - a)`] THEN ASM_SIMP_TAC[REAL_LE_MUL_EQ; REAL_SUB_LT] THEN REAL_ARITH_TAC);; let REAL_DERIVATIVE_ZERO_MAXMIN = prove (`!f f' x s. x IN s /\ real_open s /\ (f has_real_derivative f') (atreal x) /\ ((!y. y IN s ==> f y <= f x) \/ (!y. y IN s ==> f x <= f y)) ==> f' = &0`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1. f' % x`; `lift x`; `IMAGE lift s`] DIFFERENTIAL_ZERO_MAXMIN) THEN ASM_REWRITE_TAC[GSYM HAS_REAL_FRECHET_DERIVATIVE_AT; GSYM REAL_OPEN] THEN ASM_SIMP_TAC[FUN_IN_IMAGE; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP] THEN DISCH_THEN(MP_TAC o C AP_THM `vec 1:real^1`) THEN REWRITE_TAC[GSYM DROP_EQ; DROP_CMUL; DROP_VEC; REAL_MUL_RID]);; (* ------------------------------------------------------------------------- *) (* Rolle and Mean Value Theorem. *) (* ------------------------------------------------------------------------- *) let REAL_ROLLE = prove (`!f f' a b. a < b /\ f a = f b /\ f real_continuous_on real_interval[a,b] /\ (!x. x IN real_interval(a,b) ==> (f has_real_derivative f'(x)) (atreal x)) ==> ?x. x IN real_interval(a,b) /\ f'(x) = &0`, REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN REWRITE_TAC[REAL_CONTINUOUS_ON; HAS_REAL_VECTOR_DERIVATIVE_AT] THEN REWRITE_TAC[GSYM IMAGE_o; IMAGE_LIFT_DROP; has_vector_derivative] THEN REWRITE_TAC[LIFT_DROP] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `\x:real^1 h:real^1. f'(drop x) % h`; `lift a`; `lift b`] ROLLE) THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP] THEN ANTS_TAC THENL [X_GEN_TAC `t:real^1` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `t:real^1`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; FORALL_LIFT; LIFT_DROP; GSYM LIFT_CMUL] THEN REWRITE_TAC[REAL_MUL_AC]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:real^1` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o C AP_THM `lift(&1)`) THEN REWRITE_TAC[GSYM LIFT_CMUL; GSYM LIFT_NUM; LIFT_EQ; REAL_MUL_RID]]);; let REAL_MVT = prove (`!f f' a b. a < b /\ f real_continuous_on real_interval[a,b] /\ (!x. x IN real_interval(a,b) ==> (f has_real_derivative f'(x)) (atreal x)) ==> ?x. x IN real_interval(a,b) /\ f(b) - f(a) = f'(x) * (b - a)`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`\x:real. f(x) - (f b - f a) / (b - a) * x`; `(\x. f'(x) - (f b - f a) / (b - a)):real->real`; `a:real`; `b:real`] REAL_ROLLE) THEN ASM_SIMP_TAC[REAL_FIELD `a < b ==> (fx - fba / (b - a) = &0 <=> fba = fx * (b - a))`] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_CONTINUOUS_ON_SUB; REAL_CONTINUOUS_ON_LMUL; REAL_CONTINUOUS_ON_ID] THEN CONJ_TAC THENL [UNDISCH_TAC `a < b` THEN CONV_TAC REAL_FIELD; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUB THEN ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_MUL_RID] THEN ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_LMUL_ATREAL; HAS_REAL_DERIVATIVE_ID]);; let REAL_MVT_SIMPLE = prove (`!f f' a b. a < b /\ (!x. x IN real_interval[a,b] ==> (f has_real_derivative f'(x)) (atreal x within real_interval[a,b])) ==> ?x. x IN real_interval(a,b) /\ f(b) - f(a) = f'(x) * (b - a)`, MP_TAC REAL_MVT THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN ASM_MESON_TAC[real_differentiable_on; real_differentiable]; ASM_MESON_TAC[HAS_REAL_DERIVATIVE_WITHIN_REAL_OPEN; REAL_OPEN_REAL_INTERVAL; REAL_INTERVAL_OPEN_SUBSET_CLOSED; HAS_REAL_DERIVATIVE_WITHIN_SUBSET; SUBSET]]);; let REAL_MVT_VERY_SIMPLE = prove (`!f f' a b. a <= b /\ (!x. x IN real_interval[a,b] ==> (f has_real_derivative f'(x)) (atreal x within real_interval[a,b])) ==> ?x. x IN real_interval[a,b] /\ f(b) - f(a) = f'(x) * (b - a)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `b:real = a` THENL [ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_MUL_RZERO] THEN REWRITE_TAC[REAL_INTERVAL_SING; IN_SING; EXISTS_REFL]; ASM_REWRITE_TAC[REAL_LE_LT] THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_MVT_SIMPLE) THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[REWRITE_RULE[SUBSET] REAL_INTERVAL_OPEN_SUBSET_CLOSED]]);; let REAL_ROLLE_SIMPLE = prove (`!f f' a b. a < b /\ f a = f b /\ (!x. x IN real_interval[a,b] ==> (f has_real_derivative f'(x)) (atreal x within real_interval[a,b])) ==> ?x. x IN real_interval(a,b) /\ f'(x) = &0`, MP_TAC REAL_MVT_SIMPLE THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[REAL_RING `a - a = b * (c - d) <=> b = &0 \/ c = d`] THEN ASM_MESON_TAC[REAL_LT_REFL]);; (* ------------------------------------------------------------------------- *) (* Cauchy MVT and l'Hospital's rule. *) (* ------------------------------------------------------------------------- *) let REAL_MVT_CAUCHY = prove (`!f g f' g' a b. a < b /\ f real_continuous_on real_interval[a,b] /\ g real_continuous_on real_interval[a,b] /\ (!x. x IN real_interval(a,b) ==> (f has_real_derivative f' x) (atreal x) /\ (g has_real_derivative g' x) (atreal x)) ==> ?x. x IN real_interval(a,b) /\ (f b - f a) * g'(x) = (g b - g a) * f'(x)`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`\x. (f:real->real)(x) * (g(b:real) - g(a)) - g(x) * (f(b) - f(a))`; `\x. (f':real->real)(x) * (g(b:real) - g(a)) - g'(x) * (f(b) - f(a))`; `a:real`; `b:real`] REAL_MVT) THEN ASM_SIMP_TAC[REAL_CONTINUOUS_ON_SUB; REAL_CONTINUOUS_ON_RMUL; HAS_REAL_DERIVATIVE_SUB; HAS_REAL_DERIVATIVE_RMUL_ATREAL] THEN MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[] THEN UNDISCH_TAC `a < b` THEN CONV_TAC REAL_FIELD);; let LHOSPITAL = prove (`!f g f' g' c l d. &0 < d /\ (!x. &0 < abs(x - c) /\ abs(x - c) < d ==> (f has_real_derivative f'(x)) (atreal x) /\ (g has_real_derivative g'(x)) (atreal x) /\ ~(g'(x) = &0)) /\ (f ---> &0) (atreal c) /\ (g ---> &0) (atreal c) /\ ((\x. f'(x) / g'(x)) ---> l) (atreal c) ==> ((\x. f(x) / g(x)) ---> l) (atreal c)`, SUBGOAL_THEN `!f g f' g' c l d. &0 < d /\ (!x. &0 < abs(x - c) /\ abs(x - c) < d ==> (f has_real_derivative f'(x)) (atreal x) /\ (g has_real_derivative g'(x)) (atreal x) /\ ~(g'(x) = &0)) /\ f(c) = &0 /\ g(c) = &0 /\ (f ---> &0) (atreal c) /\ (g ---> &0) (atreal c) /\ ((\x. f'(x) / g'(x)) ---> l) (atreal c) ==> ((\x. f(x) / g(x)) ---> l) (atreal c)` ASSUME_TAC THENL [REWRITE_TAC[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN REWRITE_TAC[FORALL_AND_THM] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `(!x. abs(x - c) < d ==> f real_continuous atreal x) /\ (!x. abs(x - c) < d ==> g real_continuous atreal x)` STRIP_ASSUME_TAC THENL [REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `x:real` THEN DISJ_CASES_TAC(REAL_ARITH `x = c \/ &0 < abs(x - c)`) THENL [ASM_REWRITE_TAC[REAL_CONTINUOUS_ATREAL]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_DIFFERENTIABLE_IMP_CONTINUOUS_ATREAL THEN REWRITE_TAC[real_differentiable] THEN ASM_MESON_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!x. &0 < abs(x - c) /\ abs(x - c) < d ==> ~(g x = &0)` STRIP_ASSUME_TAC THENL [REPEAT STRIP_TAC THEN SUBGOAL_THEN `c < x \/ x < c` DISJ_CASES_TAC THENL [ASM_REAL_ARITH_TAC; MP_TAC(ISPECL [`g:real->real`; `g':real->real`; `c:real`; `x:real`] REAL_ROLLE); MP_TAC(ISPECL [`g:real->real`; `g':real->real`; `x:real`; `c:real`] REAL_ROLLE)] THEN ASM_REWRITE_TAC[NOT_IMP; NOT_EXISTS_THM] THEN (REPEAT CONJ_TAC THENL [REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ATREAL_WITHINREAL; REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC; X_GEN_TAC `y:real` THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[]] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC); ALL_TAC] THEN UNDISCH_TAC `((\x. f' x / g' x) ---> l) (atreal c)` THEN REWRITE_TAC[REALLIM_ATREAL] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `k:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d k:real` THEN ASM_REWRITE_TAC[REAL_LT_MIN] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN SUBGOAL_THEN `?y. &0 < abs(y - c) /\ abs(y - c) < abs(x - c) /\ (f:real->real) x / g x = f' y / g' y` STRIP_ASSUME_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REAL_LT_TRANS]] THEN SUBGOAL_THEN `c < x \/ x < c` DISJ_CASES_TAC THENL [ASM_REAL_ARITH_TAC; MP_TAC(ISPECL [`f:real->real`; `g:real->real`; `f':real->real`; `g':real->real`; `c:real`; `x:real`] REAL_MVT_CAUCHY); MP_TAC(ISPECL [`f:real->real`; `g:real->real`; `f':real->real`; `g':real->real`; `x:real`; `c:real`] REAL_MVT_CAUCHY)] THEN (ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN ANTS_TAC THENL [REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL [CONJ_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ATREAL_WITHINREAL; REPEAT STRIP_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[REAL_SUB_RZERO] THEN GEN_TAC THEN STRIP_TAC THEN REPEAT(CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN MATCH_MP_TAC(REAL_FIELD `f * g' = g * f' /\ ~(g = &0) /\ ~(g' = &0) ==> f / g = f' / g'`) THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; CONJ_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC]); REPEAT GEN_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`\x:real. if x = c then &0 else f(x)`; `\x:real. if x = c then &0 else g(x)`; `f':real->real`; `g':real->real`; `c:real`; `l:real`; `d:real`]) THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_IMP THEN CONJ_TAC THEN REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN TRY(SIMP_TAC[REALLIM_ATREAL;REAL_ARITH `&0 < abs(x - c) ==> ~(x = c)`] THEN NO_TAC) THEN DISCH_TAC THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] HAS_REAL_DERIVATIVE_TRANSFORM_ATREAL) THEN EXISTS_TAC `abs(x - c)` THEN ASM_REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Darboux's theorem (intermediate value property for derivatives). *) (* ------------------------------------------------------------------------- *) let REAL_DERIVATIVE_IVT_INCREASING = prove (`!f f' a b. a <= b /\ (!x. x IN real_interval[a,b] ==> (f has_real_derivative f'(x)) (atreal x within real_interval[a,b])) ==> !t. f'(a) <= t /\ t <= f'(b) ==> ?x. x IN real_interval[a,b] /\ f' x = t`, REPEAT GEN_TAC THEN STRIP_TAC THEN GEN_TAC THEN ASM_CASES_TAC `(f':real->real) a = t` THENL [ASM_MESON_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY]; ALL_TAC] THEN ASM_CASES_TAC `(f':real->real) b = t` THENL [ASM_MESON_TAC[ENDS_IN_REAL_INTERVAL; REAL_INTERVAL_NE_EMPTY]; ALL_TAC] THEN ASM_CASES_TAC `b:real = a` THEN ASM_REWRITE_TAC[REAL_LE_ANTISYM] THEN SUBGOAL_THEN `a < b` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[REAL_LE_LT] THEN STRIP_TAC THEN MP_TAC(ISPECL [`\x:real. f x - t * x`; `real_interval[a,b]`] REAL_CONTINUOUS_ATTAINS_INF) THEN ASM_REWRITE_TAC[REAL_INTERVAL_NE_EMPTY; REAL_COMPACT_INTERVAL] THEN ANTS_TAC THENL [MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_SUB THEN SIMP_TAC[REAL_DIFFERENTIABLE_ON_MUL; REAL_DIFFERENTIABLE_ON_ID; REAL_DIFFERENTIABLE_ON_CONST] THEN ASM_MESON_TAC[real_differentiable_on]; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MP_TAC(SPECL [`\x:real. f x - t * x`; `(f':real->real) x - t:real`; `x:real`; `real_interval(a,b)`] REAL_DERIVATIVE_ZERO_MAXMIN) THEN ASM_REWRITE_TAC[REAL_SUB_0] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[REAL_OPEN_REAL_INTERVAL] THEN ASM_SIMP_TAC[REAL_OPEN_CLOSED_INTERVAL; IN_DIFF] THEN ASM_CASES_TAC `x:real = a` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN MP_TAC(ISPECL[`\x:real. f x - t * x`; `(f':real->real) a - t:real`; `a:real`; `b:real`; `&1`] REAL_DERIVATIVE_POS_LEFT_MINIMUM) THEN ASM_SIMP_TAC[REAL_LT_01; REAL_SUB_LE] THEN MATCH_MP_TAC(TAUT `~q /\ p ==> (p ==> q) ==> r`) THEN ASM_REWRITE_TAC[REAL_NOT_LE] THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUB THEN CONJ_TAC THENL [ALL_TAC; REAL_DIFF_TAC THEN REWRITE_TAC[REAL_MUL_RID]] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_NE_EMPTY]; ALL_TAC] THEN ASM_CASES_TAC `x:real = b` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN MP_TAC(ISPECL[`\x:real. f x - t * x`; `(f':real->real) b - t:real`; `a:real`; `b:real`; `&1`] REAL_DERIVATIVE_NEG_RIGHT_MINIMUM) THEN ASM_SIMP_TAC[REAL_LT_01; REAL_SUB_LE] THEN MATCH_MP_TAC(TAUT `~q /\ p ==> (p ==> q) ==> r`) THEN ASM_REWRITE_TAC[REAL_NOT_LE; REAL_SUB_LT] THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUB THEN CONJ_TAC THENL [ALL_TAC; REAL_DIFF_TAC THEN REWRITE_TAC[REAL_MUL_RID]] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[ENDS_IN_INTERVAL; INTERVAL_NE_EMPTY]; ALL_TAC] THEN ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUB THEN CONJ_TAC THENL [ALL_TAC; REAL_DIFF_TAC THEN REWRITE_TAC[REAL_MUL_RID]] THEN SUBGOAL_THEN `(f has_real_derivative f' x) (atreal x within real_interval(a,b))` MP_TAC THENL [MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN EXISTS_TAC `real_interval[a,b]` THEN ASM_SIMP_TAC[REAL_INTERVAL_OPEN_SUBSET_CLOSED]; MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_REAL_OPEN THEN REWRITE_TAC[REAL_OPEN_REAL_INTERVAL] THEN ASM_REWRITE_TAC[REAL_OPEN_CLOSED_INTERVAL] THEN ASM SET_TAC[]]);; let REAL_DERIVATIVE_IVT_DECREASING = prove (`!f f' a b. a <= b /\ (!x. x IN real_interval[a,b] ==> (f has_real_derivative f'(x)) (atreal x within real_interval[a,b])) ==> !t. f'(b) <= t /\ t <= f'(a) ==> ?x. x IN real_interval[a,b] /\ f' x = t`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`\x. --((f:real->real) x)`; `\x. --((f':real->real) x)`; `a:real`; `b:real`] REAL_DERIVATIVE_IVT_INCREASING) THEN ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_NEG] THEN DISCH_THEN(MP_TAC o SPEC `--t:real`) THEN ASM_REWRITE_TAC[REAL_LE_NEG2; REAL_EQ_NEG2]);; (* ------------------------------------------------------------------------- *) (* Continuity and differentiability of inverse functions. *) (* ------------------------------------------------------------------------- *) let HAS_REAL_DERIVATIVE_INVERSE_BASIC = prove (`!f g f' t y. (f has_real_derivative f') (atreal (g y)) /\ ~(f' = &0) /\ g real_continuous atreal y /\ real_open t /\ y IN t /\ (!z. z IN t ==> f (g z) = z) ==> (g has_real_derivative inv(f')) (atreal y)`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_AT; REAL_OPEN; REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_DERIVATIVE_INVERSE_BASIC THEN MAP_EVERY EXISTS_TAC [`lift o f o drop`; `\x:real^1. f' % x`; `IMAGE lift t`] THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP; LIFT_IN_IMAGE_LIFT] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; LIFT_DROP; LINEAR_COMPOSE_CMUL; LINEAR_ID] THEN REWRITE_TAC[FUN_EQ_THM; I_THM; o_THM; VECTOR_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_MUL_LINV; VECTOR_MUL_LID]);; let HAS_REAL_DERIVATIVE_INVERSE_STRONG = prove (`!f g f' s x. real_open s /\ x IN s /\ f real_continuous_on s /\ (!x. x IN s ==> g (f x) = x) /\ (f has_real_derivative f') (atreal x) /\ ~(f' = &0) ==> (g has_real_derivative inv(f')) (atreal (f x))`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_AT; REAL_OPEN; REAL_CONTINUOUS_ON] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPEC `lift o f o drop` HAS_DERIVATIVE_INVERSE_STRONG) THEN REWRITE_TAC[FORALL_LIFT; o_THM; LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`\x:real^1. f' % x`; `IMAGE lift s`] THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP; LIFT_IN_IMAGE_LIFT] THEN ASM_SIMP_TAC[FUN_EQ_THM; I_THM; o_THM; VECTOR_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_MUL_RINV; VECTOR_MUL_LID]);; let HAS_REAL_DERIVATIVE_INVERSE_STRONG_X = prove (`!f g f' s y. real_open s /\ (g y) IN s /\ f real_continuous_on s /\ (!x. x IN s ==> (g(f(x)) = x)) /\ (f has_real_derivative f') (atreal (g y)) /\ ~(f' = &0) /\ f(g y) = y ==> (g has_real_derivative inv(f')) (atreal y)`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_AT; REAL_OPEN; REAL_CONTINUOUS_ON] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPEC `lift o f o drop` HAS_DERIVATIVE_INVERSE_STRONG_X) THEN REWRITE_TAC[FORALL_LIFT; o_THM; LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN MAP_EVERY EXISTS_TAC [`\x:real^1. f' % x`; `IMAGE lift s`] THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP; LIFT_IN_IMAGE_LIFT] THEN ASM_SIMP_TAC[FUN_EQ_THM; I_THM; o_THM; VECTOR_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_MUL_RINV; VECTOR_MUL_LID]);; (* ------------------------------------------------------------------------- *) (* Limsup and liminf. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("has_limsup",(12,"right"));; parse_as_infix ("has_liminf",(12,"right"));; let has_limsup = new_definition `(f:A->real has_limsup l) net <=> trivial_limit net \/ {b | eventually (\x. f x <= b) net} has_inf l`;; let has_liminf = new_definition `(f:A->real has_liminf l) net <=> trivial_limit net \/ {b | eventually (\x. b <= f x ) net} has_sup l`;; let HAS_LIMSUP_TRANSFORM = prove (`!net f g l. eventually (\x:A. f x = g x) net /\ (f has_limsup l) net ==> (g has_limsup l) net`, REPEAT GEN_TAC THEN REWRITE_TAC[has_limsup] THEN ASM_CASES_TAC `trivial_limit (net:A net)` THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "e l" THEN SUBGOAL_THEN `!b. eventually (\x:A. g x <= b) net <=> eventually (\x. f x <= b) net` (fun th -> ASM_REWRITE_TAC[th]) THEN GEN_TAC THEN MATCH_MP_TAC EVENTUALLY_IFF THEN REWRITE_TAC[] THEN REMOVE_THEN "e" MP_TAC THEN (MATCH_MP_TAC o REWRITE_RULE[IMP_CONJ]) EVENTUALLY_MP THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN SIMP_TAC[]);; let HAS_LIMSUP_EVENTUALLY_UBOUND = prove (`!net f l b. ~trivial_limit net /\ (f has_limsup l) net /\ l < b ==> eventually (\x:A. f x < b) net`, INTRO_TAC "! *; ntriv +" THEN ASM_REWRITE_TAC[has_limsup] THEN DISCH_THEN (MP_TAC o MATCH_MP HAS_INF_APPROACH) THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN INTRO_TAC "@c. + le" THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let REALLIM_IMP_HAS_LIMSUP = prove (`!net f:A->real l. (f ---> l) net ==> (f has_limsup l) net`, INTRO_TAC "!net f l; lim" THEN ASM_CASES_TAC `trivial_limit (net:A net)` THEN ASM_REWRITE_TAC[has_limsup] THEN POP_ASSUM (LABEL_TAC "ntriv") THEN REWRITE_TAC[HAS_INF] THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; NOT_FORALL_THM] THEN EXISTS_TAC `l + &1` THEN HYP_TAC "lim: +" (REWRITE_RULE[tendsto_real]) THEN DISCH_THEN (MP_TAC o SPEC `&1`) THEN ANTS_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM_MESON_TAC[REALLIM_UBOUND]; ALL_TAC] THEN INTRO_TAC "!c; c" THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN EXISTS_TAC `(l + c) / &2` THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN HYP_TAC "lim: +" (SPEC `(c - l) / &2` o REWRITE_RULE[tendsto_real]) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let HAS_LIMSUP_IMP_UBOUND_LE = prove (`!net f l. (f has_limsup l) net ==> ?b. eventually (\x:A. f x <= b) net`, REPEAT GEN_TAC THEN REWRITE_TAC[has_limsup] THEN ASM_CASES_TAC `trivial_limit (net:A net)` THENL [ASM_SIMP_TAC[EVENTUALLY_TRIVIAL]; POP_ASSUM (LABEL_TAC "ntriv")] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[HAS_INF] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN INTRO_TAC "_ _ hp" THEN HYP_TAC "hp: +" (SPEC `l + &1`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN MESON_TAC[]);; let HAS_LIMSUP_NOT_UBOUND = prove (`!net f l c. ~trivial_limit net /\ (f has_limsup l) net /\ c < l ==> ~eventually (\x:A. f x <= c) net`, REWRITE_TAC[has_limsup] THEN INTRO_TAC "!net f l c; ntriv + lt" THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "inf; c" THEN SUBGOAL_THEN `l <= c` (fun th -> MP_TAC th THEN ASM_REAL_ARITH_TAC) THEN MATCH_MP_TAC HAS_INF_LBOUND THEN EXISTS_TAC `{b | eventually (\x:A. f x <= b) net}` THEN ASM_REWRITE_TAC[IN_ELIM_THM]);; let HAS_LIMSUP = prove (`!net f l. (f has_limsup l) net <=> trivial_limit net \/ (!c. l < c ==> eventually (\x:A. f x <= c) net) /\ (!c. c < l ==> ~eventually (\x:A. f x <= c) net)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `trivial_limit (net:A net)` THENL [ASM_REWRITE_TAC[has_limsup]; POP_ASSUM (LABEL_TAC "ntriv")] THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [INTRO_TAC "limsup" THEN CONJ_TAC THENL [INTRO_TAC "!c; lt" THEN MATCH_MP_TAC EVENTUALLY_MONO THEN EXISTS_TAC `(\x:A. f x < c)` THEN CONJ_TAC THENL [REAL_ARITH_TAC; ASM_MESON_TAC[HAS_LIMSUP_EVENTUALLY_UBOUND]]; ASM_MESON_TAC[HAS_LIMSUP_NOT_UBOUND]]; ALL_TAC] THEN INTRO_TAC "ubound lbound" THEN ASM_REWRITE_TAC[has_limsup] THEN REWRITE_TAC[HAS_INF] THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; NOT_FORALL_THM] THEN EXISTS_TAC `l + &1` THEN REMOVE_THEN "ubound" MATCH_MP_TAC THEN REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM_MESON_TAC[REAL_NOT_LE]; ALL_TAC] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN INTRO_TAC "!c; lt" THEN EXISTS_TAC `(l + c) / &2` THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN REMOVE_THEN "ubound" MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC);; let LIMSUP_EXISTS = prove (`!net f. (?l. (f has_limsup l) net) <=> trivial_limit net \/ (?b. eventually (\x:A. f x <= b) net) /\ (?c. ~eventually (\x. f x <= c) net)`, GEN_TAC THEN GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[HAS_LIMSUP] THEN ASM_CASES_TAC `trivial_limit (net:A net)` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_ARITH `l < l + &1`]; ALL_TAC] THEN EXISTS_TAC `l - &1` THEN POP_ASSUM (MP_TAC o SPEC `l - &1`) THEN ANTS_TAC THENL [REAL_ARITH_TAC; REWRITE_TAC[CONTRAPOS_THM]]; ALL_TAC] THEN REWRITE_TAC[has_limsup] THEN ASM_CASES_TAC `trivial_limit (net:A net)` THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "(@b. b) (@c. c)" THEN REWRITE_TAC[INF_EXISTS] THEN CONJ_TAC THENL [ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[IN_ELIM_THM]; ALL_TAC] THEN EXISTS_TAC `c:real` THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN INTRO_TAC "![x]; x" THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN INTRO_TAC "lt" THEN REMOVE_THEN "x" MP_TAC THEN REMOVE_THEN "c" MP_TAC THEN REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN ASM_REAL_ARITH_TAC);; let HAS_LIMSUP_LE = prove (`!net f g l m. (f has_limsup l) net /\ (g has_limsup m) net /\ ~trivial_limit net /\ eventually (\x:A. f x <= g x) net ==> l <= m`, INTRO_TAC "!net f g l m; l m notriv le" THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN ONCE_REWRITE_TAC[REAL_LT_BETWEEN] THEN INTRO_TAC "@c. c1 c2" THEN CLAIM_TAC "g" `eventually (\x:A. g x < c) net` THENL [MATCH_MP_TAC HAS_LIMSUP_EVENTUALLY_UBOUND THEN ASM_MESON_TAC[]; ALL_TAC] THEN CLAIM_TAC "+" `eventually (\x:A. f x <= c) net` THENL [MATCH_MP_TAC EVENTUALLY_MP THEN EXISTS_TAC `\x:A. f x <= g x /\ g x < c` THEN CONJ_TAC THENL [MATCH_MP_TAC ALWAYS_EVENTUALLY THEN ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[EVENTUALLY_AND]]; REWRITE_TAC[]] THEN MATCH_MP_TAC HAS_LIMSUP_NOT_UBOUND THEN ASM_MESON_TAC[]);; let HAS_LIMSUP_UBOUND = prove (`!net f b l. eventually (\x:A. f x <= b) net /\ (f has_limsup l) net /\ ~trivial_limit net ==> l <= b`, INTRO_TAC "!net f b l; ub lim ntriv" THEN MATCH_MP_TAC HAS_LIMSUP_LE THEN MAP_EVERY EXISTS_TAC [`net:A net`; `f:A->real`; `\x:A. b:real`] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REALLIM_IMP_HAS_LIMSUP THEN ASM_REWRITE_TAC[REALLIM_CONST]);; let HAS_LIMSUP_SEQUENTIALLY = prove (`!a l. (a has_limsup l) sequentially <=> (!c. l < c ==> ?N. !n. N <= n ==> a n <= c) /\ (!c. c < l ==> !N. ?n. N <= n /\ c < a n)`, REWRITE_TAC[HAS_LIMSUP; TRIVIAL_LIMIT_SEQUENTIALLY; EVENTUALLY_SEQUENTIALLY] THEN MESON_TAC[REAL_NOT_LE]);; let HAS_LIMSUP_SEQUENTIALLY_WITHIN = time prove (`!a l k. (a has_limsup l) (sequentially within k) <=> FINITE k \/ (!c. l < c ==> (?N. !n. n IN k /\ N <= n ==> a n <= c)) /\ (!c. c < l ==> (!N. ?n. n IN k /\ N <= n /\ c < a n))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `FINITE (k:num->bool)` THEN ASM_REWRITE_TAC[HAS_LIMSUP; TRIVIAL_LIMIT_SEQUENTIALLY_WITHIN] THEN ASM_REWRITE_TAC[EVENTUALLY_SEQUENTIALLY_WITHIN] THEN MESON_TAC[REAL_NOT_LE]);; let HAS_LIMSUP_SEQUENTIALLY_IMP_REALLIM_SUP = prove (`!f l. (f has_limsup l) sequentially ==> ((\n. sup {f m | m >= n}) ---> l) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REALLIM_SEQUENTIALLY; HAS_LIMSUP_SEQUENTIALLY] THEN INTRO_TAC "h1 h2; !e; epos" THEN HYP_TAC "h1: +" (SPEC `l + e / &2`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; INTRO_TAC "@N. h1"] THEN HYP_TAC "h2: +" (SPEC `l - e:real`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; INTRO_TAC "h2"] THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n; n" THEN ASM_REWRITE_TAC[GSYM REAL_ABS_BETWEEN] THEN HYP_TAC "h2: @M. le M" (SPEC `n:num`) THEN CONJ_TAC THENL [TRANS_TAC REAL_LTE_TRANS `f (M:num):real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC ELEMENT_LE_SUP THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN EXISTS_TAC `l + e / &2` THEN INTRO_TAC "!m; m" THEN REMOVE_THEN "h1" MATCH_MP_TAC THEN ASM_ARITH_TAC; REWRITE_TAC[IN_ELIM_THM; GE] THEN EXISTS_TAC `M:num` THEN ASM_REWRITE_TAC[]]; TRANS_TAC REAL_LET_TRANS `l + e / &2` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_SUP_LE; ASM_REAL_ARITH_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; GE] THEN ASM_MESON_TAC[]; REWRITE_TAC[FORALL_IN_GSPEC] THEN INTRO_TAC "!m; m" THEN REMOVE_THEN "h1" MATCH_MP_TAC THEN ASM_ARITH_TAC]]);; let HAS_LIMSUP_SEQUENTIALLY_REALLIM_SUP = prove (`!f l. (f has_limsup l) sequentially <=> (?b. !n. f n <= b) /\ ((\n. sup {f k | k >= n}) ---> l) sequentially`, GEN_TAC THEN GEN_TAC THEN EQ_TAC THENL [INTRO_TAC "lim" THEN ASM_SIMP_TAC[HAS_LIMSUP_SEQUENTIALLY_IMP_REALLIM_SUP] THEN REWRITE_TAC[GSYM EVENTUALLY_UBOUND_LE_SEQUENTIALLY] THEN MATCH_MP_TAC HAS_LIMSUP_IMP_UBOUND_LE THEN ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[REALLIM_SEQUENTIALLY] THEN INTRO_TAC "(@b. b) lim" THEN REWRITE_TAC[HAS_LIMSUP_SEQUENTIALLY] THEN CONJ_TAC THENL [INTRO_TAC "!c; c" THEN HYP_TAC "lim: +" (SPEC `c - l:real`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; INTRO_TAC "@N. N"] THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n; n" THEN REMOVE_THEN "n" (HYP_TAC "N: +" o C MATCH_MP) THEN ASM_REWRITE_TAC[GSYM REAL_ABS_BETWEEN; REAL_SUB_LT] THEN REWRITE_TAC[REAL_ARITH `l + c - l:real = c`] THEN INTRO_TAC "_ hp" THEN TRANS_TAC REAL_LE_TRANS `sup {f k | k >= n:num}` THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN MATCH_MP_TAC ELEMENT_LE_SUP THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN HYP MESON_TAC "b" []; REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `n:num` THEN REWRITE_TAC[GE; LE_REFL]]; ALL_TAC] THEN INTRO_TAC "!c; c; !N" THEN HYP_TAC "lim: +" (SPEC `l - c:real`) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN INTRO_TAC "@M. lim" THEN MP_TAC (SPECL[`{f k:real | k >= MAX N M}`; `c:real`] SUP_APPROACH) THEN ANTS_TAC THENL [CONJ_TAC THENL [REWRITE_TAC[GE] THEN SET_TAC[LE_REFL]; ALL_TAC] THEN CONJ_TAC THENL [EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC]; ALL_TAC] THEN HYP_TAC "lim: +" (SPEC `MAX N M`) THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[GSYM REAL_ABS_BETWEEN] THEN SIMP_TAC[REAL_ARITH `l - (l - c):real = c`]; ALL_TAC] THEN REWRITE_TAC[EXISTS_IN_GSPEC; GE] THEN INTRO_TAC "@m. m lt" THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let HAS_LIMSUP_AT = prove (`!f l a:real^N. (f has_limsup l) (at a) <=> (!c. l < c ==> ?r. &0 < r /\ !x. &0 < dist(x,a) /\ dist(x,a) < r ==> f x <= c) /\ (!c r. &0 < r /\ c < l ==> ?x. &0 < dist(x,a) /\ dist(x,a) < r /\ c < f x)`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_LIMSUP; TRIVIAL_LIMIT_AT] THEN REWRITE_TAC[EVENTUALLY_AT; NOT_FORALL_THM; NOT_EXISTS_THM; DE_MORGAN_THM; NOT_IMP; REAL_NOT_LE] THEN MESON_TAC[]);; let HAS_LIMSUP_AT_REALLIM_SUP = prove (`!f l a:real^N. (f has_limsup l) (at a) <=> (?b r. &0 < r /\ (!x. &0 < dist(x,a) /\ dist(x,a) < r ==> f x <= b)) /\ ((\x. sup{f y | &0 < dist(y,a) /\ dist(y,a) <= dist(x,a)}) ---> l) (at a)`, REPEAT GEN_TAC THEN REWRITE_TAC[has_limsup; TRIVIAL_LIMIT_AT] THEN EQ_TAC THENL [REWRITE_TAC[HAS_INF; EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; NOT_FORALL_THM] THEN INTRO_TAC "(@x0. x0) lim1 lim2" THEN CONJ_TAC THENL [HYP_TAC "lim2: @c. bound c" (C MATCH_MP (REAL_ARITH `l < l + &1`)) THEN REMOVE_THEN "x0" (K ALL_TAC) THEN HYP_TAC "bound: @r. rpos bound" (REWRITE_RULE[EVENTUALLY_AT]) THEN MAP_EVERY EXISTS_TAC [`c:real`; `r:real`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[REALLIM_AT] THEN INTRO_TAC "!e; epos" THEN HYP_TAC "lim2: +" (SPEC `l + e:real`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; INTRO_TAC "@c. lim lt"] THEN HYP_TAC "lim: @d. dpos lim" (REWRITE_RULE[EVENTUALLY_AT]) THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "!x; xnz xlt" THEN ASM_REWRITE_TAC[GSYM REAL_ABS_BETWEEN] THEN CONJ_TAC THENL [HYP_TAC "lim1: +" (SPEC `l - e:real`) THEN ASM_SIMP_TAC[REAL_ARITH `&0 < e ==> ~(l <= l - e)`] THEN REWRITE_TAC[EVENTUALLY_AT; NOT_EXISTS_THM] THEN DISCH_THEN (MP_TAC o SPEC `dist(x:real^N,a)`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; REAL_NOT_LE] THEN INTRO_TAC "@y. (y1 y2) lt" THEN TRANS_TAC REAL_LTE_TRANS `f (y:real^N):real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC ELEMENT_LE_SUP THEN CONJ_TAC THENL [ASM_REWRITE_TAC[FORALL_IN_GSPEC] THEN EXISTS_TAC `c:real` THEN REPEAT STRIP_TAC THEN REMOVE_THEN "lim" MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `y:real^N` THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]; ALL_TAC] THEN TRANS_TAC REAL_LET_TRANS `c:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_SUP_LE THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN REWRITE_TAC[NOT_FORALL_THM; DE_MORGAN_THM; NOT_IMP; REAL_NOT_LE] THEN ABBREV_TAC `y:real^N = inv (&2) % (x + a)` THEN MAP_EVERY EXISTS_TAC [`f (y:real^N):real`; `y:real^N`] THEN CONJ_TAC THENL [ALL_TAC; REFL_TAC] THEN EXPAND_TAC "y" THEN REWRITE_TAC[NORM_ARITH `dist (inv(&2) % (x + a),a:real^N) = inv(&2) * dist(x,a)`] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN REMOVE_THEN "lim" MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "(@b0 r0. r0pos b0) lim" THEN REWRITE_TAC[HAS_INF] THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN REWRITE_TAC[NOT_FORALL_THM; EVENTUALLY_AT] THEN MAP_EVERY EXISTS_TAC [`b0:real`; `r0:real`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC; EVENTUALLY_AT] THEN GEN_TAC THEN INTRO_TAC "@d. dpos b" THEN REFUTE_THEN (LABEL_TAC "lt" o REWRITE_RULE[REAL_NOT_LE]) THEN HYP_TAC "lim: +" (SPEC `l - b:real` o REWRITE_RULE[REALLIM_AT]) THEN ASM_REWRITE_TAC[REAL_SUB_LT; GSYM REAL_ABS_BETWEEN] THEN REWRITE_TAC[REAL_ARITH `l - (l - b):real = b`] THEN INTRO_TAC "@r. rpos lim" THEN MAP_EVERY (fun l -> REMOVE_THEN l (K ALL_TAC)) ["r0pos"; "b0"] THEN ABBREV_TAC `r1:real = min r d` THEN ABBREV_TAC `x:real^N = a + (r1 / &2) % basis 1` THEN HYP_TAC "lim: +" (SPEC `x:real^N`) THEN ANTS_TAC THENL [POP_ASSUM SUBST_VAR_TAC THEN REWRITE_TAC[NORM_ARITH `dist(a+v,a:real^N) = norm v`] THEN SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; LE_REFL] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "lim _" THEN CUT_TAC `b:real < b` THENL [REWRITE_TAC[REAL_LT_REFL]; ALL_TAC] THEN TRANS_TAC REAL_LTE_TRANS `sup {f y | &0 < dist (y,a:real^N) /\ dist (y,a) <= dist (x,a)}` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_SUP_LE THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; DE_MORGAN_THM] THEN MAP_EVERY EXISTS_TAC [`f (x:real^N):real`; `x:real^N`] THEN REWRITE_TAC[REAL_LE_REFL] THEN EXPAND_TAC "x" THEN REWRITE_TAC[NORM_ARITH `dist(a+v,a:real^N) = norm v`] THEN REWRITE_TAC[NORM_MUL] THEN SIMP_TAC[NORM_BASIS; LE_REFL; DIMINDEX_GE_1] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN REMOVE_THEN "b" MATCH_MP_TAC THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN POP_ASSUM MP_TAC THEN EXPAND_TAC "x" THEN REWRITE_TAC[NORM_ARITH `dist(a+v,a:real^N) = norm v`] THEN REWRITE_TAC[NORM_MUL] THEN SIMP_TAC[NORM_BASIS; LE_REFL; DIMINDEX_GE_1] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "!c; lt" THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN EXISTS_TAC `(c + l) / &2` THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN REWRITE_TAC[EVENTUALLY_AT] THEN HYP_TAC "lim -> +" (SPEC `(c - l) / &2` o REWRITE_RULE[REALLIM_AT]) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[GSYM REAL_ABS_BETWEEN] THEN ASM_SIMP_TAC[REAL_ARITH `l < c ==> &0 < (c - l) / &2`] THEN INTRO_TAC "@d. dpos lim" THEN EXISTS_TAC `min r0 d` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REPEAT STRIP_TAC THEN TRANS_TAC REAL_LE_TRANS `sup {f y:real | &0 < dist (y:real^N,a) /\ dist (y,a) <= dist (x,a)}` THEN CONJ_TAC THENL [MATCH_MP_TAC ELEMENT_LE_SUP THEN CONJ_TAC THENL [EXISTS_TAC `b0:real` THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN REMOVE_THEN "b0" MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `x:real^N` THEN ASM_REWRITE_TAC[REAL_LE_REFL]]; ALL_TAC] THEN HYP_TAC "lim: +" (SPEC `x:real^N`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "_ +" THEN REWRITE_TAC[REAL_ARITH `l + (c - l) / &2 = (c + l) / &2`] THEN MESON_TAC[REAL_LT_IMP_LE]);; let HAS_LIMSUP_MUL_REALLIM_RIGHT = let LEMMA1 = prove (`!a b c. a * b < c ==> ?d. &0 < d /\ !x. abs x < d ==> (a + x) * (b + x) < c`, INTRO_TAC "!a b c; lt" THEN CLAIM_TAC "cont" `(\x. (a + x) * (b + x)) real_continuous atreal (&0)` THENL [MATCH_MP_TAC REAL_CONTINUOUS_MUL THEN CONJ_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN REWRITE_TAC[REAL_CONTINUOUS_CONST; REAL_CONTINUOUS_AT_ID]; ALL_TAC] THEN HYP_TAC "cont" (REWRITE_RULE[real_continuous_atreal]) THEN HYP_TAC "cont: +" (SPEC `c - a * b:real`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "@d. dpos cont" THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "!x; x" THEN HYP_TAC "cont: +" (SPEC `x:real`) THEN ASM_REAL_ARITH_TAC) in let LEMMA2 = prove (`!a b c. c < a * b ==> ?d. &0 < d /\ !x. abs x < d ==> c < (a + x) * (b + x)`, INTRO_TAC "!a b c; lt" THEN CLAIM_TAC "cont" `(\x. (a + x) * (b + x)) real_continuous atreal (&0)` THENL [MATCH_MP_TAC REAL_CONTINUOUS_MUL THEN CONJ_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN REWRITE_TAC[REAL_CONTINUOUS_CONST; REAL_CONTINUOUS_AT_ID]; ALL_TAC] THEN HYP_TAC "cont" (REWRITE_RULE[real_continuous_atreal]) THEN HYP_TAC "cont: +" (SPEC `a * b - c:real`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "@d. dpos cont" THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "!x; x" THEN HYP_TAC "cont: +" (SPEC `x:real`) THEN ASM_REAL_ARITH_TAC) in prove (`!net f g a b. (f has_limsup a) net /\ (g ---> b) net /\ eventually (\x:A. &0 <= f x) net /\ eventually (\x:A. &0 <= g x) net ==> ((\x. f x * g x) has_limsup a * b) net`, INTRO_TAC "!net f g a b; lsup lim fpos gpos" THEN REWRITE_TAC[HAS_LIMSUP] THEN ASM_CASES_TAC `trivial_limit (net:A net)` THEN ASM_REWRITE_TAC[] THEN POP_ASSUM (LABEL_TAC "ntriv") THEN CONJ_TAC THENL [INTRO_TAC "!c; lt" THEN HYP_TAC "lt -> @d. dpos d" (MATCH_MP LEMMA1) THEN HYP_TAC "lim: +" (SPEC `d / &2` o REWRITE_RULE[tendsto_real]) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN REWRITE_TAC[] THEN HYP_TAC "lsup: +" (REWRITE_RULE[HAS_LIMSUP]) THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "+ _" THEN DISCH_THEN (MP_TAC o SPEC `a + d / &2`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN REWRITE_TAC[] THEN HYP (MP_TAC o CONJ_LIST) "fpos gpos" [] THEN REWRITE_TAC[GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[] THEN INTRO_TAC "!x; fp gp; fb; gb" THEN TRANS_TAC REAL_LE_TRANS `(a + d / &2) * (b + d / &2)` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REAL_ARITH_TAC; MATCH_MP_TAC REAL_LT_IMP_LE THEN REMOVE_THEN "d" MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC]; ALL_TAC] THEN INTRO_TAC "!c; lt; hp" THEN ASM_CASES_TAC `b = &0` THENL [POP_ASSUM SUBST_VAR_TAC THEN HYP_TAC "lt: +" (REWRITE_RULE[REAL_MUL_RZERO]) THEN CUT_TAC `&0 <= c` THENL [REAL_ARITH_TAC; ALL_TAC] THEN CUT_TAC `eventually (\x:A. &0 <= c) net` THENL [DISCH_THEN (MP_TAC o MATCH_MP EVENTUALLY_HAPPENS) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MAP_EVERY (C REMOVE_THEN MP_TAC) ["fpos"; "gpos"; "hp"] THEN REWRITE_TAC[IMP_IMP; GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[] THEN INTRO_TAC "!x; (fg g) f" THEN TRANS_TAC REAL_LE_TRANS `f (x:A) * g x:real` THEN ASM_SIMP_TAC[REAL_LE_MUL]; ALL_TAC] THEN POP_ASSUM (LABEL_TAC "bnz") THEN CLAIM_TAC "bpos" `&0 < b` THENL [CUT_TAC `&0 <= b` THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC REALLIM_LBOUND THEN MAP_EVERY EXISTS_TAC [`net:A net`; `g:A->real`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REMOVE_THEN "bnz" (K ALL_TAC) THEN HYP_TAC "lt: @d. dpos lt" (MATCH_MP LEMMA2) THEN HYP_TAC "lsup: +" (REWRITE_RULE[HAS_LIMSUP]) THEN ASM_REWRITE_TAC[DE_MORGAN_THM] THEN DISJ2_TAC THEN ABBREV_TAC `r = min b d / &2` THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN EXISTS_TAC `a - r / &2` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN HYP_TAC "lim: +" (SPEC `r / &2` o REWRITE_RULE[tendsto_real]) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN HYP (MP_TAC o CONJ_LIST) "fpos gpos hp" [] THEN REWRITE_TAC[IMP_IMP; GSYM EVENTUALLY_AND] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[] THEN INTRO_TAC "!x; (fp gp c) g" THEN MATCH_MP_TAC REAL_LE_RCANCEL_IMP THEN EXISTS_TAC `b - r / &2` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC REAL_LE_TRANS `f(x:A) * g x:real` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC REAL_LE_TRANS `c:real` THEN ASM_REWRITE_TAC[] THEN REMOVE_THEN "lt" (MP_TAC o SPEC `-- r / &2`) THEN ASM_REAL_ARITH_TAC);; let HAS_LIMSUP_MUL_REALLIM_LEFT = prove (`!net f g a b. (f ---> a) net /\ (g has_limsup b) net /\ eventually (\x:A. &0 <= f x) net /\ eventually (\x:A. &0 <= g x) net ==> ((\x. f x * g x) has_limsup a * b) net`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[HAS_LIMSUP_MUL_REALLIM_RIGHT]);; let HAS_LIMSUP_SEQUENTIALLY_WITHIN_LBOUND_ZERO = prove (`!f b k. (f has_limsup b) (sequentially within k) /\ (!x. &0 <= f x) /\ ~(FINITE k) ==> &0 <= b`, INTRO_TAC "!f b k;lim pos fin" THEN MP_TAC (ISPECL [`sequentially within k`; `(\n:num. &0)`; `f:num->real`;`&0`;`b:real`] HAS_LIMSUP_LE) THEN ANTS_TAC THENL [ASM_SIMP_TAC[TRIVIAL_LIMIT_SEQUENTIALLY_WITHIN; EVENTUALLY_TRUE] THEN MATCH_MP_TAC REALLIM_IMP_HAS_LIMSUP THEN ASM_REWRITE_TAC[REALLIM_CONST]; ASM_SIMP_TAC[]]);; let HAS_LIMINF_TRANSFORM = prove (`!net f g l. eventually (\x:A. f x = g x) net /\ (f has_liminf l) net ==> (g has_liminf l) net`, REPEAT GEN_TAC THEN REWRITE_TAC[has_liminf] THEN ASM_CASES_TAC `trivial_limit (net:A net)` THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "e l" THEN SUBGOAL_THEN `!b. eventually (\x:A. b <= g x) net <=> eventually (\x. b <= f x) net` (fun th -> ASM_REWRITE_TAC[th]) THEN GEN_TAC THEN MATCH_MP_TAC EVENTUALLY_IFF THEN REWRITE_TAC[] THEN REMOVE_THEN "e" MP_TAC THEN (MATCH_MP_TAC o REWRITE_RULE[IMP_CONJ]) EVENTUALLY_MP THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN SIMP_TAC[]);; let HAS_LIMINF_EVENTUALLY_LBOUND = prove (`!net f l b. ~trivial_limit net /\ (f has_liminf l) net /\ b < l ==> eventually (\x:A. b < f x) net`, INTRO_TAC "! *; ntriv +" THEN ASM_REWRITE_TAC[has_liminf] THEN DISCH_THEN (MP_TAC o MATCH_MP HAS_SUP_APPROACH) THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN INTRO_TAC "@c. + le" THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let REALLIM_IMP_HAS_LIMINF = prove (`!net f:A->real l. (f ---> l) net ==> (f has_liminf l) net`, INTRO_TAC "!net f l; lim" THEN ASM_CASES_TAC `trivial_limit (net:A net)` THEN ASM_REWRITE_TAC[has_liminf] THEN POP_ASSUM (LABEL_TAC "ntriv") THEN REWRITE_TAC[HAS_SUP] THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; NOT_FORALL_THM] THEN EXISTS_TAC `l - &1` THEN HYP_TAC "lim: +" (REWRITE_RULE[tendsto_real]) THEN DISCH_THEN (MP_TAC o SPEC `&1`) THEN ANTS_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM_MESON_TAC[REALLIM_LBOUND]; ALL_TAC] THEN INTRO_TAC "!c; c" THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN EXISTS_TAC `(l + c) / &2` THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN HYP_TAC "lim: +" (SPEC `(l - c) / &2` o REWRITE_RULE[tendsto_real]) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let HAS_LIMINF_IMP_LBOUND_LE = prove (`!net f l. (f has_liminf l) net ==> ?b. eventually (\x:A. b <= f x) net`, REPEAT GEN_TAC THEN REWRITE_TAC[has_liminf] THEN ASM_CASES_TAC `trivial_limit (net:A net)` THENL [ASM_SIMP_TAC[EVENTUALLY_TRIVIAL]; POP_ASSUM (LABEL_TAC "ntriv")] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[HAS_SUP] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN INTRO_TAC "_ _ hp" THEN HYP_TAC "hp: +" (SPEC `l - &1`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN MESON_TAC[]);; let HAS_LIMINF_NOT_LBOUND = prove (`!net f l c. ~trivial_limit net /\ (f has_liminf l) net /\ l < c ==> ~eventually (\x:A. c <= f x) net`, REWRITE_TAC[has_liminf] THEN INTRO_TAC "!net f l c; ntriv + lt" THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "inf; c" THEN SUBGOAL_THEN `c <= l` (fun th -> MP_TAC th THEN ASM_REAL_ARITH_TAC) THEN MATCH_MP_TAC HAS_SUP_UBOUND THEN EXISTS_TAC `{b | eventually (\x:A. b <= f x) net}` THEN ASM_REWRITE_TAC[IN_ELIM_THM]);; let HAS_LIMINF = prove (`!net f l. (f has_liminf l) net <=> trivial_limit net \/ (!c. c < l ==> eventually (\x:A. c <= f x) net) /\ (!c. l < c ==> ~eventually (\x:A. c <= f x) net)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `trivial_limit (net:A net)` THENL [ASM_REWRITE_TAC[has_liminf]; POP_ASSUM (LABEL_TAC "ntriv")] THEN ASM_REWRITE_TAC[] THEN EQ_TAC THENL [INTRO_TAC "liminf" THEN CONJ_TAC THENL [INTRO_TAC "!c; lt" THEN MATCH_MP_TAC EVENTUALLY_MONO THEN EXISTS_TAC `(\x:A. c < f x)` THEN CONJ_TAC THENL [REAL_ARITH_TAC; ASM_MESON_TAC[HAS_LIMINF_EVENTUALLY_LBOUND]]; ASM_MESON_TAC[HAS_LIMINF_NOT_LBOUND]]; ALL_TAC] THEN INTRO_TAC "ubound lbound" THEN ASM_REWRITE_TAC[has_liminf] THEN REWRITE_TAC[HAS_SUP] THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; NOT_FORALL_THM] THEN EXISTS_TAC `l - &1` THEN REMOVE_THEN "ubound" MATCH_MP_TAC THEN REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN ASM_MESON_TAC[REAL_NOT_LE]; ALL_TAC] THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN INTRO_TAC "!c; lt" THEN EXISTS_TAC `(c + l) / &2` THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN REMOVE_THEN "ubound" MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC);; let LIMINF_EXISTS = prove (`!net f. (?l. (f has_liminf l) net) <=> trivial_limit net \/ (?b. eventually (\x:A. b <= f x) net) /\ (?c. ~eventually (\x. c <= f x) net)`, GEN_TAC THEN GEN_TAC THEN EQ_TAC THENL [REWRITE_TAC[HAS_LIMINF] THEN ASM_CASES_TAC `trivial_limit (net:A net)` THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_ARITH `l - &1 < l`]; ALL_TAC] THEN EXISTS_TAC `l + &1` THEN POP_ASSUM (MP_TAC o SPEC `l + &1`) THEN ANTS_TAC THENL [REAL_ARITH_TAC; REWRITE_TAC[CONTRAPOS_THM]]; ALL_TAC] THEN REWRITE_TAC[has_liminf] THEN ASM_CASES_TAC `trivial_limit (net:A net)` THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "(@b. b) (@c. c)" THEN REWRITE_TAC[SUP_EXISTS] THEN CONJ_TAC THENL [ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[IN_ELIM_THM]; ALL_TAC] THEN EXISTS_TAC `c:real` THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN INTRO_TAC "![x]; x" THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN INTRO_TAC "lt" THEN REMOVE_THEN "x" MP_TAC THEN REMOVE_THEN "c" MP_TAC THEN REWRITE_TAC[CONTRAPOS_THM] THEN MATCH_MP_TAC (REWRITE_RULE[IMP_CONJ] EVENTUALLY_MP) THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN ASM_REAL_ARITH_TAC);; let HAS_LIMINF_LE = prove (`!net f g l m. (f has_liminf l) net /\ (g has_liminf m) net /\ ~trivial_limit net /\ eventually (\x:A. f x <= g x) net ==> l <= m`, INTRO_TAC "!net f g l m; l m notriv le" THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN ONCE_REWRITE_TAC[REAL_LT_BETWEEN] THEN INTRO_TAC "@c. c1 c2" THEN CLAIM_TAC "f" `eventually (\x:A. c < f x) net` THENL [MATCH_MP_TAC HAS_LIMINF_EVENTUALLY_LBOUND THEN ASM_MESON_TAC[]; ALL_TAC] THEN CLAIM_TAC "+" `eventually (\x:A. c <= g x) net` THENL [MATCH_MP_TAC EVENTUALLY_MP THEN EXISTS_TAC `\x:A. c < f x /\ f x <= g x` THEN CONJ_TAC THENL [MATCH_MP_TAC ALWAYS_EVENTUALLY THEN ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[EVENTUALLY_AND]]; REWRITE_TAC[]] THEN MATCH_MP_TAC HAS_LIMINF_NOT_LBOUND THEN ASM_MESON_TAC[]);; let HAS_LIMINF_LBOUND = prove (`!net f b l. eventually (\x:A. b <= f x) net /\ (f has_liminf l) net /\ ~trivial_limit net ==> b <= l`, INTRO_TAC "!net f b l; lb lim ntriv" THEN MATCH_MP_TAC HAS_LIMINF_LE THEN MAP_EVERY EXISTS_TAC [`net:A net`; `\x:A. b:real`; `f:A->real`] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REALLIM_IMP_HAS_LIMINF THEN ASM_REWRITE_TAC[REALLIM_CONST]);; let HAS_LIMINF_SEQUENTIALLY = prove (`!a l. (a has_liminf l) sequentially <=> (!c. c < l ==> ?N. !n. N <= n ==> c <= a n) /\ (!c. l < c ==> !N. ?n. N <= n /\ a n < c)`, REWRITE_TAC[HAS_LIMINF; TRIVIAL_LIMIT_SEQUENTIALLY; EVENTUALLY_SEQUENTIALLY] THEN MESON_TAC[REAL_NOT_LE]);; let HAS_LIMINF_SEQUENTIALLY_WITHIN = time prove (`!a l k. (a has_liminf l) (sequentially within k) <=> FINITE k \/ (!c. c < l ==> (?N. !n. n IN k /\ N <= n ==> c <= a n)) /\ (!c. l < c ==> (!N. ?n. n IN k /\ N <= n /\ a n < c))`, REPEAT GEN_TAC THEN ASM_CASES_TAC `FINITE (k:num->bool)` THEN ASM_REWRITE_TAC[HAS_LIMINF; TRIVIAL_LIMIT_SEQUENTIALLY_WITHIN] THEN ASM_REWRITE_TAC[EVENTUALLY_SEQUENTIALLY_WITHIN] THEN MESON_TAC[REAL_NOT_LE]);; let HAS_LIMINF_SEQUENTIALLY_IMP_REALLIM_INF = prove (`!f l. (f has_liminf l) sequentially ==> ((\n. inf {f m | m >= n}) ---> l) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REALLIM_SEQUENTIALLY; HAS_LIMINF_SEQUENTIALLY] THEN INTRO_TAC "h1 h2; !e; epos" THEN HYP_TAC "h1: +" (SPEC `l - e / &2`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; INTRO_TAC "@N. h1"] THEN HYP_TAC "h2: +" (SPEC `l + e:real`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; INTRO_TAC "h2"] THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n; n" THEN ASM_REWRITE_TAC[GSYM REAL_ABS_BETWEEN] THEN HYP_TAC "h2: @M. le M" (SPEC `n:num`) THEN CONJ_TAC THENL [TRANS_TAC REAL_LTE_TRANS `l - e / &2` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC REAL_LE_INF] THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; GE] THEN ASM_MESON_TAC[]; REWRITE_TAC[FORALL_IN_GSPEC] THEN INTRO_TAC "!m; m" THEN REMOVE_THEN "h1" MATCH_MP_TAC THEN ASM_ARITH_TAC]; TRANS_TAC REAL_LET_TRANS `f (M:num):real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INF_LE_ELEMENT THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN EXISTS_TAC `l - e / &2` THEN INTRO_TAC "!m; m" THEN REMOVE_THEN "h1" MATCH_MP_TAC THEN ASM_ARITH_TAC; REWRITE_TAC[IN_ELIM_THM; GE] THEN EXISTS_TAC `M:num` THEN ASM_REWRITE_TAC[]]]);; let HAS_LIMINF_SEQUENTIALLY_REALLIM_INF = prove (`!f l. (f has_liminf l) sequentially <=> (?b. !n. b <= f n) /\ ((\n. inf {f k | k >= n}) ---> l) sequentially`, GEN_TAC THEN GEN_TAC THEN EQ_TAC THENL [INTRO_TAC "lim" THEN ASM_SIMP_TAC[HAS_LIMINF_SEQUENTIALLY_IMP_REALLIM_INF] THEN REWRITE_TAC[GSYM EVENTUALLY_LBOUND_LE_SEQUENTIALLY] THEN MATCH_MP_TAC HAS_LIMINF_IMP_LBOUND_LE THEN ASM_MESON_TAC[];ALL_TAC] THEN REWRITE_TAC[REALLIM_SEQUENTIALLY] THEN INTRO_TAC "(@b. b) lim" THEN REWRITE_TAC[HAS_LIMINF_SEQUENTIALLY] THEN CONJ_TAC THENL [INTRO_TAC "!c; c" THEN HYP_TAC "lim: +" (SPEC `l - c:real`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; INTRO_TAC "@N. N"] THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n; n" THEN REMOVE_THEN "n" (HYP_TAC "N: +" o C MATCH_MP) THEN ASM_REWRITE_TAC[GSYM REAL_ABS_BETWEEN; REAL_SUB_LT] THEN REWRITE_TAC[REAL_ARITH `l - (l - c):real = c`] THEN INTRO_TAC "hp _" THEN TRANS_TAC REAL_LE_TRANS `inf {f k | k >= n:num}` THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN MATCH_MP_TAC INF_LE_ELEMENT THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC] THEN HYP MESON_TAC "b" []; REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `n:num` THEN REWRITE_TAC[GE; LE_REFL]]; ALL_TAC] THEN INTRO_TAC "!c; c; !N" THEN HYP_TAC "lim: +" (SPEC `c - l:real`) THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN INTRO_TAC "@M. lim" THEN MP_TAC (SPECL[`{f k:real | k >= MAX N M}`; `c:real`] INF_APPROACH) THEN ANTS_TAC THENL [CONJ_TAC THENL [REWRITE_TAC[GE] THEN SET_TAC[LE_REFL]; ALL_TAC] THEN CONJ_TAC THENL [EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC]; ALL_TAC] THEN HYP_TAC "lim: +" (SPEC `MAX N M`) THEN ANTS_TAC THENL [ARITH_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[GSYM REAL_ABS_BETWEEN] THEN SIMP_TAC[REAL_ARITH `l + (c - l):real = c`]; ALL_TAC] THEN REWRITE_TAC[EXISTS_IN_GSPEC; GE] THEN INTRO_TAC "@m. m lt" THEN EXISTS_TAC `m:num` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let HAS_LIMINF_AT = prove (`!f l a:real^N. (f has_liminf l) (at a) <=> (!c. c < l ==> ?r. &0 < r /\ !x. &0 < dist(x,a) /\ dist(x,a) < r ==> c <= f x) /\ (!c r. &0 < r /\ l < c ==> ?x. &0 < dist(x,a) /\ dist(x,a) < r /\ f x < c)` , REPEAT GEN_TAC THEN REWRITE_TAC[HAS_LIMINF; TRIVIAL_LIMIT_AT] THEN REWRITE_TAC[EVENTUALLY_AT; NOT_FORALL_THM; NOT_EXISTS_THM; DE_MORGAN_THM; NOT_IMP; REAL_NOT_LE] THEN MESON_TAC[]);; let HAS_LIMINF_AT_REALLIM_INF = prove (`!f l a:real^N. (f has_liminf l) (at a) <=> (?b r. &0 < r /\ (!x. &0 < dist(x,a) /\ dist(x,a) < r ==> b <= f x)) /\ ((\x. inf{f y | &0 < dist(y,a) /\ dist(y,a) <= dist(x,a)}) ---> l) (at a)`, REPEAT GEN_TAC THEN REWRITE_TAC[has_liminf; TRIVIAL_LIMIT_AT] THEN EQ_TAC THENL [REWRITE_TAC[HAS_SUP; EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM; NOT_FORALL_THM] THEN INTRO_TAC "(@x0. x0) lim1 lim2" THEN CONJ_TAC THENL [HYP_TAC "lim2: @c. bound c" (C MATCH_MP (REAL_ARITH `l - &1 < l`)) THEN REMOVE_THEN "x0" (K ALL_TAC) THEN HYP_TAC "bound: @r. rpos bound" (REWRITE_RULE[EVENTUALLY_AT]) THEN MAP_EVERY EXISTS_TAC [`c:real`; `r:real`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[REALLIM_AT] THEN INTRO_TAC "!e; epos" THEN HYP_TAC "lim2: +" (SPEC `l - e:real`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; INTRO_TAC "@c. lim lt"] THEN HYP_TAC "lim: @d. dpos lim" (REWRITE_RULE[EVENTUALLY_AT]) THEN EXISTS_TAC `d:real` THEN ASM_REWRITE_TAC[] THEN INTRO_TAC "!x; xnz xlt" THEN ASM_REWRITE_TAC[GSYM REAL_ABS_BETWEEN] THEN CONJ_TAC THENL [ALL_TAC; HYP_TAC "lim1: +" (SPEC `l + e:real`) THEN ASM_SIMP_TAC[REAL_ARITH `&0 < e ==> ~(l + e <= l)`] THEN REWRITE_TAC[EVENTUALLY_AT; NOT_EXISTS_THM] THEN DISCH_THEN (MP_TAC o SPEC `dist(x:real^N,a)`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; REAL_NOT_LE] THEN INTRO_TAC "@y. (y1 y2) lt" THEN TRANS_TAC REAL_LET_TRANS `f (y:real^N):real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INF_LE_ELEMENT THEN CONJ_TAC THENL [ASM_REWRITE_TAC[FORALL_IN_GSPEC] THEN EXISTS_TAC `c:real` THEN REPEAT STRIP_TAC THEN REMOVE_THEN "lim" MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `y:real^N` THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]] THEN TRANS_TAC REAL_LTE_TRANS `c:real` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INF THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN REWRITE_TAC[NOT_FORALL_THM; DE_MORGAN_THM; NOT_IMP; REAL_NOT_LE] THEN ABBREV_TAC `y:real^N = inv (&2) % (x + a)` THEN MAP_EVERY EXISTS_TAC [`f (y:real^N):real`; `y:real^N`] THEN CONJ_TAC THENL [ALL_TAC; REFL_TAC] THEN EXPAND_TAC "y" THEN REWRITE_TAC[NORM_ARITH `dist (inv(&2) % (x + a),a:real^N) = inv(&2) * dist(x,a)`] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN REMOVE_THEN "lim" MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "(@b0 r0. r0pos b0) lim" THEN REWRITE_TAC[HAS_SUP] THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN REWRITE_TAC[NOT_FORALL_THM; EVENTUALLY_AT] THEN MAP_EVERY EXISTS_TAC [`b0:real`; `r0:real`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[FORALL_IN_GSPEC; EVENTUALLY_AT] THEN GEN_TAC THEN INTRO_TAC "@d. dpos b" THEN REFUTE_THEN (LABEL_TAC "lt" o REWRITE_RULE[REAL_NOT_LE]) THEN HYP_TAC "lim: +" (SPEC `b - l:real` o REWRITE_RULE[REALLIM_AT]) THEN ASM_REWRITE_TAC[REAL_SUB_LT; GSYM REAL_ABS_BETWEEN] THEN REWRITE_TAC[REAL_ARITH `l + (b - l):real = b`] THEN INTRO_TAC "@r. rpos lim" THEN MAP_EVERY (fun l -> REMOVE_THEN l (K ALL_TAC)) ["r0pos"; "b0"] THEN ABBREV_TAC `r1 = min r d` THEN ABBREV_TAC `x:real^N = a + (r1 / &2) % basis 1` THEN HYP_TAC "lim: +" (SPEC `x:real^N`) THEN ANTS_TAC THENL [POP_ASSUM SUBST_VAR_TAC THEN REWRITE_TAC[NORM_ARITH `dist(a+v,a:real^N) = norm v`] THEN SIMP_TAC[NORM_MUL; NORM_BASIS; DIMINDEX_GE_1; LE_REFL] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "_ lim" THEN CUT_TAC `b < b` THENL [REWRITE_TAC[REAL_LT_REFL]; ALL_TAC] THEN TRANS_TAC REAL_LET_TRANS `inf {f y | &0 < dist (y,a:real^N) /\ dist (y,a) <= dist (x,a)}` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_INF THEN CONJ_TAC THENL [REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; DE_MORGAN_THM] THEN MAP_EVERY EXISTS_TAC [`f (x:real^N):real`; `x:real^N`] THEN REWRITE_TAC[REAL_LE_REFL] THEN EXPAND_TAC "x" THEN REWRITE_TAC[NORM_ARITH `dist(a+v,a:real^N) = norm v`] THEN REWRITE_TAC[NORM_MUL] THEN SIMP_TAC[NORM_BASIS; LE_REFL; DIMINDEX_GE_1] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN REMOVE_THEN "b" MATCH_MP_TAC THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN POP_ASSUM MP_TAC THEN EXPAND_TAC "x" THEN REWRITE_TAC[NORM_ARITH `dist(a+v,a:real^N) = norm v`] THEN REWRITE_TAC[NORM_MUL] THEN SIMP_TAC[NORM_BASIS; LE_REFL; DIMINDEX_GE_1] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "!c; lt" THEN REWRITE_TAC[EXISTS_IN_GSPEC] THEN EXISTS_TAC `(c + l) / &2` THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN REWRITE_TAC[EVENTUALLY_AT] THEN HYP_TAC "lim -> +" (SPEC `(l - c) / &2` o REWRITE_RULE[REALLIM_AT]) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[GSYM REAL_ABS_BETWEEN] THEN ASM_SIMP_TAC[REAL_ARITH `c < l ==> &0 < (l - c) / &2`] THEN INTRO_TAC "@d. dpos lim" THEN EXISTS_TAC `min r0 d` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REPEAT STRIP_TAC THEN TRANS_TAC REAL_LE_TRANS `inf {f y:real | &0 < dist (y:real^N,a) /\ dist (y,a) <= dist (x,a)}` THEN CONJ_TAC THENL (* invertire il conj*) [ALL_TAC; MATCH_MP_TAC INF_LE_ELEMENT THEN CONJ_TAC THENL [EXISTS_TAC `b0:real` THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN REPEAT STRIP_TAC THEN REMOVE_THEN "b0" MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[IN_ELIM_THM] THEN EXISTS_TAC `x:real^N` THEN ASM_REWRITE_TAC[REAL_LE_REFL]]] THEN HYP_TAC "lim: +" (SPEC `x:real^N`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN INTRO_TAC "+ _" THEN REWRITE_TAC[REAL_ARITH `l - (l - c) / &2 = (c + l) / &2`] THEN MESON_TAC[REAL_LT_IMP_LE]);; (* ------------------------------------------------------------------------- *) (* Root test for series. *) (* ------------------------------------------------------------------------- *) let REAL_SERIES_ROOT_TEST = prove (`!a b k. (!n. n IN k ==> &0 <= a n) /\ b < &1 /\ ((\n. root n (a n)) has_limsup b) (sequentially within k) ==> real_summable k a`, INTRO_TAC "!a b k; a b im_sup" THEN ASM_CASES_TAC `FINITE (k:num->bool)` THENL [ASM_SIMP_TAC[REAL_SUMMABLE_FINITE]; POP_ASSUM (LABEL_TAC "fin")] THEN CLAIM_TAC "bpos" `&0 <= b` THENL [MATCH_MP_TAC (ISPEC `sequentially within k` HAS_LIMSUP_LE) THEN MAP_EVERY EXISTS_TAC [`\n:num. &0`; `\n. root n (a n)`] THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY_WITHIN] THEN CONJ_TAC THENL [MATCH_MP_TAC REALLIM_IMP_HAS_LIMSUP THEN REWRITE_TAC[REALLIM_CONST]; ALL_TAC] THEN ASM_REWRITE_TAC[EVENTUALLY_SEQUENTIALLY_WITHIN] THEN REWRITE_TAC[ROOT_LE_0; WITHIN; SEQUENTIALLY; GE] THEN HYP SIMP_TAC "a" [] THEN CLAIM_TAC "@a. a" `?a:num. a IN k` THENL [HYP MESON_TAC "fin" [INFINITE; INFINITE_NONEMPTY; MEMBER_NOT_EMPTY]; ALL_TAC] THEN EXISTS_TAC `a:num` THEN EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[LE_REFL]; ALL_TAC] THEN CLAIM_TAC "bound" `eventually (\n. root n (a n) < b + (&1 - b) * inv(&2)) (sequentially within k)` THENL [MATCH_MP_TAC HAS_LIMSUP_EVENTUALLY_UBOUND THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY_WITHIN] THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN REMOVE_THEN "bound" MP_TAC THEN ASM_REWRITE_TAC[EVENTUALLY_SEQUENTIALLY_WITHIN] THEN INTRO_TAC "@N. bound" THEN REWRITE_TAC[real_summable] THEN MATCH_MP_TAC REAL_SERIES_COMPARISON THEN EXISTS_TAC `\n. (b + (&1 - b) * inv (&2)) pow n` THEN CONJ_TAC THENL [REWRITE_TAC[GSYM real_summable] THEN MATCH_MP_TAC REAL_SUMMABLE_GP THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN EXISTS_TAC `N + 1` THEN REWRITE_TAC[GE] THEN INTRO_TAC "!n; n IN" THEN ASM_SIMP_TAC[real_abs] THEN SUBGOAL_THEN `a n = root n (a n) pow n` SUBST1_TAC THENL [MATCH_MP_TAC (GSYM REAL_POW_ROOT) THEN ASM_SIMP_TAC[] THEN ASM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC REAL_POW_LE2 THEN ASM_SIMP_TAC[ROOT_POS_LE] THEN MATCH_MP_TAC REAL_LT_IMP_LE THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let SERIES_ROOT_TEST = prove (`!a:num->real^N b k. ((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\ b < &1 ==> summable k a`, INTRO_TAC "!a b k; lim b" THEN MATCH_MP_TAC SERIES_NORMCONV_IMP_CONV THEN MATCH_MP_TAC REAL_SERIES_ROOT_TEST THEN EXISTS_TAC `b:real` THEN ASM_SIMP_TAC[NORM_POS_LE]);; (* ------------------------------------------------------------------------- *) (* Cauchy-Hadamard formula for radius of convergence of real and complex *) (* power series and their derivative. *) (* ------------------------------------------------------------------------- *) let CAUCHY_HADAMARD_RADIUS_ABSCONV = prove (`!a k b z:complex. ((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\ b * norm z < &1 ==> real_summable k (\n. norm (a n * z pow n))`, INTRO_TAC "!a k b z; lim radius" THEN ASM_CASES_TAC `FINITE (k:num->bool)` THENL [ASM_SIMP_TAC[REAL_SUMMABLE_FINITE]; POP_ASSUM (LABEL_TAC "fin")] THEN MATCH_MP_TAC REAL_SERIES_ROOT_TEST THEN EXISTS_TAC `b:real * norm (z:complex)` THEN ASM_REWRITE_TAC[NORM_POS_LE] THEN REWRITE_TAC[COMPLEX_NORM_MUL; REAL_ROOT_MUL; COMPLEX_NORM_POW] THEN MATCH_MP_TAC HAS_LIMSUP_MUL_REALLIM_RIGHT THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[ROOT_LE_0; REAL_POW_LE; NORM_POS_LE; EVENTUALLY_TRUE] THEN MATCH_MP_TAC REALLIM_EVENTUALLY THEN ASM_REWRITE_TAC[EVENTUALLY_SEQUENTIALLY_WITHIN] THEN EXISTS_TAC `1` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_ROOT_POW THEN REWRITE_TAC[NORM_POS_LE] THEN ASM_ARITH_TAC);; let CAUCHY_HADAMARD_RADIUS = prove (`!a k b z:complex. ((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\ b * norm z < &1 ==> summable k (\n. a n * z pow n)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_NORMCONV_IMP_CONV THEN BETA_TAC THEN MATCH_MP_TAC CAUCHY_HADAMARD_RADIUS_ABSCONV THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[]);; let CAUCHY_HADAMARD_RADIUS_ABSCONV_DERIVATIVE = prove (`!z a k b. ((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\ b * norm z < &1 ==> real_summable k (\n. norm (Cx(&n) * a n * z pow (n - 1)))`, REPEAT GEN_TAC THEN INTRO_TAC "limsup norm" THEN ASM_CASES_TAC `FINITE (k:num->bool)` THENL [ASM_SIMP_TAC[REAL_SUMMABLE_FINITE]; POP_ASSUM (LABEL_TAC "fin")] THEN MATCH_MP_TAC REAL_SERIES_ROOT_TEST THEN EXISTS_TAC `b * norm(z:complex)` THEN ASM_REWRITE_TAC[NORM_POS_LE] THEN ASM_CASES_TAC `norm(z:complex) = &0` THENL [ASM_REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX; REAL_ROOT_MUL; COMPLEX_NORM_POW] THEN MATCH_MP_TAC HAS_LIMSUP_TRANSFORM THEN EXISTS_TAC `\n:num. &0` THEN REWRITE_TAC[REAL_MUL_RZERO] THEN SIMP_TAC[REALLIM_IMP_HAS_LIMSUP; REALLIM_CONST] THEN ASM_REWRITE_TAC[EVENTUALLY_SEQUENTIALLY_WITHIN] THEN EXISTS_TAC `2` THEN INTRO_TAC "!n; n le" THEN REWRITE_TAC[REAL_POW_ZERO] THEN ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n - 1 = 0)`] THEN REWRITE_TAC[ROOT_0; REAL_MUL_RZERO]; ALL_TAC] THEN CLAIM_TAC "pos" `&0 < norm(z:complex)` THENL [ASM_MESON_TAC[NORM_POS_LE; REAL_ARITH`!x:real. &0 <= x <=> x = &0 \/ &0 < x`]; ALL_TAC] THEN REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX; COMPLEX_NORM_POW; REAL_ROOT_MUL; REAL_ABS_NUM; GSYM REAL_MUL_ASSOC] THEN GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV) [GSYM REAL_MUL_LID] THEN MATCH_MP_TAC HAS_LIMSUP_MUL_REALLIM_LEFT THEN SIMP_TAC[REALLIM_ROOT_REFL; REALLIM_SEQUENTIALLY_WITHIN] THEN REWRITE_TAC[ROOT_LE_0; REAL_POS; EVENTUALLY_TRUE] THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC ALWAYS_EVENTUALLY THEN GEN_TAC THEN BETA_TAC THEN MATCH_MP_TAC REAL_LE_MUL THEN SIMP_TAC[ROOT_LE_0; REAL_POW_LE; NORM_POS_LE]] THEN MATCH_MP_TAC HAS_LIMSUP_MUL_REALLIM_RIGHT THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[ROOT_LE_0; NORM_POS_LE; REAL_POW_LE; EVENTUALLY_TRUE] THEN MATCH_MP_TAC REALLIM_TRANSFORM_EVENTUALLY THEN EXISTS_TAC `\n:num. norm(z:complex) rpow (&1 - inv(&n))` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[EVENTUALLY_SEQUENTIALLY_WITHIN] THEN EXISTS_TAC `2` THEN INTRO_TAC "!n; n le" THEN ASM_SIMP_TAC[REAL_ROOT_RPOW; REAL_POW_LE; NORM_POS_LE; GSYM RPOW_POW; RPOW_RPOW; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN AP_TERM_TAC THEN ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; ARITH_RULE `2 <= n ==> 1 <= n`] THEN CUT_TAC `&0 < &n` THENL [CONV_TAC REAL_FIELD; ALL_TAC] THEN REWRITE_TAC[REAL_OF_NUM_LT] THEN ASM_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `!f:num->real a. (f ---> a) = (f ---> a rpow &1)` (fun th -> ONCE_REWRITE_TAC[th]) THENL [REWRITE_TAC[RPOW_POW; REAL_POW_1]; ALL_TAC] THEN MATCH_MP_TAC REALLIM_RPOW_COMPOSE THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_SIMP_TAC[REALLIM_CONST; REALLIM_SEQUENTIALLY_WITHIN]; ALL_TAC] THEN GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV) [REAL_ARITH `&1 = &1 - &0`] THEN MATCH_MP_TAC REALLIM_SUB THEN SIMP_TAC[REALLIM_CONST; REALLIM_1_OVER_N; REALLIM_SEQUENTIALLY_WITHIN]);; let CAUCHY_HADAMARD_RADIUS_DERIVATIVE = prove (`!z a k b. ((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\ b * norm z < &1 ==> summable k (\n. Cx(&n) * a n * z pow (n - 1))`, REPEAT GEN_TAC THEN INTRO_TAC "limsup norm" THEN MATCH_MP_TAC SERIES_NORMCONV_IMP_CONV THEN ASM_MESON_TAC[CAUCHY_HADAMARD_RADIUS_ABSCONV_DERIVATIVE]);; let REAL_CAUCHY_HADAMARD_RADIUS_ABSCONV = prove (`!a k b x. ((\n. root n (abs (a n))) has_limsup b) (sequentially within k) /\ b * abs x < &1 ==> real_summable k (\n. abs (a n * x pow n))`, REPEAT STRIP_TAC THEN MP_TAC (SPECL [`\n:num. Cx(a n)`; `k:num->bool`; `b:real`; `Cx x`] CAUCHY_HADAMARD_RADIUS_ABSCONV) THEN ASM_REWRITE_TAC[GSYM CX_POW; GSYM CX_MUL; COMPLEX_NORM_CX]);; let REAL_CAUCHY_HADAMARD_RADIUS = prove (`!a k b x. ((\n. root n (abs (a n))) has_limsup b) (sequentially within k) /\ b * abs x < &1 ==> real_summable k (\n. a n * x pow n)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_SERIES_ABSCONV_IMP_CONV THEN BETA_TAC THEN MATCH_MP_TAC REAL_CAUCHY_HADAMARD_RADIUS_ABSCONV THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[]);; let REAL_CAUCHY_HADAMARD_RADIUS_ABSCONV_DERIVATIVE = prove (`!x a k b. ((\n. root n (abs (a n))) has_limsup b) (sequentially within k) /\ b * abs x < &1 ==> real_summable k (\n. abs (&n * a n * x pow (n - 1)))`, REPEAT STRIP_TAC THEN MP_TAC (SPECL [`Cx x`; `\n:num. Cx(a n)`; `k:num->bool`; `b:real`] CAUCHY_HADAMARD_RADIUS_ABSCONV_DERIVATIVE) THEN ASM_REWRITE_TAC[COMPLEX_NORM_CX; GSYM CX_POW; GSYM CX_MUL]);; let REAL_CAUCHY_HADAMARD_RADIUS_DERIVATIVE = prove (`!x a k b. ((\n. root n (abs (a n))) has_limsup b) (sequentially within k) /\ b * abs x < &1 ==> real_summable k (\n. &n * a n * x pow (n - 1))`, REPEAT GEN_TAC THEN INTRO_TAC "limsup norm" THEN MATCH_MP_TAC REAL_SERIES_ABSCONV_IMP_CONV THEN ASM_MESON_TAC[REAL_CAUCHY_HADAMARD_RADIUS_ABSCONV_DERIVATIVE]);; let CAUCHY_HADAMARD_RADIUS_UNIFORM = prove (`!a b s k. ((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\ compact s /\ (!z:complex. z IN s ==> b * norm z < &1) ==> ?l. !e. &0 < e ==> ?N. !n z. N <= n /\ z IN s ==> dist(vsum (k INTER (0..n)) (\i. a i * z pow i), l z) < e`, INTRO_TAC "!a b s k; limsup cpt sub" THEN ASM_CASES_TAC `FINITE (k:num->bool)` THENL [POP_ASSUM MP_TAC THEN REWRITE_TAC[num_FINITE] THEN INTRO_TAC "@N. N" THEN EXISTS_TAC `\z:complex. vsum k (\i. a i * z pow i)` THEN INTRO_TAC "!e; epos" THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n z; n z" THEN SUBGOAL_THEN `k INTER (0..n) = k` (fun th -> ASM_REWRITE_TAC[th; DIST_REFL]) THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; LE_0] THEN GEN_TAC THEN ASM_CASES_TAC `x:num IN k` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC LE_TRANS `N:num` THEN ASM_SIMP_TAC[]; POP_ASSUM (LABEL_TAC "fin")] THEN MP_TAC (ISPECL [`s:complex->bool`;`b:real`] COMPACT_SHRINK_ENCLOSING_BALL_INFTY) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN INTRO_TAC "@r. r0 r1 r2" THEN MP_TAC (ISPECL[`\z:complex n. a n * z pow n`; `\n. norm(a n:complex) * r pow n`; `\z:complex. z IN s`; `k:num->bool`] SERIES_COMPARISON_UNIFORM) THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN CONJ_TAC THENL [REWRITE_TAC[GSYM summable; GSYM REAL_SUMMABLE] THEN MATCH_MP_TAC REAL_CAUCHY_HADAMARD_RADIUS THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[REAL_ABS_NORM] THEN ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE]; ALL_TAC] THEN EXISTS_TAC `0` THEN REWRITE_TAC[LE_0] THEN INTRO_TAC "!n [z]; n z" THEN REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_POW] THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_POW_LE2; NORM_POS_LE; REAL_LT_IMP_LE]);; let CAUCHY_HADAMARD_RADIUS_UNIFORM_DERIVATIVE = prove (`!a b s k. ((\n. root n (norm (a n))) has_limsup b) (sequentially within k) /\ compact s /\ (!z. z IN s ==> b * norm z < &1) ==> ?l. !e. &0 < e ==> ?N. !n z. N <= n /\ z IN s ==> dist(vsum (k INTER (0..n)) (\i. Cx(&i) * a i * z pow (i - 1)), l z) < e`, INTRO_TAC "!a s b k; limsup compact sub" THEN ASM_CASES_TAC `FINITE (k:num->bool)` THENL [POP_ASSUM MP_TAC THEN REWRITE_TAC[num_FINITE] THEN INTRO_TAC "@N. N" THEN EXISTS_TAC `\z. vsum k (\i. Cx (&i) * a i * z pow (i - 1))` THEN INTRO_TAC "!e; epos" THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n z; n z" THEN SUBGOAL_THEN `k INTER (0..n) = k` (fun th -> ASM_REWRITE_TAC[th; DIST_REFL]) THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; LE_0] THEN GEN_TAC THEN ASM_CASES_TAC `x:num IN k` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC LE_TRANS `N:num` THEN ASM_SIMP_TAC[]; POP_ASSUM (LABEL_TAC "fin")] THEN CLAIM_TAC "@r. r1 r2 r3" `?r. &0 < r /\ b * r < &1 /\ (!z:complex. z IN s ==> norm z < r)` THENL [MATCH_MP_TAC COMPACT_SHRINK_ENCLOSING_BALL_INFTY THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MP_TAC (ISPECL[`\z:complex n. Cx(&n) * a n * z pow (n - 1)`; `\n. &n * norm(a n:complex) * r pow (n - 1)`; `\z:complex. z IN s`; `k:num->bool`] SERIES_COMPARISON_UNIFORM) THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN CONJ_TAC THENL [REWRITE_TAC[GSYM summable; GSYM REAL_SUMMABLE] THEN MATCH_MP_TAC REAL_CAUCHY_HADAMARD_RADIUS_DERIVATIVE THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[REAL_ABS_NORM] THEN ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE]; ALL_TAC] THEN EXISTS_TAC `0` THEN REWRITE_TAC[LE_0] THEN INTRO_TAC "!n [z]; n z" THEN REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_POW; COMPLEX_NORM_CX; REAL_ABS_NUM; REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_POW_LE2; NORM_POS_LE; REAL_LT_IMP_LE; REAL_LE_MUL; REAL_OF_NUM_LE; LE_0]);; let REAL_CAUCHY_HADAMARD_RADIUS_UNIFORM = prove (`!a b s k. ((\n. root n (abs (a n))) has_limsup b) (sequentially within k) /\ real_compact s /\ (!x:real. x IN s ==> b * abs x < &1) ==> ?l. !e. &0 < e ==> ?N. !n x. N <= n /\ x IN s ==> abs(sum (k INTER (0..n)) (\i. a i * x pow i) - l x) < e`, INTRO_TAC "!a b s k; limsup cpt sub" THEN ASM_CASES_TAC `FINITE (k:num->bool)` THENL [POP_ASSUM MP_TAC THEN REWRITE_TAC[num_FINITE] THEN INTRO_TAC "@N. N" THEN EXISTS_TAC `\x:real. sum k (\i. a i * x pow i)` THEN INTRO_TAC "!e; epos" THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n x; n x" THEN SUBGOAL_THEN `k INTER (0..n) = k` (fun th -> ASM_REWRITE_TAC[th; REAL_SUB_REFL;REAL_ABS_0]) THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; LE_0] THEN GEN_TAC THEN ASM_CASES_TAC `x':num IN k` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC LE_TRANS `N:num` THEN ASM_SIMP_TAC[]; POP_ASSUM (LABEL_TAC "fin")] THEN HYP_TAC "cpt" (REWRITE_RULE[real_compact]) THEN MP_TAC (ISPECL [`IMAGE lift (s:real->bool)`;`b:real`] COMPACT_SHRINK_ENCLOSING_BALL_INFTY) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[IN_IMAGE] THEN GEN_TAC THEN INTRO_TAC "@x. lift" THEN ASM_SIMP_TAC[NORM_LIFT]; ALL_TAC] THEN REWRITE_TAC[IN_IMAGE] THEN INTRO_TAC "@r. (r0 r1 r2)" THEN MP_TAC (ISPECL [`\x:real n. lift (a n * x pow n)`; `\n. abs(a n:real) * r pow n`; `\x:real. x IN s`; `k:num->bool`] SERIES_COMPARISON_UNIFORM) THEN ANTS_TAC THENL [ALL_TAC; REWRITE_TAC[SUM_VSUM; o_DEF; DIST_1] THEN INTRO_TAC "@l. l" THEN EXISTS_TAC `(\x:real. drop (l x))` THEN ASM_MESON_TAC[]] THEN CONJ_TAC THENL [REWRITE_TAC[GSYM summable; GSYM REAL_SUMMABLE] THEN MATCH_MP_TAC REAL_CAUCHY_HADAMARD_RADIUS THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[REAL_ABS_ABS] THEN ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE]; ALL_TAC] THEN EXISTS_TAC `0` THEN REWRITE_TAC[LE_0] THEN INTRO_TAC "!n [x]; n x" THEN REWRITE_TAC[NORM_LIFT; REAL_ABS_MUL; REAL_ABS_POW] THEN MATCH_MP_TAC REAL_LE_LMUL THEN CLAIM_TAC "1" `norm (lift x) < r` THENL [REMOVE_THEN "r2" MATCH_MP_TAC THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN HYP_TAC "1" (REWRITE_RULE[NORM_LIFT]) THEN ASM_SIMP_TAC[REAL_POW_LE2; REAL_ABS_POS; REAL_LT_IMP_LE]);; let REAL_CAUCHY_HADAMARD_RADIUS_UNIFORM_DERIVATIVE = prove (`!a b s k. ((\n. root n (abs (a n))) has_limsup b) (sequentially within k) /\ real_compact s /\ (!x. x IN s ==> b * abs x < &1) ==> ?l. !e. &0 < e ==> ?N. !n x. N <= n /\ x IN s ==> abs(sum (k INTER (0..n)) (\i. &i * a i * x pow (i - 1)) - l x) < e`, INTRO_TAC "!a s b k; limsup compact sub" THEN ASM_CASES_TAC `FINITE (k:num->bool)` THENL [POP_ASSUM MP_TAC THEN REWRITE_TAC[num_FINITE] THEN INTRO_TAC "@N. N" THEN EXISTS_TAC `\x. sum k (\i. &i * a i * x pow (i - 1))` THEN INTRO_TAC "!e; epos" THEN EXISTS_TAC `N:num` THEN INTRO_TAC "!n x; n x" THEN SUBGOAL_THEN `k INTER (0..n) = k` (fun th -> ASM_REWRITE_TAC[th; REAL_SUB_REFL; REAL_ABS_0]) THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; LE_0] THEN GEN_TAC THEN ASM_CASES_TAC `x':num IN k` THEN ASM_REWRITE_TAC[] THEN TRANS_TAC LE_TRANS `N:num` THEN ASM_SIMP_TAC[]; POP_ASSUM (LABEL_TAC "fin")] THEN HYP_TAC "compact" (REWRITE_RULE[real_compact]) THEN MP_TAC (ISPECL [`IMAGE lift (s:real->bool)`;`b:real`] COMPACT_SHRINK_ENCLOSING_BALL_INFTY) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[IN_IMAGE] THEN GEN_TAC THEN INTRO_TAC "@x. lift" THEN ASM_SIMP_TAC[NORM_LIFT]; ALL_TAC] THEN REWRITE_TAC[IN_IMAGE] THEN INTRO_TAC "@r. (r0 r1 r2)" THEN MP_TAC (ISPECL[`\x:real n. lift (&n * a n * x pow (n - 1))`; `\n. &n * abs(a n:real) * r pow (n - 1)`; `\x:real. x IN s`; `k:num->bool`] SERIES_COMPARISON_UNIFORM) THEN ANTS_TAC THENL [ALL_TAC; REWRITE_TAC[SUM_VSUM; o_DEF; DIST_1] THEN INTRO_TAC "@l. l" THEN EXISTS_TAC `(\x:real. drop (l x))` THEN ASM_MESON_TAC[]] THEN CONJ_TAC THENL [REWRITE_TAC[GSYM summable; GSYM REAL_SUMMABLE] THEN MATCH_MP_TAC REAL_CAUCHY_HADAMARD_RADIUS_DERIVATIVE THEN EXISTS_TAC `b:real` THEN ASM_REWRITE_TAC[REAL_ABS_ABS] THEN ASM_SIMP_TAC[real_abs; REAL_LT_IMP_LE]; ALL_TAC] THEN EXISTS_TAC `0` THEN REWRITE_TAC[LE_0] THEN INTRO_TAC "!n [x]; n x" THEN REWRITE_TAC[NORM_LIFT; REAL_ABS_POW; REAL_ABS_MUL; REAL_ABS_NUM; REAL_MUL_ASSOC] THEN MATCH_MP_TAC REAL_LE_LMUL THEN CLAIM_TAC "1" `norm (lift x) < r` THENL [REMOVE_THEN "r2" MATCH_MP_TAC THEN EXISTS_TAC `x:real` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN HYP_TAC "1" (REWRITE_RULE[NORM_LIFT]) THEN ASM_SIMP_TAC[REAL_POW_LE2; REAL_ABS_POS; REAL_LT_IMP_LE; REAL_LE_MUL; REAL_OF_NUM_LE; LE_0]);; (* ------------------------------------------------------------------------- *) (* Real differentiation of sequences and series. *) (* ------------------------------------------------------------------------- *) let HAS_REAL_DERIVATIVE_SEQUENCE = prove (`!s f f' g'. is_realinterval s /\ (!n x. x IN s ==> (f n has_real_derivative f' n x) (atreal x within s)) /\ (!e. &0 < e ==> ?N. !n x. n >= N /\ x IN s ==> abs(f' n x - g' x) <= e) /\ (?x l. x IN s /\ ((\n. f n x) ---> l) sequentially) ==> ?g. !x. x IN s ==> ((\n. f n x) ---> g x) sequentially /\ (g has_real_derivative g' x) (atreal x within s)`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN; IS_REALINTERVAL_CONVEX; TENDSTO_REAL] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`IMAGE lift s`; `\n:num. lift o f n o drop`; `\n:num x:real^1 h:real^1. f' n (drop x) % h`; `\x:real^1 h:real^1. g' (drop x) % h`] HAS_DERIVATIVE_SEQUENCE) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP] THEN ANTS_TAC THENL [REWRITE_TAC[IMP_CONJ; RIGHT_EXISTS_AND_THM; RIGHT_FORALL_IMP_THM; EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN REWRITE_TAC[EXISTS_LIFT; o_THM; LIFT_DROP] THEN RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN REWRITE_TAC[GSYM VECTOR_SUB_RDISTRIB; NORM_MUL] THEN ASM_MESON_TAC[REAL_LE_RMUL; NORM_POS_LE]; REWRITE_TAC[o_DEF; LIFT_DROP] THEN DISCH_THEN(X_CHOOSE_TAC `g:real^1->real^1`) THEN EXISTS_TAC `drop o g o lift` THEN RULE_ASSUM_TAC(REWRITE_RULE[ETA_AX]) THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]]);; let HAS_REAL_DERIVATIVE_SERIES = prove (`!s f f' g' k. is_realinterval s /\ (!n x. x IN s ==> (f n has_real_derivative f' n x) (atreal x within s)) /\ (!e. &0 < e ==> ?N. !n x. n >= N /\ x IN s ==> abs(sum (k INTER (0..n)) (\i. f' i x) - g' x) <= e) /\ (?x l. x IN s /\ ((\n. f n x) real_sums l) k) ==> ?g. !x. x IN s ==> ((\n. f n x) real_sums g x) k /\ (g has_real_derivative g' x) (atreal x within s)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_sums] THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_SEQUENCE THEN EXISTS_TAC `\n:num x:real. sum(k INTER (0..n)) (\n. f' n x):real` THEN ASM_SIMP_TAC[ETA_AX; FINITE_INTER_NUMSEG; HAS_REAL_DERIVATIVE_SUM]);; let REAL_DIFFERENTIABLE_BOUND = prove (`!f f' s B. is_realinterval s /\ (!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s) /\ abs(f' x) <= B) ==> !x y. x IN s /\ y IN s ==> abs(f x - f y) <= B * abs(x - y)`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN; IS_REALINTERVAL_CONVEX; o_DEF] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `\x h:real^1. f' (drop x) % h`; `IMAGE lift s`; `B:real`] DIFFERENTIABLE_BOUND) THEN ASM_SIMP_TAC[o_DEF; FORALL_IN_IMAGE; LIFT_DROP] THEN ANTS_TAC THENL [X_GEN_TAC `v:real` THEN DISCH_TAC THEN MP_TAC(ISPEC `\h:real^1. f' (v:real) % h` ONORM) THEN SIMP_TAC[LINEAR_COMPOSE_CMUL; LINEAR_ID] THEN DISCH_THEN(MATCH_MP_TAC o CONJUNCT2) THEN ASM_SIMP_TAC[NORM_MUL; REAL_LE_RMUL; NORM_POS_LE]; SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE; LIFT_DROP] THEN ASM_SIMP_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM LIFT_SUB; NORM_LIFT]]);; let REAL_TAYLOR_MVT_POS = prove (`!f a x n. a < x /\ (!i t. t IN real_interval[a,x] /\ i <= n ==> ((f i) has_real_derivative f (i + 1) t) (atreal t within real_interval[a,x])) ==> ?t. t IN real_interval(a,x) /\ f 0 x = sum (0..n) (\i. f i a * (x - a) pow i / &(FACT i)) + f (n + 1) t * (x - a) pow (n + 1) / &(FACT(n + 1))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?B. sum (0..n) (\i. f i a * (x - a) pow i / &(FACT i)) + B * (x - a) pow (n + 1) = f 0 x` STRIP_ASSUME_TAC THENL [MATCH_MP_TAC(MESON[] `a + (y - a) / x * x:real = y ==> ?b. a + b * x = y`) THEN MATCH_MP_TAC(REAL_FIELD `~(x = &0) ==> a + (y - a) / x * x = y`) THEN ASM_REWRITE_TAC[REAL_POW_EQ_0; REAL_SUB_0] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN MP_TAC(SPECL [`\t. sum(0..n) (\i. f i t * (x - t) pow i / &(FACT i)) + B * (x - t) pow (n + 1)`; `\t. (f (n + 1) t * (x - t) pow n / &(FACT n)) - B * &(n + 1) * (x - t) pow n`; `a:real`; `x:real`] REAL_ROLLE_SIMPLE) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [SIMP_TAC[SUM_CLAUSES_LEFT; LE_0] THEN REWRITE_TAC[GSYM ADD1; real_pow; REAL_SUB_REFL; REAL_POW_ZERO; REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_ADD_RID] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[NOT_SUC; REAL_MUL_RZERO; REAL_DIV_1; REAL_MUL_RID] THEN REWRITE_TAC[REAL_ARITH `x = (x + y) + &0 <=> y = &0`] THEN MATCH_MP_TAC SUM_EQ_0_NUMSEG THEN SIMP_TAC[ARITH; ARITH_RULE `1 <= i ==> ~(i = 0)`] THEN REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_MUL_RZERO]; ALL_TAC] THEN X_GEN_TAC `t:real` THEN DISCH_TAC THEN REWRITE_TAC[real_sub] THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_ADD THEN CONJ_TAC THENL [ALL_TAC; REAL_DIFF_TAC THEN REWRITE_TAC[ADD_SUB] THEN CONV_TAC REAL_RING] THEN REWRITE_TAC[GSYM real_sub] THEN MATCH_MP_TAC(MESON[] `!g'. f' = g' /\ (f has_real_derivative g') net ==> (f has_real_derivative f') net`) THEN EXISTS_TAC `sum (0..n) (\i. f i t * --(&i * (x - t) pow (i - 1)) / &(FACT i) + f (i + 1) t * (x - t) pow i / &(FACT i))` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUM THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN X_GEN_TAC `m:num` THEN STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_MUL_WITHIN THEN ASM_SIMP_TAC[ETA_AX] THEN REAL_DIFF_TAC THEN REAL_ARITH_TAC] THEN SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; ARITH; FACT; REAL_DIV_1; real_pow; REAL_MUL_LZERO; REAL_NEG_0; REAL_MUL_RZERO; REAL_MUL_RID; REAL_ADD_LID] THEN ASM_CASES_TAC `n = 0` THENL [ASM_REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH; FACT] THEN REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[SPECL [`f:num->real`; `1`] SUM_OFFSET_0; LE_1] THEN REWRITE_TAC[ADD_SUB] THEN REWRITE_TAC[GSYM ADD1; FACT; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_SUC] THEN REWRITE_TAC[real_div; REAL_INV_MUL] THEN REWRITE_TAC[REAL_ARITH `--(n * x) * (inv n * inv y):real = --(n / n) * x / y`] THEN REWRITE_TAC[REAL_FIELD `--((&n + &1) / (&n + &1)) * x = --x`] THEN REWRITE_TAC[GSYM REAL_INV_MUL; REAL_OF_NUM_MUL; REAL_OF_NUM_SUC] THEN REWRITE_TAC[GSYM(CONJUNCT2 FACT)] THEN REWRITE_TAC[REAL_ARITH `a * --b + c:real = c - a * b`] THEN REWRITE_TAC[ADD1; GSYM real_div; SUM_DIFFS_ALT; LE_0] THEN ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> n - 1 + 1 = n`; FACT] THEN REWRITE_TAC[ADD_CLAUSES] THEN REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `t:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC LAND_CONV [GSYM th]) THEN REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN REWRITE_TAC[REAL_ARITH `a * b / c:real = a / c * b`] THEN AP_THM_TAC THEN AP_TERM_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (REAL_ARITH `a * x / f - B * k * x = &0 ==> (B * k - a / f) * x = &0`)) THEN REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0; REAL_SUB_0] THEN ASM_CASES_TAC `x:real = t` THENL [ASM_MESON_TAC[IN_REAL_INTERVAL; REAL_LT_REFL]; ALL_TAC] THEN ASM_REWRITE_TAC[GSYM ADD1; FACT] THEN REWRITE_TAC[GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD; ADD1] THEN SUBGOAL_THEN `~(&(FACT n) = &0)` MP_TAC THENL [REWRITE_TAC[REAL_OF_NUM_EQ; FACT_NZ]; CONV_TAC REAL_FIELD]);; let REAL_TAYLOR_MVT_NEG = prove (`!f a x n. x < a /\ (!i t. t IN real_interval[x,a] /\ i <= n ==> ((f i) has_real_derivative f (i + 1) t) (atreal t within real_interval[x,a])) ==> ?t. t IN real_interval(x,a) /\ f 0 x = sum (0..n) (\i. f i a * (x - a) pow i / &(FACT i)) + f (n + 1) t * (x - a) pow (n + 1) / &(FACT(n + 1))`, REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[MESON[REAL_NEG_NEG] `(?x:real. P x) <=> (?x. P(--x))`] THEN MP_TAC(SPECL [`\n x. (-- &1) pow n * (f:num->real->real) n (--x)`; `--a:real`; ` --x:real`; `n:num`] REAL_TAYLOR_MVT_POS) THEN REWRITE_TAC[REAL_NEG_NEG] THEN ONCE_REWRITE_TAC[REAL_ARITH `(x * y) * z / w:real = y * (x * z) / w`] THEN REWRITE_TAC[GSYM REAL_POW_MUL] THEN REWRITE_TAC[REAL_ARITH `-- &1 * (--x - --a) = x - a`] THEN REWRITE_TAC[IN_REAL_INTERVAL; real_pow; REAL_MUL_LID] THEN REWRITE_TAC[REAL_ARITH `--a < t /\ t < --x <=> x < --t /\ --t < a`] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_LT_NEG2] THEN MAP_EVERY X_GEN_TAC [`m:num`; `t:real`] THEN STRIP_TAC THEN REWRITE_TAC[REAL_POW_ADD; GSYM REAL_MUL_ASSOC] THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_LMUL_WITHIN THEN ONCE_REWRITE_TAC[REAL_ARITH `y pow 1 * x:real = x * y`] THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC REAL_DIFF_CHAIN_WITHIN THEN CONJ_TAC THENL [GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM ETA_AX] THEN REAL_DIFF_TAC THEN REFL_TAC; ALL_TAC] THEN SUBGOAL_THEN `IMAGE (--) (real_interval[--a,--x]) = real_interval[x,a]` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_IMAGE; IN_REAL_INTERVAL] THEN REWRITE_TAC[REAL_ARITH `x:real = --y <=> --x = y`; UNWIND_THM1] THEN REAL_ARITH_TAC; FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]);; let REAL_TAYLOR = prove (`!f n s B. is_realinterval s /\ (!i x. x IN s /\ i <= n ==> ((f i) has_real_derivative f (i + 1) x) (atreal x within s)) /\ (!x. x IN s ==> abs(f (n + 1) x) <= B) ==> !w z. w IN s /\ z IN s ==> abs(f 0 z - sum (0..n) (\i. f i w * (z - w) pow i / &(FACT i))) <= B * abs(z - w) pow (n + 1) / &(FACT(n + 1))`, REPEAT STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (REAL_ARITH `w = z \/ w < z \/ z < w`) THENL [ASM_SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; REAL_SUB_REFL; REAL_POW_ZERO; REAL_ABS_0; ARITH; ADD_EQ_0; real_div] THEN REWRITE_TAC[REAL_MUL_LZERO; FACT; REAL_INV_1; REAL_MUL_RZERO] THEN MATCH_MP_TAC(REAL_ARITH `y = &0 ==> abs(x - (x * &1 * &1 + y)) <= &0`) THEN MATCH_MP_TAC SUM_EQ_0_NUMSEG THEN SIMP_TAC[ARITH; LE_1; REAL_MUL_RZERO; REAL_MUL_LZERO]; MP_TAC(ISPECL [`f:num->real->real`; `w:real`; `z:real`; `n:num`] REAL_TAYLOR_MVT_POS) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `real_interval[w,z] SUBSET s` ASSUME_TAC THENL [SIMP_TAC[SUBSET; IN_REAL_INTERVAL] THEN ASM_MESON_TAC[is_realinterval]; ALL_TAC]; MP_TAC(ISPECL [`f:num->real->real`; `w:real`; `z:real`; `n:num`] REAL_TAYLOR_MVT_NEG) THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `real_interval[z,w] SUBSET s` ASSUME_TAC THENL [SIMP_TAC[SUBSET; IN_REAL_INTERVAL] THEN ASM_MESON_TAC[is_realinterval]; ALL_TAC]] THEN (ANTS_TAC THENL [MAP_EVERY X_GEN_TAC [`m:num`; `t:real`] THEN STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN EXISTS_TAC `s:real->bool` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `t:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN REWRITE_TAC[REAL_ADD_SUB; REAL_ABS_MUL; REAL_ABS_DIV] THEN REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NUM] THEN MATCH_MP_TAC REAL_LE_RMUL THEN SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_POW_LE; REAL_ABS_POS] THEN ASM_MESON_TAC[REAL_INTERVAL_OPEN_SUBSET_CLOSED; SUBSET]));; (* ------------------------------------------------------------------------- *) (* Comparing sums and "integrals" via real antiderivatives. *) (* ------------------------------------------------------------------------- *) let REAL_SUM_INTEGRAL_UBOUND_INCREASING = prove (`!f g m n. m <= n /\ (!x. x IN real_interval[&m,&n + &1] ==> (g has_real_derivative f(x)) (atreal x within real_interval[&m,&n + &1])) /\ (!x y. &m <= x /\ x <= y /\ y <= &n + &1 ==> f x <= f y) ==> sum(m..n) (\k. f(&k)) <= g(&n + &1) - g(&m)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(m..n) (\k. g(&(k + 1)) - g(&k))` THEN CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[SUM_DIFFS_ALT; REAL_OF_NUM_ADD; REAL_LE_REFL]] THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN MP_TAC(ISPECL [`g:real->real`; `f:real->real`; `&k`; `&(k + 1)`] REAL_MVT_SIMPLE) THEN ASM_REWRITE_TAC[REAL_OF_NUM_LT; ARITH_RULE `k < k + 1`] THEN ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ADD_SUB] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN EXISTS_TAC `real_interval[&m,&n + &1]` THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL]); REWRITE_TAC[SUBSET] THEN GEN_TAC] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC; DISCH_THEN(X_CHOOSE_THEN `t:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN REWRITE_TAC[REAL_MUL_RID] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL]) THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC]);; let REAL_SUM_INTEGRAL_UBOUND_DECREASING = prove (`!f g m n. m <= n /\ (!x. x IN real_interval[&m - &1,&n] ==> (g has_real_derivative f(x)) (atreal x within real_interval[&m - &1,&n])) /\ (!x y. &m - &1 <= x /\ x <= y /\ y <= &n ==> f y <= f x) ==> sum(m..n) (\k. f(&k)) <= g(&n) - g(&m - &1)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(m..n) (\k. g(&(k + 1) - &1) - g(&k - &1))` THEN CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[SUM_DIFFS_ALT] THEN ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ARITH `(x + &1) - &1 = x`] THEN REWRITE_TAC[REAL_LE_REFL]] THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN MP_TAC(ISPECL [`g:real->real`; `f:real->real`; `&k - &1`; `&k`] REAL_MVT_SIMPLE) THEN ASM_REWRITE_TAC[REAL_ARITH `k - &1 < k`] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN EXISTS_TAC `real_interval[&m - &1,&n]` THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL]); REWRITE_TAC[SUBSET] THEN GEN_TAC] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ARITH `(a + &1) - &1 = a`] THEN DISCH_THEN(X_CHOOSE_THEN `t:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC)) THEN REWRITE_TAC[REAL_ARITH `a * (x - (x - &1)) = a`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL]) THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC]);; let REAL_SUM_INTEGRAL_LBOUND_INCREASING = prove (`!f g m n. m <= n /\ (!x. x IN real_interval[&m - &1,&n] ==> (g has_real_derivative f(x)) (atreal x within real_interval[&m - &1,&n])) /\ (!x y. &m - &1 <= x /\ x <= y /\ y <= &n ==> f x <= f y) ==> g(&n) - g(&m - &1) <= sum(m..n) (\k. f(&k))`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\z. --((f:real->real) z)`; `\z. --((g:real->real) z)`; `m:num`; `n:num`] REAL_SUM_INTEGRAL_UBOUND_DECREASING) THEN REWRITE_TAC[RE_NEG; RE_SUB; SUM_NEG; REAL_LE_NEG2; REAL_ARITH `--x - --y:real = --(x - y)`] THEN ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_NEG]);; let REAL_SUM_INTEGRAL_LBOUND_DECREASING = prove (`!f g m n. m <= n /\ (!x. x IN real_interval[&m,&n + &1] ==> (g has_real_derivative f(x)) (atreal x within real_interval[&m,&n + &1])) /\ (!x y. &m <= x /\ x <= y /\ y <= &n + &1 ==> f y <= f x) ==> g(&n + &1) - g(&m) <= sum(m..n) (\k. f(&k))`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\z. --((f:real->real) z)`; `\z. --((g:real->real) z)`; `m:num`; `n:num`] REAL_SUM_INTEGRAL_UBOUND_INCREASING) THEN REWRITE_TAC[RE_NEG; RE_SUB; SUM_NEG; REAL_LE_NEG2; REAL_ARITH `--x - --y:real = --(x - y)`] THEN ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_NEG]);; let REAL_SUM_INTEGRAL_BOUNDS_INCREASING = prove (`!f g m n. m <= n /\ (!x. x IN real_interval[&m - &1,&n + &1] ==> (g has_real_derivative f x) (atreal x within real_interval[&m - &1,&n + &1])) /\ (!x y. &m - &1 <= x /\ x <= y /\ y <= &n + &1 ==> f x <= f y) ==> g(&n) - g(&m - &1) <= sum(m..n) (\k. f(&k)) /\ sum (m..n) (\k. f(&k)) <= g(&n + &1) - g(&m)`, REPEAT STRIP_TAC THENL [MATCH_MP_TAC REAL_SUM_INTEGRAL_LBOUND_INCREASING; MATCH_MP_TAC REAL_SUM_INTEGRAL_UBOUND_INCREASING] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN TRY(MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN EXISTS_TAC `real_interval[&m - &1,&n + &1]` THEN CONJ_TAC) THEN TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN TRY(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL])) THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC);; let REAL_SUM_INTEGRAL_BOUNDS_DECREASING = prove (`!f g m n. m <= n /\ (!x. x IN real_interval[&m - &1,&n + &1] ==> (g has_real_derivative f(x)) (atreal x within real_interval[&m - &1,&n + &1])) /\ (!x y. &m - &1 <= x /\ x <= y /\ y <= &n + &1 ==> f y <= f x) ==> g(&n + &1) - g(&m) <= sum(m..n) (\k. f(&k)) /\ sum(m..n) (\k. f(&k)) <= g(&n) - g(&m - &1)`, REPEAT STRIP_TAC THENL [MATCH_MP_TAC REAL_SUM_INTEGRAL_LBOUND_DECREASING; MATCH_MP_TAC REAL_SUM_INTEGRAL_UBOUND_DECREASING] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN TRY(MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN EXISTS_TAC `real_interval[&m - &1,&n + &1]` THEN CONJ_TAC) THEN TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN TRY(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_REAL_INTERVAL])) THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM REAL_OF_NUM_LE]) THEN ASM_REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Some variants with real derivatives. *) (* ------------------------------------------------------------------------- *) let HAS_ABSOLUTE_INTEGRAL_CHANGE_OF_VARIABLES_1_ALT = prove (`!f:real^1->real^N g:real^1->real^1 g' s b. lebesgue_measurable s /\ (!x y. x IN s /\ y IN s /\ g x = g y ==> x = y) /\ (!x. x IN IMAGE drop s ==> ((drop o g o lift) has_real_derivative g' x) (atreal x within IMAGE drop s)) ==> ((\x. abs(g'(drop x)) % f(g x)) absolutely_integrable_on s /\ integral s (\x. abs(g'(drop x)) % f(g x)) = b <=> f absolutely_integrable_on IMAGE g s /\ integral (IMAGE g s) f = b)`, REWRITE_TAC[HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN REWRITE_TAC[FORALL_IN_IMAGE; GSYM IMAGE_o] THEN REWRITE_TAC[o_DEF; LIFT_DROP; IMAGE_ID; ETA_AX] THEN REWRITE_TAC[HAS_ABSOLUTE_INTEGRAL_CHANGE_OF_VARIABLES_1]);; let ABSOLUTELY_INTEGRABLE_CHANGE_OF_VARIABLES_1_ALT = prove (`!f:real^1->real^N g:real^1->real^1 g' s b. lebesgue_measurable s /\ (!x y. x IN s /\ y IN s /\ g x = g y ==> x = y) /\ (!x. x IN IMAGE drop s ==> ((drop o g o lift) has_real_derivative g' x) (atreal x within IMAGE drop s)) ==> (f absolutely_integrable_on IMAGE g s <=> (\x. abs(g'(drop x)) % f(g x)) absolutely_integrable_on s)`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_ABSOLUTE_INTEGRAL_CHANGE_OF_VARIABLES_1_ALT) THEN MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Relating different kinds of real limits. *) (* ------------------------------------------------------------------------- *) let REALLIM_POSINFINITY_SEQUENTIALLY = prove (`!f l. (f ---> l) at_posinfinity ==> ((\n. f(&n)) ---> l) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN DISCH_THEN(MP_TAC o MATCH_MP LIM_POSINFINITY_SEQUENTIALLY) THEN REWRITE_TAC[o_DEF]);; let LIM_ZERO_POSINFINITY = prove (`!f l. ((\x. f(&1 / x)) --> l) (atreal (&0)) ==> (f --> l) at_posinfinity`, REPEAT GEN_TAC THEN REWRITE_TAC[LIM_ATREAL; LIM_AT_POSINFINITY] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[dist; REAL_SUB_RZERO; real_ge] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `&2 / d` THEN X_GEN_TAC `z:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `inv(z):real`) THEN REWRITE_TAC[real_div; REAL_MUL_LINV; REAL_INV_INV] THEN REWRITE_TAC[REAL_MUL_LID] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_ABS_INV; REAL_LT_INV_EQ] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `a <= z ==> &0 < a ==> &0 < abs z`)); GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_INV] THEN MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `&2 / d <= z ==> &0 < &2 / d ==> inv d < abs z`))] THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH]);; let LIM_ZERO_NEGINFINITY = prove (`!f l. ((\x. f(&1 / x)) --> l) (atreal (&0)) ==> (f --> l) at_neginfinity`, REPEAT GEN_TAC THEN REWRITE_TAC[LIM_ATREAL; LIM_AT_NEGINFINITY] THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[dist; REAL_SUB_RZERO; real_ge] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `--(&2 / d)` THEN X_GEN_TAC `z:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `inv(z):real`) THEN REWRITE_TAC[real_div; REAL_MUL_LINV; REAL_INV_INV] THEN REWRITE_TAC[REAL_MUL_LID] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[REAL_ABS_INV; REAL_LT_INV_EQ] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `z <= --a ==> &0 < a ==> &0 < abs z`)); GEN_REWRITE_TAC RAND_CONV [GSYM REAL_INV_INV] THEN MATCH_MP_TAC REAL_LT_INV2 THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `z <= --(&2 / d) ==> &0 < &2 / d ==> inv d < abs z`))] THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH]);; let REALLIM_ZERO_POSINFINITY = prove (`!f l. ((\x. f(&1 / x)) ---> l) (atreal (&0)) ==> (f ---> l) at_posinfinity`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN REWRITE_TAC[o_DEF; LIM_ZERO_POSINFINITY]);; let REALLIM_ZERO_NEGINFINITY = prove (`!f l. ((\x. f(&1 / x)) ---> l) (atreal (&0)) ==> (f ---> l) at_neginfinity`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL] THEN REWRITE_TAC[o_DEF; LIM_ZERO_NEGINFINITY]);; (* ------------------------------------------------------------------------- *) (* Real segments (bidirectional intervals). *) (* ------------------------------------------------------------------------- *) let closed_real_segment = define `closed_real_segment[a,b] = {(&1 - u) * a + u * b | &0 <= u /\ u <= &1}`;; let open_real_segment = new_definition `open_real_segment(a,b) = closed_real_segment[a,b] DIFF {a,b}`;; make_overloadable "real_segment" `:A`;; overload_interface("real_segment",`open_real_segment`);; overload_interface("real_segment",`closed_real_segment`);; let real_segment = prove (`real_segment[a,b] = {(&1 - u) * a + u * b | &0 <= u /\ u <= &1} /\ real_segment(a,b) = real_segment[a,b] DIFF {a,b}`, REWRITE_TAC[open_real_segment; closed_real_segment]);; let REAL_SEGMENT_SEGMENT = prove (`(!a b. real_segment[a,b] = IMAGE drop (segment[lift a,lift b])) /\ (!a b. real_segment(a,b) = IMAGE drop (segment(lift a,lift b)))`, REWRITE_TAC[segment; real_segment] THEN SIMP_TAC[IMAGE_DIFF_INJ; DROP_EQ; IMAGE_CLAUSES; LIFT_DROP] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; DROP_ADD; DROP_CMUL; LIFT_DROP]);; let SEGMENT_REAL_SEGMENT = prove (`(!a b. segment[a,b] = IMAGE lift (real_segment[drop a,drop b])) /\ (!a b. segment(a,b) = IMAGE lift (real_segment(drop a,drop b)))`, REWRITE_TAC[REAL_SEGMENT_SEGMENT; GSYM IMAGE_o] THEN REWRITE_TAC[o_DEF; IMAGE_ID; LIFT_DROP]);; let IMAGE_LIFT_REAL_SEGMENT = prove (`(!a b. IMAGE lift (real_segment[a,b]) = segment[lift a,lift b]) /\ (!a b. IMAGE lift (real_segment(a,b)) = segment(lift a,lift b))`, REWRITE_TAC[SEGMENT_REAL_SEGMENT; LIFT_DROP]);; let REAL_SEGMENT_INTERVAL = prove (`(!a b. real_segment[a,b] = if a <= b then real_interval[a,b] else real_interval[b,a]) /\ (!a b. real_segment(a,b) = if a <= b then real_interval(a,b) else real_interval(b,a))`, REWRITE_TAC[REAL_SEGMENT_SEGMENT; SEGMENT_1; LIFT_DROP] THEN REWRITE_TAC[REAL_INTERVAL_INTERVAL] THEN CONJ_TAC THEN REPEAT GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[]);; let REAL_INTERVAL_SUBSET_REAL_SEGMENT = prove (`(!a b. real_interval[a,b] SUBSET real_segment[a,b]) /\ (!a b. real_interval(a,b) SUBSET real_segment(a,b))`, REWRITE_TAC[REAL_SEGMENT_INTERVAL] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN MATCH_MP_TAC(SET_RULE `s = {} ==> s SUBSET t`) THEN REWRITE_TAC[REAL_INTERVAL_EQ_EMPTY] THEN ASM_REAL_ARITH_TAC);; let REAL_CONTINUOUS_INJECTIVE_IFF_MONOTONIC = prove (`!f s. f real_continuous_on s /\ is_realinterval s ==> ((!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) <=> (!x y. x IN s /\ y IN s /\ x < y ==> f x < f y) \/ (!x y. x IN s /\ y IN s /\ x < y ==> f y < f x))`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_ON; IS_REALINTERVAL_IS_INTERVAL] THEN DISCH_THEN(MP_TAC o MATCH_MP CONTINUOUS_INJECTIVE_IFF_MONOTONIC) THEN REWRITE_TAC[FORALL_LIFT; LIFT_IN_IMAGE_LIFT; o_THM; LIFT_DROP; LIFT_EQ]);; let ENDS_IN_REAL_SEGMENT = prove (`!a b. a IN real_segment[a,b] /\ b IN real_segment[a,b]`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_SEGMENT_INTERVAL] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC);; let IS_REAL_INTERVAL_CONTAINS_SEGMENT = prove (`!s. is_realinterval s <=> !a b. a IN s /\ b IN s ==> real_segment[a,b] SUBSET s`, REWRITE_TAC[CONVEX_CONTAINS_SEGMENT; IS_REALINTERVAL_CONVEX] THEN REWRITE_TAC[REAL_SEGMENT_SEGMENT; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_IMAGE_LIFT_DROP]);; let IS_REALINTERVAL_CONTAINS_SEGMENT_EQ = prove (`!s. is_realinterval s <=> !a b. real_segment [a,b] SUBSET s <=> a IN s /\ b IN s`, MESON_TAC[IS_REAL_INTERVAL_CONTAINS_SEGMENT; SUBSET; ENDS_IN_REAL_SEGMENT]);; let IS_REALINTERVAL_CONTAINS_SEGMENT_IMP = prove (`!s a b. is_realinterval s ==> (real_segment [a,b] SUBSET s <=> a IN s /\ b IN s)`, MESON_TAC[IS_REALINTERVAL_CONTAINS_SEGMENT_EQ]);; let IS_REALINTERVAL_SEGMENT = prove (`(!a b. is_realinterval(real_segment[a,b])) /\ (!a b. is_realinterval(real_segment(a,b)))`, REWRITE_TAC[REAL_SEGMENT_INTERVAL] THEN MESON_TAC[IS_REALINTERVAL_INTERVAL]);; let IN_REAL_SEGMENT = prove (`(!a b x. x IN real_segment[a,b] <=> a <= x /\ x <= b \/ b <= x /\ x <= a) /\ (!a b x. x IN real_segment(a,b) <=> a < x /\ x < b \/ b < x /\ x < a)`, REWRITE_TAC[REAL_SEGMENT_INTERVAL] THEN REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* A nice lemma from "Concrete Mathematics" (for example f = sqrt). *) (* ------------------------------------------------------------------------- *) let FLOOR_CONTINUOUS_MONOTONE_FLOOR = prove (`!f s. is_realinterval s /\ f real_continuous_on s /\ (!x y. x IN s /\ y IN s /\ x <= y ==> f x <= f y) /\ (!x. x IN s /\ integer(f x) ==> integer x) ==> !x. floor x IN s /\ x IN s ==> floor(f(floor x)) = floor(f x)`, REWRITE_TAC[is_realinterval; GSYM REAL_LE_ANTISYM] THEN REPEAT STRIP_TAC THENL [ASM_MESON_TAC[FLOOR_MONO; FLOOR]; ALL_TAC] THEN SIMP_TAC[REAL_LE_FLOOR; FLOOR] THEN REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN MP_TAC(ISPECL [`f:real->real`; `floor x`; `x:real`; `floor(f(x:real))`] REAL_IVT_INCREASING) THEN ASM_SIMP_TAC[FLOOR; IN_REAL_INTERVAL; REAL_LT_IMP_LE; NOT_IMP] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_CONTINUOUS_ON_SUBSET)) THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN ASM_MESON_TAC[]; DISCH_THEN(X_CHOOSE_THEN `y:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `integer y` ASSUME_TAC THENL [ASM_MESON_TAC[FLOOR]; ALL_TAC] THEN SUBGOAL_THEN `floor x = y` (fun th -> ASM_MESON_TAC[th; REAL_LT_REFL]) THEN ASM_REWRITE_TAC[GSYM FLOOR_UNIQUE; GSYM REAL_LT_SUB_RADD] THEN ASM_MESON_TAC[REAL_FLOOR_LE]]);; (* ------------------------------------------------------------------------- *) (* Convex real->real functions. *) (* ------------------------------------------------------------------------- *) parse_as_infix ("real_convex_on",(12,"right"));; let real_convex_on = new_definition `(f:real->real) real_convex_on s <=> !x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ (u + v = &1) ==> f(u * x + v * y) <= u * f(x) + v * f(y)`;; let REAL_CONVEX_ON_EMPTY = prove (`!f. f real_convex_on {}`, REWRITE_TAC[real_convex_on; NOT_IN_EMPTY]);; let REAL_CONVEX_ON = prove (`!f s. f real_convex_on s <=> (f o drop) convex_on (IMAGE lift s)`, REWRITE_TAC[real_convex_on; convex_on] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_THM; LIFT_DROP; DROP_ADD; DROP_CMUL]);; let REAL_CONVEX_ON_EQ = prove (`!f g s. is_realinterval s /\ (!x. x IN s ==> f x = g x) /\ f real_convex_on s ==> g real_convex_on s`, REWRITE_TAC[IS_REALINTERVAL_CONVEX; REAL_CONVEX_ON] THEN REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] CONVEX_ON_EQ)) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP]);; let REAL_CONVEX_ON_SING = prove (`!f a. f real_convex_on {a}`, REWRITE_TAC[REAL_CONVEX_ON; IMAGE_CLAUSES; CONVEX_ON_SING]);; let REAL_CONVEX_ON_SUBSET = prove (`!f s t. f real_convex_on t /\ s SUBSET t ==> f real_convex_on s`, REWRITE_TAC[REAL_CONVEX_ON] THEN MESON_TAC[CONVEX_ON_SUBSET; IMAGE_SUBSET]);; let REAL_CONVEX_ON_CONST = prove (`!s c. (\x. c) real_convex_on s`, REWRITE_TAC[REAL_CONVEX_ON; o_DEF; CONVEX_ON_CONST]);; let REAL_CONVEX_ADD = prove (`!s f g. f real_convex_on s /\ g real_convex_on s ==> (\x. f(x) + g(x)) real_convex_on s`, REWRITE_TAC[REAL_CONVEX_ON; o_DEF; CONVEX_ADD]);; let REAL_CONVEX_LMUL = prove (`!s c f. &0 <= c /\ f real_convex_on s ==> (\x. c * f(x)) real_convex_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_CONVEX_ON; o_DEF] THEN DISCH_THEN(MP_TAC o MATCH_MP CONVEX_CMUL) THEN REWRITE_TAC[]);; let REAL_CONVEX_RMUL = prove (`!s c f. &0 <= c /\ f real_convex_on s ==> (\x. f(x) * c) real_convex_on s`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_CONVEX_LMUL]);; let REAL_CONVEX_ON_SUM = prove (`!t f:A->real->real s. FINITE s /\ (!a. a IN s ==> f a real_convex_on t) ==> (\x. sum s (\a. f a x)) real_convex_on t`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; REAL_CONVEX_ON_CONST; FORALL_IN_INSERT] THEN SIMP_TAC[REAL_CONVEX_ADD; ETA_AX]);; let REAL_CONVEX_CONVEX_COMPOSE = prove (`!f g s:real^N->bool t. f convex_on s /\ g real_convex_on t /\ convex s /\ is_realinterval t /\ IMAGE f s SUBSET t /\ (!x y. x IN t /\ y IN t /\ x <= y ==> g x <= g y) ==> (g o f) convex_on s`, REWRITE_TAC[convex_on; convex; IS_REALINTERVAL_CONVEX; real_convex_on; SUBSET] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE; o_DEF] THEN REWRITE_TAC[IN_IMAGE_LIFT_DROP; DROP_ADD; DROP_CMUL; LIFT_DROP] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN ASM_MESON_TAC[REAL_LE_TRANS]);; let REAL_CONVEX_COMPOSE = prove (`!f g s t. f real_convex_on s /\ g real_convex_on t /\ is_realinterval s /\ is_realinterval t /\ IMAGE f s SUBSET t /\ (!x y. x IN t /\ y IN t /\ x <= y ==> g x <= g y) ==> (g o f) real_convex_on s`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_CONVEX_ON; GSYM o_ASSOC] THEN MATCH_MP_TAC REAL_CONVEX_CONVEX_COMPOSE THEN EXISTS_TAC `t:real->bool` THEN ASM_REWRITE_TAC[GSYM REAL_CONVEX_ON; GSYM IMAGE_o; o_DEF; LIFT_DROP; ETA_AX; GSYM IS_REALINTERVAL_CONVEX]);; let REAL_CONVEX_LOWER = prove (`!f s x y. f real_convex_on s /\ x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1 ==> f(u * x + v * y) <= max (f(x)) (f(y))`, REWRITE_TAC[REAL_CONVEX_ON] THEN REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CONVEX_LOWER) THEN REWRITE_TAC[o_THM; DROP_ADD; DROP_CMUL]);; let REAL_CONVEX_LOWER_REAL_SEGMENT = prove (`!f s a b x. f real_convex_on s /\ a IN s /\ b IN s /\ x IN real_segment[a,b] ==> f x <= max (f a) (f b)`, REWRITE_TAC[REAL_CONVEX_ON; REAL_SEGMENT_SEGMENT] THEN REWRITE_TAC[FORALL_DROP; LIFT_DROP; DROP_IN_IMAGE_DROP] THEN REWRITE_TAC[GSYM IN_IMAGE_LIFT_DROP; o_DEF] THEN REWRITE_TAC[CONVEX_LOWER_SEGMENT]);; let REAL_CONVEX_LOWER_REAL_INTERVAL = prove (`!f a b x. f real_convex_on real_interval[a,b] /\ x IN real_interval[a,b] ==> f x <= max (f a) (f b)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONVEX_LOWER_REAL_SEGMENT THEN EXISTS_TAC `real_segment[a,b]` THEN REWRITE_TAC[ENDS_IN_REAL_SEGMENT] THEN FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE `a IN s ==> ~(s = {})`)) THEN ASM_SIMP_TAC[REAL_SEGMENT_INTERVAL; REAL_INTERVAL_NE_EMPTY]);; let REAL_CONVEX_LOCAL_GLOBAL_MINIMUM = prove (`!f s t x. f real_convex_on s /\ x IN t /\ real_open t /\ t SUBSET s /\ (!y. y IN t ==> f(x) <= f(y)) ==> !y. y IN s ==> f(x) <= f(y)`, REWRITE_TAC[REAL_CONVEX_ON; REAL_OPEN] THEN REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP] THEN REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL [`(f:real->real) o drop`; `IMAGE lift s`; `IMAGE lift t`; `x:real^1`] CONVEX_LOCAL_GLOBAL_MINIMUM) THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_THM; IMAGE_SUBSET]);; let REAL_CONVEX_DISTANCE = prove (`!s a. (\x. abs(a - x)) real_convex_on s`, REWRITE_TAC[REAL_CONVEX_ON; o_DEF; FORALL_DROP; GSYM DROP_SUB] THEN REWRITE_TAC[drop; GSYM NORM_REAL; GSYM dist; CONVEX_DISTANCE]);; let REAL_CONVEX_ON_JENSEN = prove (`!f s. is_realinterval s ==> (f real_convex_on s <=> !k u x. (!i:num. 1 <= i /\ i <= k ==> &0 <= u(i) /\ x(i) IN s) /\ (sum (1..k) u = &1) ==> f(sum (1..k) (\i. u(i) * x(i))) <= sum (1..k) (\i. u(i) * f(x(i))))`, REWRITE_TAC[IS_REALINTERVAL_CONVEX; REAL_CONVEX_ON] THEN SIMP_TAC[CONVEX_ON_JENSEN] THEN REPEAT STRIP_TAC THEN SIMP_TAC[o_DEF; DROP_VSUM; FINITE_NUMSEG] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `k:num` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `u:num->real` THEN REWRITE_TAC[] THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `x:num->real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `lift o (x:num->real)`) THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP; IN_IMAGE_LIFT_DROP] THEN REWRITE_TAC[DROP_CMUL; LIFT_DROP]; X_GEN_TAC `x:num->real^1` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `drop o (x:num->real^1)`) THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP; IN_IMAGE_LIFT_DROP] THEN ASM_REWRITE_TAC[DROP_CMUL; LIFT_DROP; GSYM IN_IMAGE_LIFT_DROP]]);; let REAL_CONVEX_ON_IMP_JENSEN = prove (`!f s k:A->bool u x. f real_convex_on s /\ is_realinterval s /\ FINITE k /\ (!i. i IN k ==> &0 <= u i /\ x i IN s) /\ sum k u = &1 ==> f(sum k (\i. u i * x i)) <= sum k (\i. u i * f(x i))`, REWRITE_TAC[REAL_CONVEX_ON; IS_REALINTERVAL_IS_INTERVAL] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`k:A->bool`; `u:A->real`; `\i:A. lift(x i)`] o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] CONVEX_ON_IMP_JENSEN)) THEN ASM_REWRITE_TAC[LIFT_IN_IMAGE_LIFT; o_DEF; LIFT_DROP; DROP_VSUM; DROP_CMUL; GSYM IS_INTERVAL_CONVEX_1]);; let REAL_CONVEX_ON_CONTINUOUS = prove (`!f s. real_open s /\ f real_convex_on s ==> f real_continuous_on s`, REWRITE_TAC[REAL_CONVEX_ON; REAL_OPEN; REAL_CONTINUOUS_ON] THEN REWRITE_TAC[CONVEX_ON_CONTINUOUS]);; let REAL_CONVEX_ON_LEFT_SECANT_MUL = prove (`!f s. f real_convex_on s <=> !a b x. a IN s /\ b IN s /\ x IN real_segment[a,b] ==> (f x - f a) * abs(b - a) <= (f b - f a) * abs(x - a)`, REWRITE_TAC[REAL_CONVEX_ON; CONVEX_ON_LEFT_SECANT_MUL] THEN REWRITE_TAC[REAL_SEGMENT_SEGMENT] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN REWRITE_TAC[NORM_REAL; GSYM drop; DROP_SUB; LIFT_DROP]);; let REAL_CONVEX_ON_RIGHT_SECANT_MUL = prove (`!f s. f real_convex_on s <=> !a b x. a IN s /\ b IN s /\ x IN real_segment[a,b] ==> (f b - f a) * abs(b - x) <= (f b - f x) * abs(b - a)`, REWRITE_TAC[REAL_CONVEX_ON; CONVEX_ON_RIGHT_SECANT_MUL] THEN REWRITE_TAC[REAL_SEGMENT_SEGMENT] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN REWRITE_TAC[NORM_REAL; GSYM drop; DROP_SUB; LIFT_DROP]);; let REAL_CONVEX_ON_LEFT_SECANT = prove (`!f s. f real_convex_on s <=> !a b x. a IN s /\ b IN s /\ x IN real_segment(a,b) ==> (f x - f a) / abs(x - a) <= (f b - f a) / abs(b - a)`, REWRITE_TAC[REAL_CONVEX_ON; CONVEX_ON_LEFT_SECANT] THEN REWRITE_TAC[REAL_SEGMENT_SEGMENT] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN REWRITE_TAC[NORM_REAL; GSYM drop; DROP_SUB; LIFT_DROP]);; let REAL_CONVEX_ON_RIGHT_SECANT = prove (`!f s. f real_convex_on s <=> !a b x. a IN s /\ b IN s /\ x IN real_segment(a,b) ==> (f b - f a) / abs(b - a) <= (f b - f x) / abs(b - x)`, REWRITE_TAC[REAL_CONVEX_ON; CONVEX_ON_RIGHT_SECANT] THEN REWRITE_TAC[REAL_SEGMENT_SEGMENT] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN REWRITE_TAC[NORM_REAL; GSYM drop; DROP_SUB; LIFT_DROP]);; let REAL_CONVEX_ON_DERIVATIVE_SECANT_IMP = prove (`!f f' s x y. f real_convex_on s /\ real_segment[x,y] SUBSET s /\ (f has_real_derivative f') (atreal x within s) ==> f' * (y - x) <= f y - f x`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN; REAL_CONVEX_ON; REAL_SEGMENT_SEGMENT] THEN REWRITE_TAC[SUBSET; IN_IMAGE_LIFT_DROP] THEN REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_DROP] THEN REWRITE_TAC[LIFT_DROP] THEN REWRITE_TAC[GSYM IN_IMAGE_LIFT_DROP; GSYM SUBSET] THEN ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP] `\x. lift(drop(f % x))`)] THEN REWRITE_TAC[GSYM o_DEF] THEN DISCH_THEN(MP_TAC o MATCH_MP CONVEX_ON_DERIVATIVE_SECANT_IMP) THEN REWRITE_TAC[o_THM; DROP_CMUL; DROP_SUB; LIFT_DROP]);; let REAL_CONVEX_ON_SECANT_DERIVATIVE_IMP = prove (`!f f' s x y. f real_convex_on s /\ real_segment[x,y] SUBSET s /\ (f has_real_derivative f') (atreal y within s) ==> f y - f x <= f' * (y - x)`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN; REAL_CONVEX_ON; REAL_SEGMENT_SEGMENT] THEN REWRITE_TAC[SUBSET; IN_IMAGE_LIFT_DROP] THEN REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_DROP] THEN REWRITE_TAC[LIFT_DROP] THEN REWRITE_TAC[GSYM IN_IMAGE_LIFT_DROP; GSYM SUBSET] THEN ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP] `\x. lift(drop(f % x))`)] THEN REWRITE_TAC[GSYM o_DEF] THEN DISCH_THEN(MP_TAC o MATCH_MP CONVEX_ON_SECANT_DERIVATIVE_IMP) THEN REWRITE_TAC[o_THM; DROP_CMUL; DROP_SUB; LIFT_DROP]);; let REAL_CONVEX_ON_DERIVATIVES_IMP = prove (`!f f'x f'y s x y. f real_convex_on s /\ real_segment[x,y] SUBSET s /\ (f has_real_derivative f'x) (atreal x within s) /\ (f has_real_derivative f'y) (atreal y within s) ==> f'x * (y - x) <= f'y * (y - x)`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN; REAL_CONVEX_ON; REAL_SEGMENT_SEGMENT] THEN REWRITE_TAC[SUBSET; IN_IMAGE_LIFT_DROP] THEN REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_DROP] THEN REWRITE_TAC[LIFT_DROP] THEN REWRITE_TAC[GSYM IN_IMAGE_LIFT_DROP; GSYM SUBSET] THEN ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP] `\x. lift(drop(f % x))`)] THEN REWRITE_TAC[GSYM o_DEF] THEN DISCH_THEN(MP_TAC o MATCH_MP CONVEX_ON_DERIVATIVES_IMP) THEN REWRITE_TAC[o_THM; DROP_CMUL; DROP_SUB; LIFT_DROP]);; let REAL_CONVEX_ON_DERIVATIVE_INCREASING_IMP = prove (`!f f'x f'y s x y. f real_convex_on s /\ real_interval[x,y] SUBSET s /\ (f has_real_derivative f'x) (atreal x within s) /\ (f has_real_derivative f'y) (atreal y within s) /\ x < y ==> f'x <= f'y`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real->real`; `f'x:real`; `f'y:real`; `s:real->bool`; `x:real`; `y:real`] REAL_CONVEX_ON_DERIVATIVES_IMP) THEN ASM_REWRITE_TAC[REAL_SEGMENT_INTERVAL] THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; REAL_LE_RMUL_EQ; REAL_SUB_LT]);; let REAL_CONVEX_ON_DERIVATIVE_SECANT = prove (`!f f' s. is_realinterval s /\ (!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s)) ==> (f real_convex_on s <=> !x y. x IN s /\ y IN s ==> f'(x) * (y - x) <= f y - f x)`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN; REAL_CONVEX_ON; IS_REALINTERVAL_CONVEX] THEN REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP; LIFT_DROP] THEN ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP; o_DEF] `lift o (\x. drop(f % x))`)] THEN DISCH_THEN(SUBST1_TAC o MATCH_MP CONVEX_ON_DERIVATIVE_SECANT) THEN REWRITE_TAC[DROP_CMUL; DROP_SUB; o_THM]);; let REAL_CONVEX_ON_SECANT_DERIVATIVE = prove (`!f f' s. is_realinterval s /\ (!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s)) ==> (f real_convex_on s <=> !x y. x IN s /\ y IN s ==> f y - f x <= f'(y) * (y - x))`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN; REAL_CONVEX_ON; IS_REALINTERVAL_CONVEX] THEN REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP; LIFT_DROP] THEN ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP; o_DEF] `lift o (\x. drop(f % x))`)] THEN DISCH_THEN(SUBST1_TAC o MATCH_MP CONVEX_ON_SECANT_DERIVATIVE) THEN REWRITE_TAC[DROP_CMUL; DROP_SUB; o_THM]);; let REAL_CONVEX_ON_DERIVATIVES = prove (`!f f' s. is_realinterval s /\ (!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s)) ==> (f real_convex_on s <=> !x y. x IN s /\ y IN s ==> f'(x) * (y - x) <= f'(y) * (y - x))`, REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN; REAL_CONVEX_ON; IS_REALINTERVAL_CONVEX] THEN REPEAT GEN_TAC THEN REWRITE_TAC[FORALL_DROP; GSYM IN_IMAGE_LIFT_DROP; LIFT_DROP] THEN ONCE_REWRITE_TAC[GSYM(REWRITE_CONV[LIFT_DROP; o_DEF] `lift o (\x. drop(f % x))`)] THEN DISCH_THEN(SUBST1_TAC o MATCH_MP CONVEX_ON_DERIVATIVES) THEN REWRITE_TAC[DROP_CMUL; DROP_SUB; o_THM]);; let REAL_CONVEX_ON_DERIVATIVE_INCREASING = prove (`!f f' s. is_realinterval s /\ (!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s)) ==> (f real_convex_on s <=> !x y. x IN s /\ y IN s /\ x <= y ==> f'(x) <= f'(y))`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP REAL_CONVEX_ON_DERIVATIVES) THEN EQ_TAC THEN DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]) THEN ASM_CASES_TAC `x:real = y` THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN ASM_SIMP_TAC[REAL_LE_RMUL_EQ; REAL_SUB_LT; REAL_LT_LE]; DISJ_CASES_TAC(REAL_ARITH `x <= y \/ y <= x`) THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]); FIRST_X_ASSUM(MP_TAC o SPECL [`y:real`; `x:real`])] THEN ASM_CASES_TAC `x:real = y` THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN ASM_SIMP_TAC[REAL_LE_RMUL_EQ; REAL_SUB_LT; REAL_LT_LE] THEN ONCE_REWRITE_TAC[REAL_ARITH `a * (y - x) <= b * (y - x) <=> b * (x - y) <= a * (x - y)`] THEN ASM_SIMP_TAC[REAL_LE_RMUL_EQ; REAL_SUB_LT; REAL_LT_LE]]);; let HAS_REAL_DERIVATIVE_INCREASING_IMP = prove (`!f f' s a b. is_realinterval s /\ (!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s)) /\ (!x. x IN s ==> &0 <= f'(x)) /\ a IN s /\ b IN s /\ a <= b ==> f(a) <= f(b)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `real_interval[a,b] SUBSET s` ASSUME_TAC THENL [REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [is_realinterval]) THEN MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`f:real->real`; `f':real->real`; `a:real`; `b:real`] REAL_MVT_VERY_SIMPLE) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN X_GEN_TAC `z:real` THEN DISCH_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN EXISTS_TAC `s:real->bool` THEN ASM SET_TAC[]; DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC) THEN STRIP_TAC THEN GEN_REWRITE_TAC I [GSYM REAL_SUB_LE] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THENL [ASM SET_TAC[]; ASM_REAL_ARITH_TAC]]);; let HAS_REAL_DERIVATIVE_INCREASING = prove (`!f f' s. is_realinterval s /\ ~(?a. s = {a}) /\ (!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s)) ==> ((!x. x IN s ==> &0 <= f'(x)) <=> (!x y. x IN s /\ y IN s /\ x <= y ==> f(x) <= f(y)))`, REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[HAS_REAL_DERIVATIVE_INCREASING_IMP]; ALL_TAC] THEN DISCH_TAC THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN MATCH_MP_TAC(ISPEC `atreal x within s` REALLIM_LBOUND) THEN EXISTS_TAC `\y:real. (f y - f x) / (y - x)` THEN ASM_SIMP_TAC[GSYM HAS_REAL_DERIVATIVE_WITHINREAL] THEN ASM_SIMP_TAC[TRIVIAL_LIMIT_WITHIN_REALINTERVAL] THEN REWRITE_TAC[EVENTUALLY_WITHINREAL] THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN X_GEN_TAC `y:real` THEN REWRITE_TAC[REAL_ARITH `&0 < abs(y - x) <=> ~(y = x)`] THEN STRIP_TAC THEN FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH `~(y:real = x) ==> x < y \/ y < x`)) THENL [ALL_TAC; ONCE_REWRITE_TAC[GSYM REAL_NEG_SUB] THEN REWRITE_TAC[real_div; REAL_INV_NEG; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN REWRITE_TAC[REAL_NEG_NEG; GSYM real_div]] THEN MATCH_MP_TAC REAL_LE_DIV THEN ASM_SIMP_TAC[REAL_SUB_LE; REAL_LT_IMP_LE]);; let HAS_REAL_DERIVATIVE_STRICTLY_INCREASING_IMP = prove (`!f f' a b. (!x. x IN real_interval[a,b] ==> (f has_real_derivative f'(x)) (atreal x within real_interval[a,b])) /\ (!x. x IN real_interval(a,b) ==> &0 < f'(x)) /\ a < b ==> f(a) < f(b)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real->real`; `f':real->real`; `a:real`; `b:real`] REAL_MVT) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_SUB_LT; REAL_LT_MUL]] THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON; real_differentiable_on]; ASM_MESON_TAC[HAS_REAL_DERIVATIVE_WITHIN_SUBSET; SUBSET; REAL_INTERVAL_OPEN_SUBSET_CLOSED; REAL_OPEN_REAL_INTERVAL; HAS_REAL_DERIVATIVE_WITHIN_REAL_OPEN]]);; let REAL_CONVEX_ON_SECOND_DERIVATIVE = prove (`!f f' f'' s. is_realinterval s /\ ~(?a. s = {a}) /\ (!x. x IN s ==> (f has_real_derivative f'(x)) (atreal x within s)) /\ (!x. x IN s ==> (f' has_real_derivative f''(x)) (atreal x within s)) ==> (f real_convex_on s <=> !x. x IN s ==> &0 <= f''(x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `!x y. x IN s /\ y IN s /\ x <= y ==> (f':real->real)(x) <= f'(y)` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_CONVEX_ON_DERIVATIVE_INCREASING; CONV_TAC SYM_CONV THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_INCREASING] THEN ASM_REWRITE_TAC[]);; let REAL_CONVEX_ON_ASYM = prove (`!s f. f real_convex_on s <=> !x y u v. x IN s /\ y IN s /\ x < y /\ &0 <= u /\ &0 <= v /\ u + v = &1 ==> f (u * x + v * y) <= u * f x + v * f y`, REPEAT GEN_TAC THEN REWRITE_TAC[real_convex_on] THEN EQ_TAC THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC REAL_WLOG_LT THEN SIMP_TAC[GSYM REAL_ADD_RDISTRIB; REAL_MUL_LID; REAL_LE_REFL] THEN ASM_MESON_TAC[REAL_ADD_SYM]);; let REAL_CONVEX_ON_EXP = prove (`!s. exp real_convex_on s`, GEN_TAC THEN MATCH_MP_TAC REAL_CONVEX_ON_SUBSET THEN EXISTS_TAC `(:real)` THEN REWRITE_TAC[SUBSET_UNIV] THEN MP_TAC(ISPECL [`exp`; `exp`; `exp`; `(:real)`] REAL_CONVEX_ON_SECOND_DERIVATIVE) THEN SIMP_TAC[HAS_REAL_DERIVATIVE_EXP; REAL_EXP_POS_LE; HAS_REAL_DERIVATIVE_ATREAL_WITHIN; IS_REALINTERVAL_UNIV] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC(SET_RULE `&0 IN s /\ &1 IN s /\ ~(&1 = &0) ==> ~(?a. s = {a})`) THEN REWRITE_TAC[IN_UNIV] THEN REAL_ARITH_TAC);; let REAL_CONVEX_ON_RPOW = prove (`!s t. s SUBSET {x | &0 <= x} /\ &1 <= t ==> (\x. x rpow t) real_convex_on s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONVEX_ON_SUBSET THEN EXISTS_TAC `{x | &0 <= x}` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `(\x. x rpow t) real_convex_on {x | &0 < x}` MP_TAC THENL [MP_TAC(ISPECL [`\x. x rpow t`; `\x. t * x rpow (t - &1)`; `\x. t * (t - &1) * x rpow (t - &2)`; `{x | &0 < x}`] REAL_CONVEX_ON_SECOND_DERIVATIVE) THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [REWRITE_TAC[is_realinterval; IN_ELIM_THM] THEN REAL_ARITH_TAC; MATCH_MP_TAC(SET_RULE `&1 IN s /\ &2 IN s /\ ~(&1 = &2) ==> ~(?a. s = {a})`) THEN REWRITE_TAC[IN_ELIM_THM] THEN REAL_ARITH_TAC; REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN ASM_REAL_ARITH_TAC; REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN ASM_REWRITE_TAC[REAL_ARITH `t - &1 - &1 = t - &2`] THEN ASM_REAL_ARITH_TAC]; DISCH_THEN SUBST1_TAC THEN REPEAT STRIP_TAC THEN REPEAT(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC]) THEN MATCH_MP_TAC RPOW_POS_LE THEN ASM_SIMP_TAC[REAL_LT_IMP_LE]]; REWRITE_TAC[REAL_CONVEX_ON_ASYM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_CASES_TAC `x = &0` THENL [DISCH_THEN(K ALL_TAC) THEN ASM_REWRITE_TAC[REAL_MUL_RZERO] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[RPOW_ZERO; REAL_ARITH `&1 <= t ==> ~(t = &0)`] THEN REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_LID] THEN ASM_CASES_TAC `v = &0` THEN ASM_SIMP_TAC[RPOW_ZERO; REAL_ARITH `&1 <= t ==> ~(t = &0)`; REAL_MUL_LZERO; REAL_LE_REFL] THEN ASM_SIMP_TAC[RPOW_MUL; REAL_LT_LE] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_SIMP_TAC[RPOW_POS_LE; REAL_LT_IMP_LE] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `exp(&1 * log v)` THEN CONJ_TAC THENL [ASM_SIMP_TAC[rpow; REAL_LT_LE; REAL_EXP_MONO_LE] THEN ONCE_REWRITE_TAC[REAL_ARITH `a * l <= b * l <=> --l * b <= --l * a`] THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[GSYM LOG_INV; REAL_LT_LE] THEN MATCH_MP_TAC LOG_POS THEN MATCH_MP_TAC REAL_INV_1_LE THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[REAL_MUL_LID; EXP_LOG; REAL_LT_LE; REAL_LE_REFL]]; ASM_MESON_TAC[REAL_LT_LE; REAL_LET_TRANS]]]);; let REAL_CONVEX_ON_RPOW_NEG = prove (`!s t. s SUBSET {x | &0 < x} /\ t <= &0 ==> (\x. x rpow t) real_convex_on s`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] REAL_CONVEX_ON_SUBSET)) THEN MP_TAC(ISPECL [`\v. v rpow t`; `\v. t * v rpow (t - &1)`; `\v. t * (t - &1) * v rpow (t - &2)`; `{x | &0 < x}`] REAL_CONVEX_ON_SECOND_DERIVATIVE) THEN REWRITE_TAC[IN_ELIM_THM; IS_REALINTERVAL_CLAUSES; NOT_EXISTS_THM] THEN MATCH_MP_TAC(TAUT `r /\ p ==> (p ==> (q <=> r)) ==> q`) THEN REPEAT CONJ_TAC THEN X_GEN_TAC `x:real` THEN DISCH_TAC THENL [ONCE_REWRITE_TAC[REAL_ARITH `t * (t - &1) * x = x * --t * (&1 - t)`] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_SIMP_TAC[RPOW_POS_LE; REAL_LT_IMP_LE] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_REAL_ARITH_TAC; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `s = {x} ==> !a b. ~(a = b) /\ a IN s /\ b IN s ==> F`)) THEN MAP_EVERY EXISTS_TAC [`&1:real`; `&2:real`] THEN REWRITE_TAC[IN_ELIM_THM] THEN CONV_TAC REAL_RAT_REDUCE_CONV; REAL_DIFF_TAC THEN ASM_REAL_ARITH_TAC; REAL_DIFF_TAC THEN REWRITE_TAC[REAL_ARITH `t - &1 - &1 = t - &2`] THEN ASM_REAL_ARITH_TAC]);; let REAL_CONVEX_ON_RPOW_INTEGER = prove (`!s t. s SUBSET {x | &0 < x} /\ integer t ==> (\x. x rpow t) real_convex_on s`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`&0:real`; `t:real`] REAL_LT_INTEGERS) THEN ASM_REWRITE_TAC[INTEGER_CLOSED; GSYM REAL_NOT_LE; REAL_ADD_LID] THEN ASM_CASES_TAC `t:real <= &0` THEN ASM_SIMP_TAC[REAL_CONVEX_ON_RPOW_NEG] THEN DISCH_TAC THEN MATCH_MP_TAC REAL_CONVEX_ON_RPOW THEN ASM_REWRITE_TAC[] THEN TRANS_TAC SUBSET_TRANS `{x:real | &0 < x}` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REAL_ARITH_TAC);; let REAL_CONVEX_ON_REAL_INV = prove (`!s. s SUBSET {x | &0 < x} ==> inv real_convex_on s`, REPEAT STRIP_TAC THEN MP_TAC (ISPECL [`s:real->bool`; `-- &1:real`] REAL_CONVEX_ON_RPOW_INTEGER) THEN ASM_REWRITE_TAC[INTEGER_NEG; INTEGER_CLOSED; RPOW_NEG; RPOW_POW] THEN REWRITE_TAC[REAL_POW_1; ETA_AX]);; let CONVEX_ON_REAL_POW = prove (`!f:real^N->real s n. f convex_on s /\ convex s /\ (!x. x IN s ==> &0 <= f x) ==> (\x. (f x) pow n) convex_on s`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[real_pow; CONVEX_ON_CONST] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[o_DEF] (ONCE_REWRITE_RULE[IMP_CONJ] REAL_CONVEX_CONVEX_COMPOSE))) THEN EXISTS_TAC `{x:real | &0 <= x}` THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; REAL_POW_LE2; IN_ELIM_THM] THEN REWRITE_TAC[IS_REALINTERVAL_CLAUSES] THEN REWRITE_TAC[GSYM RPOW_POW] THEN MATCH_MP_TAC REAL_CONVEX_ON_RPOW THEN REWRITE_TAC[REAL_OF_NUM_LE; SUBSET_REFL] THEN ASM_ARITH_TAC);; let REAL_CONVEX_ON_REAL_POW = prove (`!f s n. f real_convex_on s /\ is_realinterval s /\ (!x. x IN s ==> &0 <= f x) ==> (\x. (f x) pow n) real_convex_on s`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[real_pow; REAL_CONVEX_ON_CONST] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[o_DEF] (ONCE_REWRITE_RULE[IMP_CONJ] REAL_CONVEX_COMPOSE))) THEN EXISTS_TAC `{x:real | &0 <= x}` THEN ASM_SIMP_TAC[SUBSET; FORALL_IN_IMAGE; REAL_POW_LE2; IN_ELIM_THM] THEN REWRITE_TAC[IS_REALINTERVAL_CLAUSES] THEN REWRITE_TAC[GSYM RPOW_POW] THEN MATCH_MP_TAC REAL_CONVEX_ON_RPOW THEN REWRITE_TAC[REAL_OF_NUM_LE; SUBSET_REFL] THEN ASM_ARITH_TAC);; let REAL_CONVEX_ON_LOG = prove (`!s. s SUBSET {x | &0 < x} ==> (\x. --log x) real_convex_on s`, GEN_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_CONVEX_ON_SUBSET) THEN MP_TAC(ISPECL [`\x. --log x`; `\x:real. --inv(x)`; `\x:real. inv(x pow 2)`; `{x | &0 < x}`] REAL_CONVEX_ON_SECOND_DERIVATIVE) THEN REWRITE_TAC[IN_ELIM_THM; REAL_LE_INV_EQ; REAL_LE_POW_2] THEN DISCH_THEN MATCH_MP_TAC THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[is_realinterval; IN_ELIM_THM] THEN REAL_ARITH_TAC; REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN MESON_TAC[REAL_ARITH `&0 < a ==> &0 < a + &1 /\ ~(a + &1 = a)`]; REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN ASM_REAL_ARITH_TAC; REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN ASM_REAL_ARITH_TAC]);; let REAL_CONTINUOUS_MIDPOINT_CONVEX = prove (`!f s. f real_continuous_on s /\ is_realinterval s /\ (!x y. x IN s /\ y IN s ==> f ((x + y) / &2) <= (f x + f y) / &2) ==> f real_convex_on s`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_CONVEX_ON] THEN MATCH_MP_TAC CONTINUOUS_MIDPOINT_CONVEX THEN ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; GSYM IS_REALINTERVAL_CONVEX] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[midpoint; LIFT_DROP; o_THM; DROP_CMUL; DROP_ADD] THEN ASM_SIMP_TAC[REAL_ARITH `inv(&2) * x = x / &2`]);; (* ------------------------------------------------------------------------- *) (* Some convexity-derived inequalities including AGM and Young's inequality. *) (* ------------------------------------------------------------------------- *) let AGM_GEN = prove (`!a x k:A->bool. FINITE k /\ sum k a = &1 /\ (!i. i IN k ==> &0 <= a i /\ &0 <= x i) ==> product k (\i. x i rpow a i) <= sum k (\i. a i * x i)`, let version1 = prove (`!a x k:A->bool. FINITE k /\ sum k a = &1 /\ (!i. i IN k ==> &0 < a i /\ &0 < x i) ==> product k (\i. x i rpow a i) <= sum k (\i. a i * x i)`, REPEAT GEN_TAC THEN ASM_CASES_TAC `k:A->bool = {}` THEN ASM_REWRITE_TAC[SUM_CLAUSES; REAL_OF_NUM_EQ; ARITH_EQ] THEN STRIP_TAC THEN MATCH_MP_TAC LOG_MONO_LE_REV THEN ASM_SIMP_TAC[PRODUCT_POS_LT; RPOW_POS_LT; LOG_PRODUCT; LOG_RPOW; SUM_POS_LT_ALL; REAL_LT_MUL] THEN MP_TAC(ISPECL [`\x. --log x`; `{x | &0 < x}`; `k:A->bool`; `a:A->real`; `x:A->real`] REAL_CONVEX_ON_IMP_JENSEN) THEN ASM_SIMP_TAC[IN_ELIM_THM; REAL_CONVEX_ON_LOG; SUBSET_REFL; REAL_LT_IMP_LE; is_realinterval] THEN REWRITE_TAC[REAL_MUL_RNEG; SUM_NEG; REAL_LE_NEG2] THEN DISCH_THEN MATCH_MP_TAC THEN REAL_ARITH_TAC) in let version2 = prove (`!a x k:A->bool. FINITE k /\ sum k a = &1 /\ (!i. i IN k ==> &0 < a i /\ &0 <= x i) ==> product k (\i. x i rpow a i) <= sum k (\i. a i * x i)`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `?i:A. i IN k /\ x i = &0` THENL [MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ x = &0 ==> x <= y`) THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_POS_LE THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE]; ASM_SIMP_TAC[PRODUCT_EQ_0; RPOW_EQ_0] THEN ASM_MESON_TAC[REAL_LT_IMP_NZ]]; MATCH_MP_TAC version1 THEN ASM_MESON_TAC[REAL_LT_LE]]) in REPEAT STRIP_TAC THEN SUBGOAL_THEN `product {i:A | i IN k /\ ~(a i = &0)} (\i. x i rpow a i) <= sum {i:A | i IN k /\ ~(a i = &0)} (\i. a i * x i)` MP_TAC THENL [MATCH_MP_TAC version2 THEN ASM_SIMP_TAC[FINITE_RESTRICT; REAL_LT_LE; IN_ELIM_THM] THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN GEN_REWRITE_TAC RAND_CONV [GSYM SUM_SUPPORT] THEN REWRITE_TAC[support; NEUTRAL_REAL_ADD]; MATCH_MP_TAC EQ_IMP THEN CONV_TAC SYM_CONV THEN BINOP_TAC THENL [MATCH_MP_TAC PRODUCT_SUPERSET; MATCH_MP_TAC SUM_SUPERSET] THEN SIMP_TAC[IN_ELIM_THM; SUBSET_RESTRICT; IMP_CONJ; RPOW_0] THEN REWRITE_TAC[REAL_MUL_LZERO]]);; let AGM_RPOW = prove (`!k:A->bool x n. k HAS_SIZE n /\ ~(n = 0) /\ (!i. i IN k ==> &0 <= x(i)) ==> product k (\i. x(i) rpow (&1 / &n)) <= sum k (\i. x(i) / &n)`, REWRITE_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\i:A. &1 / &n`; `x:A->real`; `k:A->bool`] AGM_GEN) THEN ASM_SIMP_TAC[SUM_CONST; REAL_LE_DIV; REAL_OF_NUM_LT; LE_1; ARITH; REAL_DIV_LMUL; REAL_OF_NUM_EQ; REAL_POS] THEN REWRITE_TAC[real_div; REAL_MUL_LID; REAL_MUL_AC]);; let AGM_ROOT = prove (`!k:A->bool x n. k HAS_SIZE n /\ ~(n = 0) /\ (!i. i IN k ==> &0 <= x(i)) ==> root n (product k x) <= sum k x / &n`, REWRITE_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[ROOT_PRODUCT; real_div; GSYM SUM_RMUL] THEN ASM_SIMP_TAC[REAL_ROOT_RPOW; GSYM real_div] THEN REWRITE_TAC[REAL_ARITH `inv(x) = &1 / x`] THEN MATCH_MP_TAC AGM_RPOW THEN ASM_REWRITE_TAC[HAS_SIZE]);; let AGM_SQRT = prove (`!x y. &0 <= x /\ &0 <= y ==> sqrt(x * y) <= (x + y) / &2`, REPEAT STRIP_TAC THEN MP_TAC (ISPECL [`{0,1}`; `\n. if n = 0 then (x:real) else y`; `2`] AGM_ROOT) THEN SIMP_TAC[SUM_CLAUSES; PRODUCT_CLAUSES; FINITE_RULES] THEN REWRITE_TAC[ARITH_EQ; IN_INSERT; NOT_IN_EMPTY; HAS_SIZE_CONV`s HAS_SIZE 2 `] THEN ASM_SIMP_TAC[ROOT_2; REAL_MUL_RID; REAL_ADD_RID; REAL_ARITH `x / &2 + y / &2 = (x + y) / &2`] THEN ASM_MESON_TAC[ARITH_RULE `~(1 = 0)`]);; let AGM = prove (`!k:A->bool x n. k HAS_SIZE n /\ ~(n = 0) /\ (!i. i IN k ==> &0 <= x(i)) ==> product k x <= (sum k x / &n) pow n`, REWRITE_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN TRANS_TAC REAL_LE_TRANS `root n (product (k:A->bool) x) pow n` THEN CONJ_TAC THENL [ASM_SIMP_TAC[REAL_POW_ROOT; PRODUCT_POS_LE; REAL_LE_REFL]; MATCH_MP_TAC REAL_POW_LE2 THEN ASM_SIMP_TAC[AGM_ROOT; HAS_SIZE; ROOT_LE_0; PRODUCT_POS_LE]]);; let AGM_2 = prove (`!x y u v. &0 <= x /\ &0 <= y /\ &0 <= u /\ &0 <= v /\ u + v = &1 ==> x rpow u * y rpow v <= u * x + v * y`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\i. if i = 0 then u:real else v`; `\i. if i = 0 then x:real else y`; `0..SUC 0`] AGM_GEN) THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; PRODUCT_CLAUSES_NUMSEG; ARITH] THEN REWRITE_TAC[FINITE_NUMSEG] THEN ASM_MESON_TAC[]);; let YOUNG_INEQUALITY = prove (`!a b p q. &0 <= a /\ &0 <= b /\ &0 < p /\ &0 < q /\ inv(p) + inv(q) = &1 ==> a * b <= a rpow p / p + b rpow q / q`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`a rpow p`; `b rpow q`; `inv p:real`; `inv q:real`] AGM_2) THEN ASM_SIMP_TAC[RPOW_RPOW; RPOW_POS_LE; REAL_LE_INV_EQ; REAL_LT_IMP_LE; REAL_MUL_RINV; RPOW_POW; REAL_POW_1; REAL_LT_IMP_NZ] THEN REAL_ARITH_TAC);; let HOELDER = prove (`!k:A->bool a x y. FINITE k /\ sum k a = &1 /\ (!i. i IN k ==> &0 <= a i /\ &0 <= x i /\ &0 <= y i) ==> product k (\i. x i rpow a i) + product k (\i. y i rpow a i) <= product k (\i. (x i + y i) rpow a i)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `&0 <= product (k:A->bool) (\i. (x i + y i) rpow a i)` MP_TAC THENL [MATCH_MP_TAC PRODUCT_POS_LE THEN ASM_SIMP_TAC[REAL_LE_ADD; RPOW_POS_LE]; ALL_TAC] THEN REWRITE_TAC[REAL_ARITH `&0 <= x <=> x = &0 \/ &0 < x`] THEN ASM_SIMP_TAC[PRODUCT_EQ_0; RPOW_EQ_0; TAUT `p /\ q <=> ~(p ==> ~q)`; REAL_ARITH `&0 <= x /\ &0 <= y ==> (x + y = &0 <=> x = &0 /\ y = &0)`] THEN REWRITE_TAC[NOT_IMP] THEN STRIP_TAC THENL [MATCH_MP_TAC(REAL_ARITH `x = &0 /\ y = &0 /\ z = &0 ==> x + y <= z`) THEN ASM_SIMP_TAC[PRODUCT_EQ_0; RPOW_EQ_0] THEN ASM_MESON_TAC[REAL_ADD_LID]; GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID]] THEN ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; GSYM PRODUCT_DIV; GSYM RPOW_DIV; REAL_ARITH `(x + y) / z:real = x / z + y / z`] THEN ASM_SIMP_TAC[GSYM RPOW_PRODUCT] THEN TRANS_TAC REAL_LE_TRANS `sum k (\i:A. a i * (x i / (x i + y i))) + sum k (\i. a i * (y i / (x i + y i)))` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_ADD2 THEN CONJ_TAC THEN MATCH_MP_TAC AGM_GEN THEN ASM_SIMP_TAC[REAL_LE_ADD; REAL_LE_DIV]; ASM_SIMP_TAC[GSYM SUM_ADD]] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `s = &1 ==> p = s ==> p <= &1`)) THEN MATCH_MP_TAC SUM_EQ THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `i:A` THEN DISCH_TAC THEN ASM_CASES_TAC `(a:A->real) i = &0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_ADD_LID] THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP REAL_LT_IMP_NZ) THEN ASM_SIMP_TAC[PRODUCT_EQ_0; RPOW_EQ_0; NOT_EXISTS_THM] THEN DISCH_THEN(MP_TAC o SPEC `i:A`) THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_FIELD);; (* ------------------------------------------------------------------------- *) (* Some other inequalities where it's handy just to use calculus. *) (* ------------------------------------------------------------------------- *) let RPOW_MINUS1_QUOTIENT_LT = prove (`!a x y. &0 < a /\ ~(a = &1) /\ &0 < x /\ x < y ==> (a rpow x - &1) / x < (a rpow y - &1) / y`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x. (a rpow x - &1) / x`; `\x. log a * a rpow x / x - (a rpow x - &1) / x pow 2`; `x:real`; `y:real`] HAS_REAL_DERIVATIVE_STRICTLY_INCREASING_IMP) THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL [ASM_SIMP_TAC[rpow] THEN REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD; ALL_TAC] THEN X_GEN_TAC `z:real` THEN DISCH_TAC THEN SUBGOAL_THEN `&0 < z` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC REAL_LT_LCANCEL_IMP THEN EXISTS_TAC `(z:real) pow 2` THEN ASM_SIMP_TAC[REAL_POW_LT; REAL_MUL_RZERO; REAL_FIELD `&0 < x ==> x pow 2 * (a * b / x - c / x pow 2) = a * b * x - c`] THEN REWRITE_TAC[REAL_ARITH `l * a * z - (a - &1) = a * (l * z - &1) + &1`] THEN MP_TAC(ISPECL [`\x. a rpow x * (log a * x - &1) + &1`; `\x. log(a) pow 2 * x * a rpow x`; `&0`; `z:real`] HAS_REAL_DERIVATIVE_STRICTLY_INCREASING_IMP) THEN ASM_REWRITE_TAC[RPOW_0] THEN ANTS_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD; REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN REPEAT(MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC) THEN ASM_SIMP_TAC[RPOW_POS_LT; REAL_LT_POW_2] THEN ASM_SIMP_TAC[GSYM LOG_1; LOG_INJ; REAL_LT_01]]);; let RPOW_MINUS1_QUOTIENT_LE = prove (`!a x y. &0 < a /\ &0 < x /\ x <= y ==> (a rpow x - &1) / x <= (a rpow y - &1) / y`, REPEAT GEN_TAC THEN ASM_CASES_TAC `x:real = y` THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN ASM_CASES_TAC `a = &1` THEN ASM_REWRITE_TAC[real_div; RPOW_ONE; REAL_SUB_REFL; REAL_MUL_LZERO; REAL_LE_REFL] THEN ASM_SIMP_TAC[REAL_LE_LT; GSYM real_div; RPOW_MINUS1_QUOTIENT_LT]);; let REAL_EXP_LIMIT_RPOW_LT = prove (`!x r s. &0 < r /\ r < s /\ ~(x = &0) /\ x < r ==> (&1 - x / r) rpow r < (&1 - x / s) rpow s`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `&0 < s` STRIP_ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `&0 < &1 - x / s` ASSUME_TAC THENL [ASM_SIMP_TAC[REAL_SUB_LT; REAL_LT_LDIV_EQ] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN MP_TAC(ISPECL [`(&1 - x / s) rpow (inv r)`; `r:real`; `s:real`] RPOW_MINUS1_QUOTIENT_LT) THEN ASM_SIMP_TAC[RPOW_RPOW; REAL_MUL_LINV; REAL_LT_IMP_NZ; REAL_LT_IMP_LE; RPOW_POW; REAL_POW_1; RPOW_POS_LT] THEN ANTS_TAC THENL [ASM_SIMP_TAC[rpow; GSYM REAL_EXP_0; REAL_EXP_INJ] THEN ASM_SIMP_TAC[REAL_ENTIRE; REAL_INV_EQ_0; REAL_LT_IMP_NZ] THEN REWRITE_TAC[REAL_EXP_0] THEN ASM_SIMP_TAC[GSYM LOG_1; LOG_INJ; REAL_LT_01] THEN REWRITE_TAC[REAL_ARITH `a - x = a <=> x = &0`; REAL_DIV_EQ_0] THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[REAL_ARITH `(&1 - x / s - &1) / r = --(x / r) / s`] THEN ASM_SIMP_TAC[REAL_LT_DIV2_EQ; REAL_ARITH `--x < a - &1 <=> &1 - x < a`] THEN DISCH_THEN(MP_TAC o SPEC `r:real` o MATCH_MP(MESON[RPOW_LT2] `x < y ==> !z. &0 <= x /\ &0 < z ==> x rpow z < y rpow z`)) THEN ASM_SIMP_TAC[RPOW_RPOW; REAL_LT_IMP_LE; REAL_FIELD `&0 < r ==> (inv r * s) * r = s`] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_SUB_LE; REAL_LE_LDIV_EQ] THEN ASM_REAL_ARITH_TAC]);; let REAL_EXP_LIMIT_RPOW_LE = prove (`!x r s. &0 <= r /\ r <= s /\ x <= r ==> (&1 - x / r) rpow r <= (&1 - x / s) rpow s`, REPEAT GEN_TAC THEN ASM_CASES_TAC `x = &0` THENL [ASM_REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_SUB_RZERO; RPOW_ONE]; ALL_TAC] THEN ASM_CASES_TAC `r:real = s` THEN ASM_REWRITE_TAC[REAL_LE_REFL] THEN ASM_CASES_TAC `r:real = x` THENL [ASM_SIMP_TAC[REAL_DIV_REFL; REAL_SUB_REFL; RPOW_ZERO] THEN STRIP_TAC THEN MATCH_MP_TAC RPOW_POS_LE THEN REWRITE_TAC[REAL_SUB_LE] THEN SUBGOAL_THEN `&0 < s` (fun th -> SIMP_TAC[th; REAL_LE_LDIV_EQ]) THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_CASES_TAC `r = &0` THEN ASM_SIMP_TAC[REAL_LE_LT; REAL_EXP_LIMIT_RPOW_LT] THEN STRIP_TAC THEN REWRITE_TAC[GSYM REAL_LE_LT; RPOW_POW; real_pow] THEN ASM_SIMP_TAC[rpow; REAL_SUB_LT; REAL_LT_LDIV_EQ] THEN COND_CASES_TAC THENL [ALL_TAC; MATCH_MP_TAC(TAUT `F ==> p`) THEN ASM_REAL_ARITH_TAC] THEN GEN_REWRITE_TAC LAND_CONV [GSYM REAL_EXP_0] THEN REWRITE_TAC[REAL_EXP_MONO_LE] THEN MATCH_MP_TAC REAL_LE_MUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN MATCH_MP_TAC LOG_POS THEN REWRITE_TAC[REAL_ARITH `&1 <= &1 - x / y <=> &0 <= --x / y`] THEN MATCH_MP_TAC REAL_LE_DIV THEN ASM_REAL_ARITH_TAC);; let REAL_LE_X_SINH = prove (`!x. &0 <= x ==> x <= (exp x - inv(exp x)) / &2`, SUBGOAL_THEN `!a b. a <= b ==> exp a - inv(exp a) - &2 * a <= exp b - inv(exp b) - &2 * b` (MP_TAC o SPEC `&0`) THENL [MP_TAC(ISPECL [`\x. exp x - exp(--x) - &2 * x`; `\x. exp x + exp(--x) - &2`; `(:real)`] HAS_REAL_DERIVATIVE_INCREASING) THEN REWRITE_TAC[IN_ELIM_THM; IS_REALINTERVAL_UNIV; IN_UNIV] THEN ANTS_TAC THENL [CONJ_TAC THENL [SET_TAC[REAL_ARITH `~(&1 = &0)`]; ALL_TAC] THEN GEN_TAC THEN REAL_DIFF_TAC THEN REAL_ARITH_TAC; SIMP_TAC[REAL_EXP_NEG] THEN DISCH_THEN(fun th -> SIMP_TAC[GSYM th]) THEN X_GEN_TAC `x:real` THEN SIMP_TAC[REAL_EXP_NZ; REAL_FIELD `~(e = &0) ==> e + inv e - &2 = (e - &1) pow 2 / e`] THEN SIMP_TAC[REAL_EXP_POS_LE; REAL_LE_DIV; REAL_LE_POW_2]]; MATCH_MP_TAC MONO_FORALL THEN REWRITE_TAC[REAL_EXP_0] THEN REAL_ARITH_TAC]);; let REAL_LE_ABS_SINH = prove (`!x. abs x <= abs((exp x - inv(exp x)) / &2)`, GEN_TAC THEN ASM_CASES_TAC `&0 <= x` THENL [MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= y ==> abs x <= abs y`) THEN ASM_SIMP_TAC[REAL_LE_X_SINH]; MATCH_MP_TAC(REAL_ARITH `~(&0 <= x) /\ --x <= --y ==> abs x <= abs y`) THEN ASM_REWRITE_TAC[REAL_ARITH `--((a - b) / &2) = (b - a) / &2`] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(exp(--x) - inv(exp(--x))) / &2` THEN ASM_SIMP_TAC[REAL_LE_X_SINH; REAL_ARITH `~(&0 <= x) ==> &0 <= --x`] THEN REWRITE_TAC[REAL_EXP_NEG; REAL_INV_INV] THEN REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Log-convex functions. *) (* ------------------------------------------------------------------------- *) parse_as_infix("log_convex_on",(12,"right"));; let log_convex_on = new_definition `f log_convex_on (s:real^N->bool) <=> (!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1 ==> &0 <= f(u % x + v % y) /\ f(u % x + v % y) <= f(x) rpow u * f(y) rpow v)`;; let LOG_CONVEX_ON_EMPTY = prove (`!f:real^N->real. f log_convex_on {}`, REWRITE_TAC[log_convex_on; NOT_IN_EMPTY]);; let LOG_CONVEX_ON_SUBSET = prove (`!f s t. f log_convex_on t /\ s SUBSET t ==> f log_convex_on s`, REWRITE_TAC[log_convex_on] THEN SET_TAC[]);; let LOG_CONVEX_ON_EQ = prove (`!f g s:real^N->bool. convex s /\ (!x. x IN s ==> f x = g x) /\ f log_convex_on s ==> g log_convex_on s`, REWRITE_TAC[IMP_CONJ] THEN SIMP_TAC[convex; log_convex_on]);; let LOG_CONVEX_IMP_POS = prove (`!f s x:real^N. f log_convex_on s /\ x IN s ==> &0 <= f x`, REWRITE_TAC[log_convex_on] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `x:real^N`; `&0`; `&1`]) THEN REWRITE_TAC[VECTOR_MUL_LZERO; VECTOR_MUL_LID; VECTOR_ADD_LID] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_MESON_TAC[]);; let LOG_CONVEX_ON_CONVEX = prove (`!f s:real^N->bool. convex s ==> (f log_convex_on s <=> (!x. x IN s ==> &0 <= f x) /\ !x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1 ==> f(u % x + v % y) <= f(x) rpow u * f(y) rpow v)`, REWRITE_TAC[convex] THEN REPEAT(STRIP_TAC ORELSE EQ_TAC) THENL [ASM_MESON_TAC[LOG_CONVEX_IMP_POS]; ASM_MESON_TAC[log_convex_on]; ASM_SIMP_TAC[log_convex_on] THEN ASM_MESON_TAC[]]);; let LOG_CONVEX_ON = prove (`!f s:real^N->bool. convex s /\ (!x. x IN s ==> &0 < f x) ==> (f log_convex_on s <=> (log o f) convex_on s)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[LOG_CONVEX_ON_CONVEX; REAL_LT_IMP_LE] THEN RULE_ASSUM_TAC(REWRITE_RULE[convex]) THEN REWRITE_TAC[convex_on; o_DEF] THEN GEN_REWRITE_TAC (RAND_CONV o funpow 4 BINDER_CONV o RAND_CONV) [GSYM REAL_EXP_MONO_LE] THEN ASM_SIMP_TAC[EXP_LOG; rpow; REAL_EXP_ADD]);; let LOG_CONVEX_IMP_CONVEX = prove (`!f s:real^N->bool. f log_convex_on s ==> f convex_on s`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] LOG_CONVEX_IMP_POS)) THEN RULE_ASSUM_TAC(REWRITE_RULE[log_convex_on]) THEN REWRITE_TAC[convex_on] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN STRIP_TAC THEN FIRST_X_ASSUM (MP_TAC o SPECL [`x:real^N`; `y:real^N`; `u:real`; `v:real`]) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN MATCH_MP_TAC AGM_2 THEN ASM_SIMP_TAC[]);; let LOG_CONVEX_ADD = prove (`!f g s:real^N->bool. f log_convex_on s /\ g log_convex_on s ==> (\x. f x + g x) log_convex_on s`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(CONJUNCTS_THEN(ASSUME_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] LOG_CONVEX_IMP_POS))) THEN REWRITE_TAC[log_convex_on] THEN FIRST_X_ASSUM(CONJUNCTS_THEN (ASSUME_TAC o REWRITE_RULE[log_convex_on])) THEN REWRITE_TAC[log_convex_on] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`; `u:real`; `v:real`] THEN STRIP_TAC THEN ASM_SIMP_TAC[REAL_LE_ADD] THEN MP_TAC(ISPEC `0..SUC 0` HOELDER) THEN SIMP_TAC[PRODUCT_CLAUSES_NUMSEG; FINITE_NUMSEG; SUM_CLAUSES_NUMSEG; ARITH] THEN DISCH_THEN(MP_TAC o SPECL [`\i. if i = 0 then u:real else v`; `\i. if i = 0 then (f:real^N->real) x else f y`; `\i. if i = 0 then (g:real^N->real) x else g y`]) THEN REWRITE_TAC[ARITH] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LE_TRANS) THEN MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_MESON_TAC[]);; let LOG_CONVEX_MUL = prove (`!f g s:real^N->bool. f log_convex_on s /\ g log_convex_on s ==> (\x. f x * g x) log_convex_on s`, REWRITE_TAC[log_convex_on] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[REAL_LE_MUL; RPOW_MUL] THEN ONCE_REWRITE_TAC[REAL_ARITH `(a * b) * (c * d):real = (a * c) * (b * d)`] THEN ASM_SIMP_TAC[REAL_LE_MUL2]);; let MIDPOINT_LOG_CONVEX = prove (`!f s:real^N->bool. (lift o f) continuous_on s /\ convex s /\ (!x. x IN s ==> &0 < f x) /\ (!x y. x IN s /\ y IN s ==> f(midpoint(x,y)) pow 2 <= f(x) * f(y)) ==> f log_convex_on s`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[LOG_CONVEX_ON] THEN MATCH_MP_TAC CONTINUOUS_MIDPOINT_CONVEX THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [SUBGOAL_THEN `lift o log o (f:real^N->real) = (lift o log o drop) o (lift o f)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF; LIFT_DROP]; ALL_TAC] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; IMAGE_o] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_LOG THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE]; MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN REWRITE_TAC[o_DEF; REAL_ARITH `x <= y / &2 <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_EXP_MONO_LE] THEN ASM_SIMP_TAC[REAL_EXP_N; EXP_LOG; REAL_EXP_ADD; MIDPOINT_IN_CONVEX]]);; let LOG_CONVEX_CONST = prove (`!s a. &0 <= a ==> (\x. a) log_convex_on s`, SIMP_TAC[log_convex_on; GSYM RPOW_ADD] THEN IMP_REWRITE_TAC[GSYM RPOW_ADD_ALT] THEN REWRITE_TAC[RPOW_POW; REAL_POW_1; REAL_LE_REFL] THEN REAL_ARITH_TAC);; let LOG_CONVEX_ON_SING = prove (`!f a:real^N. f log_convex_on {a} <=> &0 <= f a`, REPEAT GEN_TAC THEN EQ_TAC THENL [MESON_TAC[LOG_CONVEX_IMP_POS; IN_SING]; DISCH_TAC] THEN MATCH_MP_TAC LOG_CONVEX_ON_EQ THEN EXISTS_TAC `\x:real^N. (f:real^N->real) a` THEN ASM_SIMP_TAC[IN_SING; CONVEX_SING; LOG_CONVEX_CONST]);; let LOG_CONVEX_PRODUCT = prove (`!f s k. FINITE k /\ (!i. i IN k ==> (\x. f x i) log_convex_on s) ==> (\x. product k (f x)) log_convex_on s`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[PRODUCT_CLAUSES; LOG_CONVEX_CONST; REAL_POS] THEN SIMP_TAC[FORALL_IN_INSERT; LOG_CONVEX_MUL]);; (* ------------------------------------------------------------------------- *) (* Real log-convex functions. *) (* ------------------------------------------------------------------------- *) parse_as_infix("real_log_convex_on",(12,"right"));; let real_log_convex_on = new_definition `(f:real->real) real_log_convex_on s <=> (!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1 ==> &0 <= f(u * x + v * y) /\ f(u * x + v * y) <= f(x) rpow u * f(y) rpow v)`;; let REAL_LOG_CONVEX_ON_EMPTY = prove (`!f. f real_log_convex_on {}`, REWRITE_TAC[real_log_convex_on; NOT_IN_EMPTY]);; let REAL_LOG_CONVEX_ON_SUBSET = prove (`!f s t. f real_log_convex_on t /\ s SUBSET t ==> f real_log_convex_on s`, REWRITE_TAC[real_log_convex_on] THEN SET_TAC[]);; let REAL_LOG_CONVEX_LOG_CONVEX = prove (`!f s. f real_log_convex_on s <=> (f o drop) log_convex_on (IMAGE lift s)`, REWRITE_TAC[real_log_convex_on; log_convex_on] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[o_DEF; DROP_ADD; DROP_CMUL; LIFT_DROP]);; let REAL_LOG_CONVEX_ON_EQ = prove (`!f g s. is_realinterval s /\ (!x. x IN s ==> f x = g x) /\ f real_log_convex_on s ==> g real_log_convex_on s`, REWRITE_TAC[IS_REALINTERVAL_CONVEX; REAL_LOG_CONVEX_LOG_CONVEX] THEN REPEAT GEN_TAC THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ] (REWRITE_RULE[CONJ_ASSOC] LOG_CONVEX_ON_EQ)) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP]);; let REAL_LOG_CONVEX_ON_SING = prove (`!f a. f real_log_convex_on {a} <=> &0 <= f a`, REWRITE_TAC[REAL_LOG_CONVEX_LOG_CONVEX; LOG_CONVEX_ON_SING] THEN REWRITE_TAC[IMAGE_CLAUSES; LOG_CONVEX_ON_SING; o_THM; LIFT_DROP]);; let REAL_LOG_CONVEX_IMP_POS = prove (`!f s x. f real_log_convex_on s /\ x IN s ==> &0 <= f x`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; REAL_LOG_CONVEX_LOG_CONVEX] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] LOG_CONVEX_IMP_POS)) THEN REWRITE_TAC[o_DEF; FORALL_IN_IMAGE; LIFT_DROP]);; let REAL_LOG_CONVEX_ON_CONVEX = prove (`!f s. is_realinterval s ==> (f real_log_convex_on s <=> (!x. x IN s ==> &0 <= f x) /\ !x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1 ==> f(u * x + v * y) <= f(x) rpow u * f(y) rpow v)`, REWRITE_TAC[REAL_CONVEX] THEN REPEAT(STRIP_TAC ORELSE EQ_TAC) THENL [ASM_MESON_TAC[REAL_LOG_CONVEX_IMP_POS]; ASM_MESON_TAC[real_log_convex_on]; ASM_SIMP_TAC[real_log_convex_on] THEN ASM_MESON_TAC[]]);; let REAL_LOG_CONVEX_ON = prove (`!f s:real->bool. is_realinterval s /\ (!x. x IN s ==> &0 < f x) ==> (f real_log_convex_on s <=> (log o f) real_convex_on s)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[REAL_LOG_CONVEX_ON_CONVEX; REAL_LT_IMP_LE] THEN RULE_ASSUM_TAC(REWRITE_RULE[REAL_CONVEX]) THEN REWRITE_TAC[real_convex_on; o_DEF] THEN GEN_REWRITE_TAC (RAND_CONV o funpow 4 BINDER_CONV o RAND_CONV) [GSYM REAL_EXP_MONO_LE] THEN ASM_SIMP_TAC[EXP_LOG; rpow; REAL_EXP_ADD]);; let REAL_LOG_CONVEX_IMP_CONVEX = prove (`!f s:real->bool. f real_log_convex_on s ==> f real_convex_on s`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_LOG_CONVEX_IMP_POS)) THEN RULE_ASSUM_TAC(REWRITE_RULE[real_log_convex_on]) THEN REWRITE_TAC[real_convex_on] THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`; `u:real`; `v:real`] THEN STRIP_TAC THEN FIRST_X_ASSUM (MP_TAC o SPECL [`x:real`; `y:real`; `u:real`; `v:real`]) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN MATCH_MP_TAC AGM_2 THEN ASM_SIMP_TAC[]);; let REAL_LOG_CONVEX_ADD = prove (`!f g s:real->bool. f real_log_convex_on s /\ g real_log_convex_on s ==> (\x. f x + g x) real_log_convex_on s`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(CONJUNCTS_THEN(ASSUME_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_LOG_CONVEX_IMP_POS))) THEN REWRITE_TAC[real_log_convex_on] THEN FIRST_X_ASSUM(CONJUNCTS_THEN (ASSUME_TAC o REWRITE_RULE[real_log_convex_on])) THEN REWRITE_TAC[real_log_convex_on] THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`; `u:real`; `v:real`] THEN STRIP_TAC THEN ASM_SIMP_TAC[REAL_LE_ADD] THEN MP_TAC(ISPEC `0..SUC 0` HOELDER) THEN SIMP_TAC[PRODUCT_CLAUSES_NUMSEG; FINITE_NUMSEG; SUM_CLAUSES_NUMSEG; ARITH] THEN DISCH_THEN(MP_TAC o SPECL [`\i. if i = 0 then u:real else v`; `\i. if i = 0 then (f:real->real) x else f y`; `\i. if i = 0 then (g:real->real) x else g y`]) THEN REWRITE_TAC[ARITH] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LE_TRANS) THEN MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_MESON_TAC[]);; let REAL_LOG_CONVEX_MUL = prove (`!f g s:real->bool. f real_log_convex_on s /\ g real_log_convex_on s ==> (\x. f x * g x) real_log_convex_on s`, REWRITE_TAC[real_log_convex_on] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[REAL_LE_MUL; RPOW_MUL] THEN ONCE_REWRITE_TAC[REAL_ARITH `(a * b) * (c * d):real = (a * c) * (b * d)`] THEN ASM_SIMP_TAC[REAL_LE_MUL2]);; let MIDPOINT_REAL_LOG_CONVEX = prove (`!f s:real->bool. f real_continuous_on s /\ is_realinterval s /\ (!x. x IN s ==> &0 < f x) /\ (!x y. x IN s /\ y IN s ==> f((x + y) / &2) pow 2 <= f(x) * f(y)) ==> f real_log_convex_on s`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[REAL_LOG_CONVEX_ON] THEN MATCH_MP_TAC REAL_CONTINUOUS_MIDPOINT_CONVEX THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_LOG THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE]; MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN REWRITE_TAC[o_DEF; REAL_ARITH `x <= y / &2 <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_EXP_MONO_LE] THEN ASM_SIMP_TAC[REAL_EXP_N; EXP_LOG; REAL_EXP_ADD; REAL_MIDPOINT_IN_CONVEX]]);; let REAL_LOG_CONVEX_CONST = prove (`!s a. &0 <= a ==> (\x. a) real_log_convex_on s`, SIMP_TAC[real_log_convex_on; GSYM RPOW_ADD] THEN IMP_REWRITE_TAC[GSYM RPOW_ADD_ALT] THEN REWRITE_TAC[RPOW_POW; REAL_POW_1; REAL_LE_REFL] THEN REAL_ARITH_TAC);; let REAL_LOG_CONVEX_PRODUCT = prove (`!f s k. FINITE k /\ (!i. i IN k ==> (\x. f x i) real_log_convex_on s) ==> (\x. product k (f x)) real_log_convex_on s`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[PRODUCT_CLAUSES; REAL_LOG_CONVEX_CONST; REAL_POS] THEN SIMP_TAC[FORALL_IN_INSERT; REAL_LOG_CONVEX_MUL]);; let REAL_LOG_CONVEX_RPOW_RIGHT = prove (`!s a. &0 < a ==> (\x. a rpow x) real_log_convex_on s`, SIMP_TAC[real_log_convex_on; RPOW_POS_LE; REAL_LT_IMP_LE] THEN SIMP_TAC[DROP_ADD; DROP_CMUL; RPOW_ADD; RPOW_RPOW; REAL_LT_IMP_LE] THEN REWRITE_TAC[REAL_MUL_AC; REAL_LE_REFL]);; let REAL_LOG_CONVEX_LIM = prove (`!net:A net f g s. ~(trivial_limit net) /\ (!x y u v. x IN s /\ y IN s /\ &0 <= u /\ &0 <= v /\ u + v = &1 ==> ((\i. f i (u * x + v * y)) ---> g(u * x + v * y)) net) /\ eventually (\i. (f i) real_log_convex_on s) net ==> g real_log_convex_on s`, REWRITE_TAC[real_log_convex_on] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN STRIP_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_SUB_LE] THEN CONJ_TAC THEN MATCH_MP_TAC(ISPEC `net:A net` REALLIM_LBOUND) THENL [EXISTS_TAC `\i. (f:A->real->real) i (u * x + v * y)`; EXISTS_TAC `\i. (f:A->real->real) i x rpow u * f i y rpow v - f i (u * x + v * y)`] THEN ASM_SIMP_TAC[] THEN TRY CONJ_TAC THEN TRY(FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] EVENTUALLY_MONO))) THEN ASM_SIMP_TAC[REAL_SUB_LE] THEN MATCH_MP_TAC REALLIM_SUB THEN ASM_SIMP_TAC[] THEN MATCH_MP_TAC REALLIM_MUL THEN CONJ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[] (ISPEC `\x. x rpow y` REALLIM_REAL_CONTINUOUS_FUNCTION)) THEN ASM_SIMP_TAC[REAL_CONTINUOUS_AT_RPOW] THENL [FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `x:real`; `&1`; `&0`]); FIRST_X_ASSUM(MP_TAC o SPECL [`y:real`; `y:real`; `&1`; `&0`])] THEN ASM_REWRITE_TAC[REAL_POS; REAL_ADD_RID; REAL_MUL_LZERO] THEN REWRITE_TAC[REAL_MUL_LID]);; (* ------------------------------------------------------------------------- *) (* Integrals of real->real functions; measures of real sets. *) (* ------------------------------------------------------------------------- *) parse_as_infix("has_real_integral",(12,"right"));; parse_as_infix("real_integrable_on",(12,"right"));; parse_as_infix("absolutely_real_integrable_on",(12,"right"));; parse_as_infix("has_real_measure",(12,"right"));; let has_real_integral = new_definition `(f has_real_integral y) s <=> ((lift o f o drop) has_integral (lift y)) (IMAGE lift s)`;; let real_integrable_on = new_definition `f real_integrable_on i <=> ?y. (f has_real_integral y) i`;; let real_integral = new_definition `real_integral i f = @y. (f has_real_integral y) i`;; let real_negligible = new_definition `real_negligible s <=> negligible (IMAGE lift s)`;; let absolutely_real_integrable_on = new_definition `f absolutely_real_integrable_on s <=> f real_integrable_on s /\ (\x. abs(f x)) real_integrable_on s`;; let has_real_measure = new_definition `s has_real_measure m <=> ((\x. &1) has_real_integral m) s`;; let real_measurable = new_definition `real_measurable s <=> ?m. s has_real_measure m`;; let real_measure = new_definition `real_measure s = @m. s has_real_measure m`;; let HAS_REAL_INTEGRAL = prove (`(f has_real_integral y) (real_interval[a,b]) <=> ((lift o f o drop) has_integral (lift y)) (interval[lift a,lift b])`, REWRITE_TAC[has_real_integral; IMAGE_LIFT_REAL_INTERVAL]);; let REAL_INTEGRABLE_INTEGRAL = prove (`!f i. f real_integrable_on i ==> (f has_real_integral (real_integral i f)) i`, REPEAT GEN_TAC THEN REWRITE_TAC[real_integrable_on; real_integral] THEN CONV_TAC(RAND_CONV SELECT_CONV) THEN REWRITE_TAC[]);; let HAS_REAL_INTEGRAL_INTEGRABLE = prove (`!f i s. (f has_real_integral i) s ==> f real_integrable_on s`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[]);; let HAS_REAL_INTEGRAL_INTEGRAL = prove (`!f s. f real_integrable_on s <=> (f has_real_integral (real_integral s f)) s`, MESON_TAC[REAL_INTEGRABLE_INTEGRAL; HAS_REAL_INTEGRAL_INTEGRABLE]);; let HAS_REAL_INTEGRAL_UNIQUE = prove (`!f i k1 k2. (f has_real_integral k1) i /\ (f has_real_integral k2) i ==> k1 = k2`, REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_UNIQUE) THEN REWRITE_TAC[LIFT_EQ]);; let REAL_INTEGRAL_UNIQUE = prove (`!f y k. (f has_real_integral y) k ==> real_integral k f = y`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_integral] THEN MATCH_MP_TAC SELECT_UNIQUE THEN ASM_MESON_TAC[HAS_REAL_INTEGRAL_UNIQUE]);; let HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL = prove (`!f i s. (f has_real_integral i) s <=> f real_integrable_on s /\ real_integral s f = i`, MESON_TAC[REAL_INTEGRABLE_INTEGRAL; REAL_INTEGRAL_UNIQUE; real_integrable_on]);; let REAL_INTEGRAL_EQ_HAS_INTEGRAL = prove (`!s f y. f real_integrable_on s ==> (real_integral s f = y <=> (f has_real_integral y) s)`, MESON_TAC[REAL_INTEGRABLE_INTEGRAL; REAL_INTEGRAL_UNIQUE]);; let REAL_INTEGRABLE_ON = prove (`f real_integrable_on s <=> (lift o f o drop) integrable_on (IMAGE lift s)`, REWRITE_TAC[real_integrable_on; has_real_integral; EXISTS_DROP; integrable_on; LIFT_DROP]);; let ABSOLUTELY_REAL_INTEGRABLE_ON = prove (`f absolutely_real_integrable_on s <=> (lift o f o drop) absolutely_integrable_on (IMAGE lift s)`, REWRITE_TAC[absolutely_real_integrable_on; REAL_INTEGRABLE_ON; absolutely_integrable_on] THEN REWRITE_TAC[o_DEF; LIFT_DROP; NORM_LIFT]);; let REAL_INTEGRAL = prove (`f real_integrable_on s ==> real_integral s f = drop(integral (IMAGE lift s) (lift o f o drop))`, REWRITE_TAC[REAL_INTEGRABLE_ON] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN REWRITE_TAC[has_real_integral; LIFT_DROP] THEN ASM_REWRITE_TAC[GSYM HAS_INTEGRAL_INTEGRAL]);; let HAS_REAL_INTEGRAL_ALT = prove (`!f s i. (f has_real_integral i) s <=> (!a b. (\x. if x IN s then f x else &0) real_integrable_on real_interval [a,b]) /\ (!e. &0 < e ==> (?B. &0 < B /\ (!a b. real_interval(--B,B) SUBSET real_interval[a,b] ==> abs (real_integral (real_interval[a,b]) (\x. if x IN s then f x else &0) - i) < e)))`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [has_real_integral] THEN GEN_REWRITE_TAC LAND_CONV [HAS_INTEGRAL_ALT] THEN REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF; IMAGE_LIFT_REAL_INTERVAL] THEN REWRITE_TAC[GSYM FORALL_LIFT; COND_RAND; LIFT_NUM; IN_IMAGE_LIFT_DROP] THEN MATCH_MP_TAC(TAUT `(p ==> (q <=> q')) ==> (p /\ q <=> p /\ q')`) THEN DISCH_TAC THEN REWRITE_TAC[BALL_1] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `B:real` THEN ASM_CASES_TAC `&0 < B` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[FORALL_LIFT; VECTOR_ADD_LID; VECTOR_SUB_LZERO] THEN REWRITE_TAC[GSYM LIFT_NEG; GSYM IMAGE_LIFT_REAL_INTERVAL] THEN REWRITE_TAC[SUBSET_LIFT_IMAGE; NORM_REAL; GSYM drop] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `a:real` THEN REWRITE_TAC[] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `b:real` THEN ASM_CASES_TAC `real_interval(--B,B) SUBSET real_interval[a,b]` THEN ASM_REWRITE_TAC[DROP_SUB; LIFT_DROP] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN IMP_REWRITE_TAC[REAL_INTEGRAL] THEN REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF; LIFT_DROP; COND_RAND] THEN ASM_REWRITE_TAC[LIFT_NUM; IMAGE_LIFT_REAL_INTERVAL]);; let HAS_REAL_INTEGRAL_IS_0 = prove (`!f s. (!x. x IN s ==> f(x) = &0) ==> (f has_real_integral &0) s`, REPEAT STRIP_TAC THEN REWRITE_TAC[has_real_integral; LIFT_NUM] THEN MATCH_MP_TAC HAS_INTEGRAL_IS_0 THEN ASM_REWRITE_TAC[LIFT_EQ; FORALL_IN_IMAGE; o_THM; LIFT_DROP; GSYM LIFT_NUM]);; let HAS_REAL_INTEGRAL_0 = prove (`!s. ((\x. &0) has_real_integral &0) s`, SIMP_TAC[HAS_REAL_INTEGRAL_IS_0]);; let HAS_REAL_INTEGRAL_0_EQ = prove (`!i s. ((\x. &0) has_real_integral i) s <=> i = &0`, MESON_TAC[HAS_REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_0]);; let HAS_REAL_INTEGRAL_LINEAR = prove (`!f:real->real y s h:real->real. (f has_real_integral y) s /\ linear(lift o h o drop) ==> ((h o f) has_real_integral h(y)) s`, REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_LINEAR) THEN REWRITE_TAC[o_DEF; LIFT_DROP]);; let HAS_REAL_INTEGRAL_LMUL = prove (`!(f:real->real) k s c. (f has_real_integral k) s ==> ((\x. c * f(x)) has_real_integral (c * k)) s`, REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN DISCH_THEN(MP_TAC o SPEC `c:real` o MATCH_MP HAS_INTEGRAL_CMUL) THEN REWRITE_TAC[GSYM LIFT_CMUL; o_DEF]);; let HAS_REAL_INTEGRAL_RMUL = prove (`!(f:real->real) k s c. (f has_real_integral k) s ==> ((\x. f(x) * c) has_real_integral (k * c)) s`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[HAS_REAL_INTEGRAL_LMUL]);; let HAS_REAL_INTEGRAL_NEG = prove (`!f k s. (f has_real_integral k) s ==> ((\x. --(f x)) has_real_integral (--k)) s`, REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_NEG) THEN REWRITE_TAC[o_DEF; LIFT_NEG]);; let HAS_REAL_INTEGRAL_ADD = prove (`!f:real->real g k l s. (f has_real_integral k) s /\ (g has_real_integral l) s ==> ((\x. f(x) + g(x)) has_real_integral (k + l)) s`, REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_ADD) THEN REWRITE_TAC[o_DEF; LIFT_ADD]);; let HAS_REAL_INTEGRAL_SUB = prove (`!f:real->real g k l s. (f has_real_integral k) s /\ (g has_real_integral l) s ==> ((\x. f(x) - g(x)) has_real_integral (k - l)) s`, REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_SUB) THEN REWRITE_TAC[o_DEF; LIFT_SUB]);; let REAL_INTEGRAL_0 = prove (`!s. real_integral s (\x. &0) = &0`, MESON_TAC[REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_0]);; let REAL_INTEGRAL_ADD = prove (`!f:real->real g s. f real_integrable_on s /\ g real_integrable_on s ==> real_integral s (\x. f x + g x) = real_integral s f + real_integral s g`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_ADD THEN ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);; let REAL_INTEGRAL_LMUL = prove (`!f:real->real c s. f real_integrable_on s ==> real_integral s (\x. c * f(x)) = c * real_integral s f`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_LMUL THEN ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);; let REAL_INTEGRAL_RMUL = prove (`!f:real->real c s. f real_integrable_on s ==> real_integral s (\x. f(x) * c) = real_integral s f * c`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_RMUL THEN ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);; let REAL_INTEGRAL_NEG = prove (`!f:real->real s. f real_integrable_on s ==> real_integral s (\x. --f(x)) = --real_integral s f`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_NEG THEN ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);; let REAL_INTEGRAL_SUB = prove (`!f:real->real g s. f real_integrable_on s /\ g real_integrable_on s ==> real_integral s (\x. f x - g x) = real_integral s f - real_integral s g`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SUB THEN ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);; let REAL_INTEGRABLE_0 = prove (`!s. (\x. &0) real_integrable_on s`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_0]);; let REAL_INTEGRABLE_ADD = prove (`!f:real->real g s. f real_integrable_on s /\ g real_integrable_on s ==> (\x. f x + g x) real_integrable_on s`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_ADD]);; let REAL_INTEGRABLE_LMUL = prove (`!f:real->real c s. f real_integrable_on s ==> (\x. c * f(x)) real_integrable_on s`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_LMUL]);; let REAL_INTEGRABLE_RMUL = prove (`!f:real->real c s. f real_integrable_on s ==> (\x. f(x) * c) real_integrable_on s`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_RMUL]);; let REAL_INTEGRABLE_LMUL_EQ = prove (`!f s c. (\x. c * f x) real_integrable_on s <=> c = &0 \/ f real_integrable_on s`, REPEAT(STRIP_TAC ORELSE EQ_TAC) THEN ASM_SIMP_TAC[REAL_INTEGRABLE_LMUL; REAL_MUL_LZERO] THEN REWRITE_TAC[REAL_INTEGRABLE_0] THEN ASM_CASES_TAC `c = &0` THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `inv c:real` o MATCH_MP REAL_INTEGRABLE_LMUL) THEN ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LID; REAL_MUL_LINV; ETA_AX]);; let REAL_INTEGRABLE_RMUL_EQ = prove (`!f s c. (\x. f x * c) real_integrable_on s <=> c = &0 \/ f real_integrable_on s`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_INTEGRABLE_LMUL_EQ]);; let REAL_INTEGRABLE_NEG = prove (`!f:real->real s. f real_integrable_on s ==> (\x. --f(x)) real_integrable_on s`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_NEG]);; let REAL_INTEGRABLE_SUB = prove (`!f:real->real g s. f real_integrable_on s /\ g real_integrable_on s ==> (\x. f x - g x) real_integrable_on s`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_SUB]);; let REAL_INTEGRABLE_LINEAR = prove (`!f h s. f real_integrable_on s /\ linear(lift o h o drop) ==> (h o f) real_integrable_on s`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_LINEAR]);; let REAL_INTEGRAL_LINEAR = prove (`!f:real->real s h:real->real. f real_integrable_on s /\ linear(lift o h o drop) ==> real_integral s (h o f) = h(real_integral s f)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_UNIQUE THEN MAP_EVERY EXISTS_TAC [`(h:real->real) o (f:real->real)`; `s:real->bool`] THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC HAS_REAL_INTEGRAL_LINEAR] THEN ASM_SIMP_TAC[GSYM HAS_REAL_INTEGRAL_INTEGRAL; REAL_INTEGRABLE_LINEAR]);; let HAS_REAL_INTEGRAL_SUM = prove (`!f:A->real->real s t. FINITE t /\ (!a. a IN t ==> ((f a) has_real_integral (i a)) s) ==> ((\x. sum t (\a. f a x)) has_real_integral (sum t i)) s`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; HAS_REAL_INTEGRAL_0; IN_INSERT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_ADD THEN ASM_REWRITE_TAC[ETA_AX] THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[]);; let REAL_INTEGRAL_SUM = prove (`!f:A->real->real s t. FINITE t /\ (!a. a IN t ==> (f a) real_integrable_on s) ==> real_integral s (\x. sum t (\a. f a x)) = sum t (\a. real_integral s (f a))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SUM THEN ASM_SIMP_TAC[REAL_INTEGRABLE_INTEGRAL]);; let REAL_INTEGRABLE_SUM = prove (`!f:A->real->real s t. FINITE t /\ (!a. a IN t ==> (f a) real_integrable_on s) ==> (\x. sum t (\a. f a x)) real_integrable_on s`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_SUM]);; let HAS_REAL_INTEGRAL_EQ = prove (`!f:real->real g k s. (!x. x IN s ==> (f(x) = g(x))) /\ (f has_real_integral k) s ==> (g has_real_integral k) s`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_IS_0) MP_TAC) THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN (MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_SUB) THEN SIMP_TAC[REAL_ARITH `x - (x - y:real) = y`; ETA_AX; REAL_SUB_RZERO]);; let REAL_INTEGRABLE_EQ = prove (`!f:real->real g s. (!x. x IN s ==> (f(x) = g(x))) /\ f real_integrable_on s ==> g real_integrable_on s`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_EQ]);; let HAS_REAL_INTEGRAL_EQ_EQ = prove (`!f:real->real g k s. (!x. x IN s ==> (f(x) = g(x))) ==> ((f has_real_integral k) s <=> (g has_real_integral k) s)`, MESON_TAC[HAS_REAL_INTEGRAL_EQ]);; let HAS_REAL_INTEGRAL_NULL = prove (`!f:real->real a b. b <= a ==> (f has_real_integral &0) (real_interval[a,b])`, REPEAT STRIP_TAC THEN REWRITE_TAC[has_real_integral; REAL_INTERVAL_INTERVAL] THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; LIFT_DROP; LIFT_NUM] THEN REWRITE_TAC[SET_RULE `IMAGE (\x. x) s = s`] THEN MATCH_MP_TAC HAS_INTEGRAL_NULL THEN ASM_REWRITE_TAC[CONTENT_EQ_0_1; LIFT_DROP]);; let HAS_REAL_INTEGRAL_NULL_EQ = prove (`!f a b i. b <= a ==> ((f has_real_integral i) (real_interval[a,b]) <=> i = &0)`, ASM_MESON_TAC[REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_NULL]);; let REAL_INTEGRAL_NULL = prove (`!f a b. b <= a ==> real_integral(real_interval[a,b]) f = &0`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN ASM_MESON_TAC[HAS_REAL_INTEGRAL_NULL]);; let REAL_INTEGRABLE_ON_NULL = prove (`!f a b. b <= a ==> f real_integrable_on real_interval[a,b]`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_NULL]);; let HAS_REAL_INTEGRAL_EMPTY = prove (`!f. (f has_real_integral &0) {}`, GEN_TAC THEN REWRITE_TAC[EMPTY_AS_REAL_INTERVAL] THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_NULL THEN REWRITE_TAC[REAL_POS]);; let HAS_REAL_INTEGRAL_EMPTY_EQ = prove (`!f i. (f has_real_integral i) {} <=> i = &0`, MESON_TAC[HAS_REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_EMPTY]);; let REAL_INTEGRABLE_ON_EMPTY = prove (`!f. f real_integrable_on {}`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_EMPTY]);; let REAL_INTEGRAL_EMPTY = prove (`!f. real_integral {} f = &0`, MESON_TAC[EMPTY_AS_REAL_INTERVAL; REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_EMPTY]);; let HAS_REAL_INTEGRAL_REFL = prove (`!f a. (f has_real_integral &0) (real_interval[a,a])`, REPEAT GEN_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_NULL THEN REWRITE_TAC[REAL_LE_REFL]);; let REAL_INTEGRABLE_ON_REFL = prove (`!f a. f real_integrable_on real_interval[a,a]`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_REFL]);; let REAL_INTEGRAL_REFL = prove (`!f a. real_integral (real_interval[a,a]) f = &0`, MESON_TAC[REAL_INTEGRAL_UNIQUE; HAS_REAL_INTEGRAL_REFL]);; let HAS_REAL_INTEGRAL_CONST = prove (`!a b c. a <= b ==> ((\x. c) has_real_integral (c * (b - a))) (real_interval[a,b])`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[has_real_integral; IMAGE_LIFT_REAL_INTERVAL] THEN MP_TAC(ISPECL [`lift a`; `lift b`; `lift c`] HAS_INTEGRAL_CONST) THEN ASM_SIMP_TAC[o_DEF; CONTENT_1; LIFT_DROP; LIFT_CMUL]);; let REAL_INTEGRABLE_CONST = prove (`!a b c. (\x. c) real_integrable_on real_interval[a,b]`, REWRITE_TAC[REAL_INTEGRABLE_ON; IMAGE_LIFT_REAL_INTERVAL; o_DEF; INTEGRABLE_CONST]);; let REAL_INTEGRAL_CONST = prove (`!a b c. a <= b ==> real_integral (real_interval [a,b]) (\x. c) = c * (b - a)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_INTEGRAL_CONST]);; let HAS_REAL_INTEGRAL_BOUND = prove (`!f:real->real a b i B. &0 <= B /\ a <= b /\ (f has_real_integral i) (real_interval[a,b]) /\ (!x. x IN real_interval[a,b] ==> abs(f x) <= B) ==> abs i <= B * (b - a)`, REWRITE_TAC[HAS_REAL_INTEGRAL; REAL_INTERVAL_INTERVAL; GSYM NORM_LIFT] THEN REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV o BINOP_CONV) [GSYM LIFT_DROP] THEN ASM_SIMP_TAC[GSYM CONTENT_1; LIFT_DROP] THEN MATCH_MP_TAC HAS_INTEGRAL_BOUND THEN EXISTS_TAC `lift o f o drop` THEN ASM_REWRITE_TAC[o_THM]);; let HAS_REAL_INTEGRAL_LE = prove (`!f g s i j. (f has_real_integral i) s /\ (g has_real_integral j) s /\ (!x. x IN s ==> f x <= g x) ==> i <= j`, REWRITE_TAC[has_real_integral] THEN REPEAT STRIP_TAC THEN GEN_REWRITE_TAC BINOP_CONV [GSYM LIFT_DROP] THEN REWRITE_TAC[drop] THEN MATCH_MP_TAC (ISPECL [`lift o f o drop`; `lift o g o drop`; `IMAGE lift s`] HAS_INTEGRAL_COMPONENT_LE) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; DIMINDEX_1; LE_REFL; o_THM; LIFT_DROP; GSYM drop]);; let REAL_INTEGRAL_LE = prove (`!f:real->real g:real->real s. f real_integrable_on s /\ g real_integrable_on s /\ (!x. x IN s ==> f x <= g x) ==> real_integral s f <= real_integral s g`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_LE THEN ASM_MESON_TAC[REAL_INTEGRABLE_INTEGRAL]);; let HAS_REAL_INTEGRAL_POS = prove (`!f:real->real s i. (f has_real_integral i) s /\ (!x. x IN s ==> &0 <= f x) ==> &0 <= i`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`(\x. &0):real->real`; `f:real->real`; `s:real->bool`; `&0:real`; `i:real`] HAS_REAL_INTEGRAL_LE) THEN ASM_SIMP_TAC[HAS_REAL_INTEGRAL_0]);; let REAL_INTEGRAL_POS = prove (`!f:real->real s. f real_integrable_on s /\ (!x. x IN s ==> &0 <= f x) ==> &0 <= real_integral s f`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_POS THEN ASM_MESON_TAC[REAL_INTEGRABLE_INTEGRAL]);; let HAS_REAL_INTEGRAL_ISNEG = prove (`!f:real->real s i. (f has_real_integral i) s /\ (!x. x IN s ==> f x <= &0) ==> i <= &0`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real->real`; `(\x. &0):real->real`; `s:real->bool`; `i:real`; `&0:real`; ] HAS_REAL_INTEGRAL_LE) THEN ASM_SIMP_TAC[HAS_REAL_INTEGRAL_0]);; let HAS_REAL_INTEGRAL_LBOUND = prove (`!f:real->real a b i. a <= b /\ (f has_real_integral i) (real_interval[a,b]) /\ (!x. x IN real_interval[a,b] ==> B <= f(x)) ==> B * (b - a) <= i`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`(\x. B):real->real`; `f:real->real`; `real_interval[a,b]`; `B * (b - a):real`; `i:real`] HAS_REAL_INTEGRAL_LE) THEN ASM_SIMP_TAC[HAS_REAL_INTEGRAL_CONST]);; let HAS_REAL_INTEGRAL_UBOUND = prove (`!f:real->real a b i. a <= b /\ (f has_real_integral i) (real_interval[a,b]) /\ (!x. x IN real_interval[a,b] ==> f(x) <= B) ==> i <= B * (b - a)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real->real`; `(\x. B):real->real`; `real_interval[a,b]`; `i:real`; `B * (b - a):real`] HAS_REAL_INTEGRAL_LE) THEN ASM_SIMP_TAC[HAS_REAL_INTEGRAL_CONST]);; let REAL_INTEGRAL_LBOUND = prove (`!f:real->real a b. a <= b /\ f real_integrable_on real_interval[a,b] /\ (!x. x IN real_interval[a,b] ==> B <= f(x)) ==> B * (b - a) <= real_integral(real_interval[a,b]) f`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_LBOUND THEN EXISTS_TAC `f:real->real` THEN ASM_REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_INTEGRAL]);; let REAL_INTEGRAL_UBOUND = prove (`!f:real->real a b. a <= b /\ f real_integrable_on real_interval[a,b] /\ (!x. x IN real_interval[a,b] ==> f(x) <= B) ==> real_integral(real_interval[a,b]) f <= B * (b - a)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_UBOUND THEN EXISTS_TAC `f:real->real` THEN ASM_REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_INTEGRAL]);; let REAL_INTEGRABLE_UNIFORM_LIMIT = prove (`!f a b. (!e. &0 < e ==> ?g. (!x. x IN real_interval[a,b] ==> abs(f x - g x) <= e) /\ g real_integrable_on real_interval[a,b] ) ==> f real_integrable_on real_interval[a,b]`, REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL; GSYM EXISTS_LIFT] THEN REWRITE_TAC[GSYM integrable_on] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRABLE_UNIFORM_LIMIT THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `g:real->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `lift o g o drop` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[o_THM; LIFT_DROP; GSYM LIFT_SUB; NORM_LIFT]);; let HAS_REAL_INTEGRAL_NEGLIGIBLE = prove (`!f s t. real_negligible s /\ (!x. x IN (t DIFF s) ==> f x = &0) ==> (f has_real_integral (&0)) t`, REWRITE_TAC[has_real_integral; real_negligible; LIFT_NUM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_NEGLIGIBLE THEN EXISTS_TAC `IMAGE lift s` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[o_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN REWRITE_TAC[LIFT_IN_IMAGE_LIFT; LIFT_DROP] THEN ASM SET_TAC[LIFT_NUM]);; let HAS_REAL_INTEGRAL_SPIKE = prove (`!f g s t y. real_negligible s /\ (!x. x IN (t DIFF s) ==> g x = f x) /\ (f has_real_integral y) t ==> (g has_real_integral y) t`, REWRITE_TAC[has_real_integral; real_negligible] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_SPIKE THEN MAP_EVERY EXISTS_TAC [`lift o f o drop`; `IMAGE lift s`] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[o_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN REWRITE_TAC[LIFT_IN_IMAGE_LIFT; LIFT_DROP] THEN ASM SET_TAC[LIFT_NUM]);; let HAS_REAL_INTEGRAL_SPIKE_EQ = prove (`!f g s t y. real_negligible s /\ (!x. x IN (t DIFF s) ==> g x = f x) ==> ((f has_real_integral y) t <=> (g has_real_integral y) t)`, REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SPIKE THENL [EXISTS_TAC `f:real->real`; EXISTS_TAC `g:real->real`] THEN EXISTS_TAC `s:real->bool` THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[REAL_ABS_SUB]);; let REAL_INTEGRABLE_SPIKE = prove (`!f g s t. real_negligible s /\ (!x. x IN (t DIFF s) ==> g x = f x) ==> f real_integrable_on t ==> g real_integrable_on t`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[real_integrable_on] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MP_TAC(SPEC_ALL HAS_REAL_INTEGRAL_SPIKE) THEN ASM_REWRITE_TAC[]);; let REAL_INTEGRABLE_SPIKE_EQ = prove (`!f g s t. real_negligible s /\ (!x. x IN t DIFF s ==> g x = f x) ==> (f real_integrable_on t <=> g real_integrable_on t)`, MESON_TAC[REAL_INTEGRABLE_SPIKE]);; let REAL_INTEGRAL_SPIKE = prove (`!f:real->real g s t. real_negligible s /\ (!x. x IN (t DIFF s) ==> g x = f x) ==> real_integral t f = real_integral t g`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_integral] THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SPIKE_EQ THEN ASM_MESON_TAC[]);; let REAL_NEGLIGIBLE_SUBSET = prove (`!s:real->bool t:real->bool. real_negligible s /\ t SUBSET s ==> real_negligible t`, REWRITE_TAC[real_negligible] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC NEGLIGIBLE_SUBSET THEN EXISTS_TAC `IMAGE lift s` THEN ASM_SIMP_TAC[IMAGE_SUBSET]);; let REAL_NEGLIGIBLE_DIFF = prove (`!s t:real->bool. real_negligible s ==> real_negligible(s DIFF t)`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_NEGLIGIBLE_SUBSET THEN EXISTS_TAC `s:real->bool` THEN ASM_REWRITE_TAC[SUBSET_DIFF]);; let REAL_NEGLIGIBLE_INTER = prove (`!s t. real_negligible s \/ real_negligible t ==> real_negligible(s INTER t)`, MESON_TAC[REAL_NEGLIGIBLE_SUBSET; INTER_SUBSET]);; let REAL_NEGLIGIBLE_UNION = prove (`!s t:real->bool. real_negligible s /\ real_negligible t ==> real_negligible (s UNION t)`, SIMP_TAC[NEGLIGIBLE_UNION; IMAGE_UNION; real_negligible]);; let REAL_NEGLIGIBLE_UNION_EQ = prove (`!s t:real->bool. real_negligible (s UNION t) <=> real_negligible s /\ real_negligible t`, MESON_TAC[REAL_NEGLIGIBLE_UNION; SUBSET_UNION; REAL_NEGLIGIBLE_SUBSET]);; let REAL_NEGLIGIBLE_SING = prove (`!a:real. real_negligible {a}`, REWRITE_TAC[real_negligible; NEGLIGIBLE_SING; IMAGE_CLAUSES]);; let REAL_NEGLIGIBLE_INSERT = prove (`!a:real s. real_negligible(a INSERT s) <=> real_negligible s`, REWRITE_TAC[real_negligible; NEGLIGIBLE_INSERT; IMAGE_CLAUSES]);; let REAL_NEGLIGIBLE_EMPTY = prove (`real_negligible {}`, REWRITE_TAC[real_negligible; NEGLIGIBLE_EMPTY; IMAGE_CLAUSES]);; let REAL_NEGLIGIBLE_FINITE = prove (`!s. FINITE s ==> real_negligible s`, MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[REAL_NEGLIGIBLE_EMPTY; REAL_NEGLIGIBLE_INSERT]);; let REAL_NEGLIGIBLE_UNIONS = prove (`!s. FINITE s /\ (!t. t IN s ==> real_negligible t) ==> real_negligible(UNIONS s)`, REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[UNIONS_0; UNIONS_INSERT; REAL_NEGLIGIBLE_EMPTY; IN_INSERT] THEN SIMP_TAC[REAL_NEGLIGIBLE_UNION]);; let REAL_OPEN_NOT_REAL_NEGLIGIBLE = prove (`!s. real_open s /\ ~(s = {}) ==> ~real_negligible s`, GEN_TAC THEN REWRITE_TAC[REAL_OPEN; real_negligible] THEN MESON_TAC[OPEN_NOT_NEGLIGIBLE; IMAGE_EQ_EMPTY]);; let HAS_REAL_INTEGRAL_SPIKE_FINITE = prove (`!f:real->real g s t y. FINITE s /\ (!x. x IN (t DIFF s) ==> g x = f x) /\ (f has_real_integral y) t ==> (g has_real_integral y) t`, MESON_TAC[HAS_REAL_INTEGRAL_SPIKE; REAL_NEGLIGIBLE_FINITE]);; let HAS_REAL_INTEGRAL_SPIKE_FINITE_EQ = prove (`!f:real->real g s y. FINITE s /\ (!x. x IN (t DIFF s) ==> g x = f x) ==> ((f has_real_integral y) t <=> (g has_real_integral y) t)`, MESON_TAC[HAS_REAL_INTEGRAL_SPIKE_FINITE]);; let REAL_INTEGRABLE_SPIKE_FINITE = prove (`!f:real->real g s. FINITE s /\ (!x. x IN (t DIFF s) ==> g x = f x) ==> f real_integrable_on t ==> g real_integrable_on t`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[real_integrable_on] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MP_TAC(SPEC_ALL HAS_REAL_INTEGRAL_SPIKE_FINITE) THEN ASM_REWRITE_TAC[]);; let REAL_NEGLIGIBLE_FRONTIER_INTERVAL = prove (`!a b:real. real_negligible(real_interval[a,b] DIFF real_interval(a,b))`, REPEAT GEN_TAC THEN REWRITE_TAC[real_interval; DIFF; IN_ELIM_THM] THEN MATCH_MP_TAC REAL_NEGLIGIBLE_SUBSET THEN EXISTS_TAC `{(a:real),b}` THEN ASM_SIMP_TAC[REAL_NEGLIGIBLE_FINITE; FINITE_RULES] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN REAL_ARITH_TAC);; let HAS_REAL_INTEGRAL_SPIKE_INTERIOR = prove (`!f:real->real g a b y. (!x. x IN real_interval(a,b) ==> g x = f x) /\ (f has_real_integral y) (real_interval[a,b]) ==> (g has_real_integral y) (real_interval[a,b])`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN DISCH_TAC THEN MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] HAS_REAL_INTEGRAL_SPIKE) THEN EXISTS_TAC `real_interval[a:real,b] DIFF real_interval(a,b)` THEN REWRITE_TAC[REAL_NEGLIGIBLE_FRONTIER_INTERVAL] THEN ASM SET_TAC[]);; let HAS_REAL_INTEGRAL_SPIKE_INTERIOR_EQ = prove (`!f:real->real g a b y. (!x. x IN real_interval(a,b) ==> g x = f x) ==> ((f has_real_integral y) (real_interval[a,b]) <=> (g has_real_integral y) (real_interval[a,b]))`, MESON_TAC[HAS_REAL_INTEGRAL_SPIKE_INTERIOR]);; let REAL_INTEGRABLE_SPIKE_INTERIOR = prove (`!f:real->real g a b. (!x. x IN real_interval(a,b) ==> g x = f x) ==> f real_integrable_on (real_interval[a,b]) ==> g real_integrable_on (real_interval[a,b])`, REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[real_integrable_on] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MP_TAC(SPEC_ALL HAS_REAL_INTEGRAL_SPIKE_INTERIOR) THEN ASM_REWRITE_TAC[]);; let REAL_INTEGRAL_EQ = prove (`!f g s. (!x. x IN s ==> f x = g x) ==> real_integral s f = real_integral s g`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_SPIKE THEN EXISTS_TAC `{}:real->bool` THEN ASM_SIMP_TAC[REAL_NEGLIGIBLE_EMPTY; IN_DIFF]);; let REAL_INTEGRAL_EQ_0 = prove (`!f s. (!x. x IN s ==> f x = &0) ==> real_integral s f = &0`, REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `real_integral s (\x. &0)` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_INTEGRAL_EQ THEN ASM_REWRITE_TAC[]; REWRITE_TAC[REAL_INTEGRAL_0]]);; let REAL_INTEGRABLE_CONTINUOUS = prove (`!f a b. f real_continuous_on real_interval[a,b] ==> f real_integrable_on real_interval[a,b]`, REWRITE_TAC[REAL_CONTINUOUS_ON; real_integrable_on; has_real_integral; GSYM integrable_on; GSYM EXISTS_LIFT] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; INTEGRABLE_CONTINUOUS]);; let REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS = prove (`!f f' a b. a <= b /\ (!x. x IN real_interval[a,b] ==> (f has_real_derivative f'(x)) (atreal x within real_interval[a,b])) ==> (f' has_real_integral (f(b) - f(a))) (real_interval[a,b])`, REWRITE_TAC[has_real_integral; HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_SUB] THEN REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; LIFT_DROP] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o BINOP_CONV) [GSYM LIFT_DROP] THEN DISCH_THEN(MP_TAC o MATCH_MP FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN REWRITE_TAC[o_DEF; LIFT_DROP]);; let REAL_INTEGRABLE_SUBINTERVAL = prove (`!f:real->real a b c d. f real_integrable_on real_interval[a,b] /\ real_interval[c,d] SUBSET real_interval[a,b] ==> f real_integrable_on real_interval[c,d]`, REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL] THEN REWRITE_TAC[EXISTS_DROP; GSYM integrable_on; LIFT_DROP] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRABLE_SUBINTERVAL THEN MAP_EVERY EXISTS_TAC [`lift a`; `lift b`] THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL] THEN ASM_SIMP_TAC[IMAGE_SUBSET]);; let HAS_REAL_INTEGRAL_COMBINE = prove (`!f i j a b c. a <= c /\ c <= b /\ (f has_real_integral i) (real_interval[a,c]) /\ (f has_real_integral j) (real_interval[c,b]) ==> (f has_real_integral (i + j)) (real_interval[a,b])`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_INTEGRAL; LIFT_ADD] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_COMBINE THEN EXISTS_TAC `lift c` THEN ASM_REWRITE_TAC[LIFT_DROP]);; let REAL_INTEGRAL_COMBINE = prove (`!f a b c. a <= c /\ c <= b /\ f real_integrable_on (real_interval[a,b]) ==> real_integral(real_interval[a,c]) f + real_integral(real_interval[c,b]) f = real_integral(real_interval[a,b]) f`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_COMBINE THEN EXISTS_TAC `c:real` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_INTEGRABLE_INTEGRAL THEN MATCH_MP_TAC REAL_INTEGRABLE_SUBINTERVAL THEN MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN ASM_REWRITE_TAC[SUBSET_REAL_INTERVAL; REAL_LE_REFL]);; let REAL_INTEGRABLE_COMBINE = prove (`!f a b c. a <= c /\ c <= b /\ f real_integrable_on real_interval[a,c] /\ f real_integrable_on real_interval[c,b] ==> f real_integrable_on real_interval[a,b]`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_COMBINE]);; let REAL_INTEGRABLE_ON_LITTLE_SUBINTERVALS = prove (`!f:real->real a b. (!x. x IN real_interval[a,b] ==> ?d. &0 < d /\ !u v. x IN real_interval[u,v] /\ (!y. y IN real_interval[u,v] ==> abs(y - x) < d /\ y IN real_interval[a,b]) ==> f real_integrable_on real_interval[u,v]) ==> f real_integrable_on real_interval[a,b]`, REPEAT GEN_TAC THEN REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL; EXISTS_DROP; GSYM integrable_on; LIFT_DROP] THEN DISCH_TAC THEN MATCH_MP_TAC INTEGRABLE_ON_LITTLE_SUBINTERVALS THEN REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; FORALL_IN_IMAGE] THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM EXISTS_DROP; FORALL_LIFT] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN CONJ_TAC THENL [ASM_MESON_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_IN_IMAGE_LIFT]; REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE] THEN X_GEN_TAC `y:real^1` THEN DISCH_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `y:real^1` o REWRITE_RULE[SUBSET])) THEN ASM_SIMP_TAC[IN_BALL; FUN_IN_IMAGE; dist; NORM_REAL] THEN REWRITE_TAC[GSYM drop; DROP_SUB; LIFT_DROP] THEN SIMP_TAC[REAL_ABS_SUB]]);; let REAL_INTEGRAL_HAS_REAL_DERIVATIVE_POINTWISE = prove (`!f a b x. f real_integrable_on real_interval[a,b] /\ x IN real_interval[a,b] /\ f real_continuous (atreal x within real_interval[a,b]) ==> ((\u. real_integral(real_interval[a,u]) f) has_real_derivative f(x)) (atreal x within real_interval[a,b])`, REPEAT GEN_TAC THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN MP_TAC th) THEN REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1; IMAGE_LIFT_REAL_INTERVAL; REAL_INTEGRABLE_ON; CONTINUOUS_CONTINUOUS_WITHINREAL; HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN REWRITE_TAC[REAL_INTERVAL_INTERVAL; IN_IMAGE_LIFT_DROP; GSYM o_ASSOC] THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP INTEGRAL_HAS_VECTOR_DERIVATIVE_POINTWISE) THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b /\ c /\ d ==> e <=> a /\ b /\ c ==> d ==> e`] HAS_VECTOR_DERIVATIVE_TRANSFORM_WITHIN) THEN EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[REAL_LT_01] THEN X_GEN_TAC `y:real^1` THEN STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN REWRITE_TAC[LIFT_DROP] THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[INTERVAL_REAL_INTERVAL; GSYM IMAGE_o; LIFT_DROP; o_DEF] THEN REWRITE_TAC[GSYM o_DEF; SET_RULE `IMAGE (\x. x) s = s`] THEN MATCH_MP_TAC REAL_INTEGRAL THEN MATCH_MP_TAC REAL_INTEGRABLE_SUBINTERVAL THEN MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1])) THEN REWRITE_TAC[LIFT_DROP] THEN REAL_ARITH_TAC);; let REAL_INTEGRAL_HAS_REAL_DERIVATIVE = prove (`!f:real->real a b. f real_continuous_on real_interval[a,b] ==> !x. x IN real_interval[a,b] ==> ((\u. real_integral(real_interval[a,u]) f) has_real_derivative f(x)) (atreal x within real_interval[a,b])`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_HAS_REAL_DERIVATIVE_POINTWISE THEN ASM_MESON_TAC[REAL_INTEGRABLE_CONTINUOUS; REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN]);; let REAL_ANTIDERIVATIVE_CONTINUOUS = prove (`!f a b. (f real_continuous_on real_interval[a,b]) ==> ?g. !x. x IN real_interval[a,b] ==> (g has_real_derivative f(x)) (atreal x within real_interval[a,b])`, MESON_TAC[REAL_INTEGRAL_HAS_REAL_DERIVATIVE]);; let REAL_ANTIDERIVATIVE_INTEGRAL_CONTINUOUS = prove (`!f a b. (f real_continuous_on real_interval[a,b]) ==> ?g. !u v. u IN real_interval[a,b] /\ v IN real_interval[a,b] /\ u <= v ==> (f has_real_integral (g(v) - g(u))) (real_interval[u,v])`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_ANTIDERIVATIVE_CONTINUOUS) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real->real` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_WITHIN_SUBSET THEN EXISTS_TAC `real_interval[a:real,b]` THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC; ALL_TAC] THEN REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[SUBSET_REAL_INTERVAL; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);; let HAS_REAL_INTEGRAL_AFFINITY = prove (`!f:real->real i a b m c. (f has_real_integral i) (real_interval[a,b]) /\ ~(m = &0) ==> ((\x. f(m * x + c)) has_real_integral (inv(abs(m)) * i)) (IMAGE (\x. inv m * (x - c)) (real_interval[a,b]))`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_INTEGRAL] THEN DISCH_THEN(MP_TAC o SPEC `lift c` o MATCH_MP HAS_INTEGRAL_AFFINITY) THEN REWRITE_TAC[DIMINDEX_1; REAL_POW_1; has_real_integral] THEN REWRITE_TAC[o_DEF; DROP_ADD; DROP_CMUL; LIFT_DROP; LIFT_CMUL] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN REWRITE_TAC[INTERVAL_REAL_INTERVAL; GSYM IMAGE_o; LIFT_DROP] THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_DEF; LIFT_CMUL; LIFT_SUB] THEN VECTOR_ARITH_TAC);; let REAL_INTEGRABLE_AFFINITY = prove (`!f a b m c. f real_integrable_on real_interval[a,b] /\ ~(m = &0) ==> (\x. f(m * x + c)) real_integrable_on (IMAGE (\x. inv m * (x - c)) (real_interval[a,b]))`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_AFFINITY]);; let HAS_REAL_INTEGRAL_STRETCH = prove (`!f:real->real i a b m. (f has_real_integral i) (real_interval[a,b]) /\ ~(m = &0) ==> ((\x. f(m * x)) has_real_integral (inv(abs(m)) * i)) (IMAGE (\x. inv m * x) (real_interval[a,b]))`, MP_TAC HAS_REAL_INTEGRAL_AFFINITY THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(MP_TAC o SPEC `&0`) THEN REWRITE_TAC[REAL_ADD_RID; REAL_SUB_RZERO]);; let REAL_INTEGRABLE_STRETCH = prove (`!f a b m. f real_integrable_on real_interval[a,b] /\ ~(m = &0) ==> (\x. f(m * x)) real_integrable_on (IMAGE (\x. inv m * x) (real_interval[a,b]))`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_STRETCH]);; let HAS_REAL_INTEGRAL_REFLECT_LEMMA = prove (`!f:real->real i a b. (f has_real_integral i) (real_interval[a,b]) ==> ((\x. f(--x)) has_real_integral i) (real_interval[--b,--a])`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_INTEGRAL] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_INTEGRAL_REFLECT_LEMMA) THEN REWRITE_TAC[LIFT_NEG; o_DEF; DROP_NEG]);; let HAS_REAL_INTEGRAL_REFLECT = prove (`!f:real->real i a b. ((\x. f(--x)) has_real_integral i) (real_interval[--b,--a]) <=> (f has_real_integral i) (real_interval[a,b])`, REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_REFLECT_LEMMA) THEN REWRITE_TAC[REAL_NEG_NEG; ETA_AX]);; let REAL_INTEGRABLE_REFLECT = prove (`!f:real->real a b. (\x. f(--x)) real_integrable_on (real_interval[--b,--a]) <=> f real_integrable_on (real_interval[a,b])`, REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL_REFLECT]);; let REAL_INTEGRAL_REFLECT = prove (`!f:real->real a b. real_integral (real_interval[--b,--a]) (\x. f(--x)) = real_integral (real_interval[a,b]) f`, REWRITE_TAC[real_integral; HAS_REAL_INTEGRAL_REFLECT]);; let HAS_REAL_INTEGRAL_REFLECT_GEN = prove (`!f i s. ((\x. f(--x)) has_real_integral i) s <=> (f has_real_integral i) (IMAGE (--) s)`, REWRITE_TAC[has_real_integral; o_DEF; GSYM DROP_NEG; HAS_INTEGRAL_REFLECT_GEN; GSYM IMAGE_o; GSYM LIFT_NEG]);; let REAL_INTEGRABLE_REFLECT_GEN = prove (`!f s. (\x. f(--x)) real_integrable_on s <=> f real_integrable_on (IMAGE (--) s)`, REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL_REFLECT_GEN]);; let REAL_INTEGRAL_REFLECT_GEN = prove (`!f s. real_integral s (\x. f(--x)) = real_integral (IMAGE (--) s) f`, REWRITE_TAC[real_integral; HAS_REAL_INTEGRAL_REFLECT_GEN]);; let REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR = prove (`!f:real->real f' a b. a <= b /\ f real_continuous_on real_interval[a,b] /\ (!x. x IN real_interval(a,b) ==> (f has_real_derivative f'(x)) (atreal x)) ==> (f' has_real_integral (f(b) - f(a))) (real_interval[a,b])`, REWRITE_TAC[has_real_integral; HAS_REAL_VECTOR_DERIVATIVE_AT] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_SUB] THEN REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; LIFT_DROP] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV o BINOP_CONV) [GSYM LIFT_DROP] THEN REWRITE_TAC[REAL_CONTINUOUS_ON; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN DISCH_THEN(MP_TAC o MATCH_MP FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR) THEN REWRITE_TAC[o_DEF; LIFT_DROP]);; let REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG = prove (`!f f' s a b. COUNTABLE s /\ a <= b /\ f real_continuous_on real_interval[a,b] /\ (!x. x IN real_interval(a,b) DIFF s ==> (f has_real_derivative f'(x)) (atreal x)) ==> (f' has_real_integral (f(b) - f(a))) (real_interval[a,b])`, REWRITE_TAC[has_real_integral; HAS_REAL_VECTOR_DERIVATIVE_AT] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_SUB] THEN REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; IMP_CONJ; IN_DIFF] THEN SUBGOAL_THEN `!x. drop x IN s <=> x IN IMAGE lift s` (fun th -> REWRITE_TAC[th]) THENL [SET_TAC[LIFT_DROP]; ALL_TAC] THEN SUBGOAL_THEN `COUNTABLE s <=> COUNTABLE(IMAGE lift s)` SUBST1_TAC THENL [EQ_TAC THEN SIMP_TAC[COUNTABLE_IMAGE] THEN DISCH_THEN(MP_TAC o ISPEC `drop` o MATCH_MP COUNTABLE_IMAGE) THEN REWRITE_TAC[GSYM IMAGE_o; IMAGE_LIFT_DROP]; ALL_TAC] THEN REWRITE_TAC[IMP_IMP; GSYM IN_DIFF; GSYM CONJ_ASSOC] THEN REWRITE_TAC[REAL_CONTINUOUS_ON; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN REWRITE_TAC[LIFT_DROP] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV o BINOP_CONV) [GSYM LIFT_DROP] THEN DISCH_THEN(MP_TAC o MATCH_MP FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG) THEN REWRITE_TAC[o_DEF; LIFT_DROP]);; let REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_STRONG = prove (`!f f' s a b. COUNTABLE s /\ a <= b /\ f real_continuous_on real_interval[a,b] /\ (!x. x IN real_interval[a,b] DIFF s ==> (f has_real_derivative f'(x)) (atreal x)) ==> (f' has_real_integral (f(b) - f(a))) (real_interval[a,b])`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG THEN EXISTS_TAC `s:real->bool` THEN ASM_REWRITE_TAC[] THEN GEN_TAC THEN DISCH_THEN(fun th -> FIRST_X_ASSUM MATCH_MP_TAC THEN MP_TAC th) THEN SIMP_TAC[IN_REAL_INTERVAL; IN_DIFF] THEN REAL_ARITH_TAC);; let REAL_INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT = prove (`!f:real->real a b. f real_integrable_on real_interval[a,b] ==> (\x. real_integral (real_interval[a,x]) f) real_continuous_on real_interval[a,b]`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_ON] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_INTEGRABLE_ON]) THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN DISCH_THEN(MP_TAC o MATCH_MP INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_EQ) THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[o_DEF] THEN GEN_REWRITE_TAC I [GSYM DROP_EQ] THEN REWRITE_TAC[INTERVAL_REAL_INTERVAL; LIFT_DROP; GSYM o_DEF] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INTEGRAL THEN MATCH_MP_TAC REAL_INTEGRABLE_SUBINTERVAL THEN MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN ASM_REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1]) THEN REWRITE_TAC[LIFT_DROP] THEN REAL_ARITH_TAC);; let REAL_INDEFINITE_INTEGRAL_CONTINUOUS_LEFT = prove (`!f:real->real a b. f real_integrable_on real_interval[a,b] ==> (\x. real_integral (real_interval[x,b]) f) real_continuous_on real_interval[a,b]`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_ON] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_INTEGRABLE_ON]) THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN DISCH_THEN(MP_TAC o MATCH_MP INDEFINITE_INTEGRAL_CONTINUOUS_LEFT) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CONTINUOUS_ON_EQ) THEN GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[o_DEF] THEN GEN_REWRITE_TAC I [GSYM DROP_EQ] THEN REWRITE_TAC[INTERVAL_REAL_INTERVAL; LIFT_DROP; GSYM o_DEF] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INTEGRAL THEN MATCH_MP_TAC REAL_INTEGRABLE_SUBINTERVAL THEN MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN ASM_REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [IN_INTERVAL_1]) THEN REWRITE_TAC[LIFT_DROP] THEN REAL_ARITH_TAC);; let HAS_REAL_DERIVATIVE_ZERO_UNIQUE_STRONG_INTERVAL = prove (`!f:real->real a b k y. COUNTABLE k /\ f real_continuous_on real_interval[a,b] /\ f a = y /\ (!x. x IN (real_interval[a,b] DIFF k) ==> (f has_real_derivative &0) (atreal x within real_interval[a,b])) ==> !x. x IN real_interval[a,b] ==> f x = y`, REWRITE_TAC[has_real_integral; HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_SUB] THEN REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; IMP_CONJ; IN_DIFF] THEN REWRITE_TAC[REAL_CONTINUOUS_ON; IMP_IMP; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN REWRITE_TAC[GSYM IMP_CONJ; LIFT_DROP; has_vector_derivative] THEN REWRITE_TAC[LIFT_NUM; VECTOR_MUL_RZERO] THEN STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`; `IMAGE lift k`; `lift y`] HAS_DERIVATIVE_ZERO_UNIQUE_STRONG_INTERVAL) THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; o_THM; LIFT_DROP; LIFT_EQ; IN_DIFF] THEN DISCH_THEN MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM SET_TAC[LIFT_DROP]);; let HAS_REAL_DERIVATIVE_ZERO_UNIQUE_STRONG_CONVEX = prove (`!f:real->real s k c y. is_realinterval s /\ COUNTABLE k /\ f real_continuous_on s /\ c IN s /\ f c = y /\ (!x. x IN (s DIFF k) ==> (f has_real_derivative &0) (atreal x within s)) ==> !x. x IN s ==> f x = y`, REWRITE_TAC[has_real_integral; HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN REWRITE_TAC[IS_REALINTERVAL_CONVEX; REAL_CONTINUOUS_ON] THEN REPEAT GEN_TAC THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; LIFT_SUB] THEN REWRITE_TAC[REAL_INTERVAL_INTERVAL; FORALL_IN_IMAGE; IMP_CONJ; IN_DIFF] THEN REWRITE_TAC[REAL_CONTINUOUS_ON; IMP_IMP; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN REWRITE_TAC[GSYM IMP_CONJ; LIFT_DROP; has_vector_derivative] THEN REWRITE_TAC[LIFT_NUM; VECTOR_MUL_RZERO] THEN STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`; `IMAGE lift k`; `lift c`; `lift y`] HAS_DERIVATIVE_ZERO_UNIQUE_STRONG_CONVEX) THEN ASM_SIMP_TAC[COUNTABLE_IMAGE; o_THM; LIFT_DROP; LIFT_EQ; IN_DIFF] THEN ASM_REWRITE_TAC[LIFT_IN_IMAGE_LIFT; FORALL_IN_IMAGE; LIFT_DROP] THEN ASM_SIMP_TAC[IMP_CONJ; FORALL_IN_IMAGE; LIFT_IN_IMAGE_LIFT]);; let HAS_REAL_DERIVATIVE_INDEFINITE_INTEGRAL = prove (`!f a b. f real_integrable_on real_interval[a,b] ==> ?k. real_negligible k /\ !x. x IN real_interval[a,b] DIFF k ==> ((\x. real_integral(real_interval[a,x]) f) has_real_derivative f(x)) (atreal x within real_interval[a,b])`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`] HAS_VECTOR_DERIVATIVE_INDEFINITE_INTEGRAL) THEN ASM_REWRITE_TAC[GSYM REAL_INTEGRABLE_ON; GSYM IMAGE_LIFT_REAL_INTERVAL] THEN REWRITE_TAC[IN_DIFF; FORALL_IN_IMAGE; IMP_CONJ] THEN DISCH_THEN(X_CHOOSE_THEN `k:real^1->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `IMAGE drop k` THEN ASM_REWRITE_TAC[real_negligible; HAS_REAL_VECTOR_DERIVATIVE_WITHIN] THEN ASM_REWRITE_TAC[GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN REWRITE_TAC[IN_IMAGE; GSYM LIFT_EQ; LIFT_DROP; UNWIND_THM1] THEN X_GEN_TAC `x:real` THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[o_THM; LIFT_DROP] THEN MATCH_MP_TAC(REWRITE_RULE [TAUT `a /\ b /\ c /\ d ==> e <=> a /\ b /\ c ==> d ==> e`] HAS_VECTOR_DERIVATIVE_TRANSFORM_WITHIN) THEN EXISTS_TAC `&1` THEN ASM_SIMP_TAC[FUN_IN_IMAGE; REAL_LT_01] THEN REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE] THEN X_GEN_TAC `y:real` THEN REPEAT DISCH_TAC THEN REWRITE_TAC[GSYM DROP_EQ; LIFT_DROP; o_THM] THEN REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INTEGRAL THEN MATCH_MP_TAC REAL_INTEGRABLE_SUBINTERVAL THEN MAP_EVERY EXISTS_TAC [`a:real`; `b:real`] THEN ASM_REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL]) THEN ASM_REAL_ARITH_TAC);; let HAS_REAL_INTEGRAL_RESTRICT = prove (`!f:real->real s t. s SUBSET t ==> (((\x. if x IN s then f x else &0) has_real_integral i) t <=> (f has_real_integral i) s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[has_real_integral; o_DEF] THEN MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`; `IMAGE lift t`; `lift i`] HAS_INTEGRAL_RESTRICT) THEN ASM_SIMP_TAC[IMAGE_SUBSET; IN_IMAGE_LIFT_DROP; o_DEF] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[LIFT_NUM]);; let HAS_REAL_INTEGRAL_RESTRICT_UNIV = prove (`!f:real->real s i. ((\x. if x IN s then f x else &0) has_real_integral i) (:real) <=> (f has_real_integral i) s`, SIMP_TAC[HAS_REAL_INTEGRAL_RESTRICT; SUBSET_UNIV]);; let HAS_REAL_INTEGRAL_SPIKE_SET_EQ = prove (`!f s t y. real_negligible(s DIFF t UNION t DIFF s) ==> ((f has_real_integral y) s <=> (f has_real_integral y) t)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SPIKE_EQ THEN EXISTS_TAC `s DIFF t UNION t DIFF s:real->bool` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);; let HAS_REAL_INTEGRAL_SPIKE_SET = prove (`!f s t y. real_negligible(s DIFF t UNION t DIFF s) /\ (f has_real_integral y) s ==> (f has_real_integral y) t`, MESON_TAC[HAS_REAL_INTEGRAL_SPIKE_SET_EQ]);; let REAL_INTEGRABLE_SPIKE_SET = prove (`!f s t. real_negligible(s DIFF t UNION t DIFF s) ==> f real_integrable_on s ==> f real_integrable_on t`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_SPIKE_SET_EQ]);; let REAL_INTEGRABLE_SPIKE_SET_EQ = prove (`!f s t. real_negligible(s DIFF t UNION t DIFF s) ==> (f real_integrable_on s <=> f real_integrable_on t)`, MESON_TAC[REAL_INTEGRABLE_SPIKE_SET; UNION_COMM]);; let REAL_INTEGRAL_SPIKE_SET = prove (`!f s t. real_negligible(s DIFF t UNION t DIFF s) ==> real_integral s f = real_integral t f`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_integral] THEN AP_TERM_TAC THEN ABS_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SPIKE_SET_EQ THEN ASM_MESON_TAC[]);; let HAS_REAL_INTEGRAL_OPEN_INTERVAL = prove (`!f a b y. (f has_real_integral y) (real_interval(a,b)) <=> (f has_real_integral y) (real_interval[a,b])`, REWRITE_TAC[has_real_integral; IMAGE_LIFT_REAL_INTERVAL] THEN REWRITE_TAC[HAS_INTEGRAL_OPEN_INTERVAL]);; let REAL_INTEGRABLE_ON_OPEN_INTERVAL = prove (`!f a b. f real_integrable_on real_interval(a,b) <=> f real_integrable_on real_interval[a,b]`, REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL_OPEN_INTERVAL]);; let REAL_INTEGRAL_OPEN_INTERVAL = prove (`!f a b. real_integral(real_interval(a,b)) f = real_integral(real_interval[a,b]) f`, REWRITE_TAC[real_integral; HAS_REAL_INTEGRAL_OPEN_INTERVAL]);; let HAS_REAL_INTEGRAL_ON_SUPERSET = prove (`!f s t. (!x. ~(x IN s) ==> f x = &0) /\ s SUBSET t /\ (f has_real_integral i) s ==> (f has_real_integral i) t`, REPEAT GEN_TAC THEN REWRITE_TAC[SUBSET] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ONCE_REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN ASM_MESON_TAC[]);; let REAL_INTEGRABLE_ON_SUPERSET = prove (`!f s t. (!x. ~(x IN s) ==> f x = &0) /\ s SUBSET t /\ f real_integrable_on s ==> f real_integrable_on t`, REWRITE_TAC[real_integrable_on] THEN MESON_TAC[HAS_REAL_INTEGRAL_ON_SUPERSET]);; let REAL_INTEGRABLE_RESTRICT_UNIV = prove (`!f s. (\x. if x IN s then f x else &0) real_integrable_on (:real) <=> f real_integrable_on s`, REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL_RESTRICT_UNIV]);; let REAL_INTEGRAL_RESTRICT_UNIV = prove (`!f s. real_integral (:real) (\x. if x IN s then f x else &0) = real_integral s f`, REWRITE_TAC[real_integral; HAS_REAL_INTEGRAL_RESTRICT_UNIV]);; let REAL_INTEGRAL_RESTRICT = prove (`!f s t. s SUBSET t ==> real_integral t (\x. if x IN s then f x else &0) = real_integral s f`, SIMP_TAC[real_integral; HAS_REAL_INTEGRAL_RESTRICT]);; let HAS_REAL_INTEGRAL_RESTRICT_INTER = prove (`!f s t. ((\x. if x IN s then f x else &0) has_real_integral i) t <=> (f has_real_integral i) (s INTER t)`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN REWRITE_TAC[IN_INTER] THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[]);; let REAL_INTEGRAL_RESTRICT_INTER = prove (`!f s t. real_integral t (\x. if x IN s then f x else &0) = real_integral (s INTER t) f`, REWRITE_TAC[real_integral; HAS_REAL_INTEGRAL_RESTRICT_INTER]);; let REAL_INTEGRABLE_RESTRICT_INTER = prove (`!f s t. (\x. if x IN s then f x else &0) real_integrable_on t <=> f real_integrable_on (s INTER t)`, REWRITE_TAC[real_integrable_on; HAS_REAL_INTEGRAL_RESTRICT_INTER]);; let REAL_NEGLIGIBLE_ON_INTERVALS = prove (`!s. real_negligible s <=> !a b:real. real_negligible(s INTER real_interval[a,b])`, GEN_TAC THEN REWRITE_TAC[real_negligible] THEN GEN_REWRITE_TAC LAND_CONV [NEGLIGIBLE_ON_INTERVALS] THEN REWRITE_TAC[FORALL_LIFT; GSYM IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN AP_TERM_TAC THEN SET_TAC[LIFT_DROP]);; let HAS_REAL_INTEGRAL_SUBSET_LE = prove (`!f:real->real s t i j. s SUBSET t /\ (f has_real_integral i) s /\ (f has_real_integral j) t /\ (!x. x IN t ==> &0 <= f x) ==> i <= j`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_LE THEN MAP_EVERY EXISTS_TAC [`\x:real. if x IN s then f(x) else &0`; `\x:real. if x IN t then f(x) else &0`; `(:real)`] THEN ASM_REWRITE_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV; IN_UNIV] THEN X_GEN_TAC `x:real` THEN REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_LE_REFL]) THEN ASM SET_TAC[]);; let REAL_INTEGRAL_SUBSET_LE = prove (`!f:real->real s t. s SUBSET t /\ f real_integrable_on s /\ f real_integrable_on t /\ (!x. x IN t ==> &0 <= f(x)) ==> real_integral s f <= real_integral t f`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SUBSET_LE THEN ASM_MESON_TAC[REAL_INTEGRABLE_INTEGRAL]);; let REAL_INTEGRABLE_ON_SUBINTERVAL = prove (`!f:real->real s a b. f real_integrable_on s /\ real_interval[a,b] SUBSET s ==> f real_integrable_on real_interval[a,b]`, REWRITE_TAC[REAL_INTEGRABLE_ON; IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRABLE_ON_SUBINTERVAL THEN EXISTS_TAC `IMAGE lift s` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL] THEN ASM_SIMP_TAC[IMAGE_SUBSET]);; let REAL_INTEGRABLE_ON_SUBINTERVAL_GEN = prove (`!f s t. f real_integrable_on s /\ t SUBSET s /\ is_realinterval t ==> f real_integrable_on t`, REWRITE_TAC[REAL_INTEGRABLE_ON; IS_REALINTERVAL_IS_INTERVAL] THEN ONCE_REWRITE_TAC[GSYM SUBSET_LIFT_IMAGE] THEN REWRITE_TAC[INTEGRABLE_ON_SUBINTERVAL_GEN]);; let REAL_INTEGRABLE_STRADDLE = prove (`!f s. (!e. &0 < e ==> ?g h i j. (g has_real_integral i) s /\ (h has_real_integral j) s /\ abs(i - j) < e /\ !x. x IN s ==> g x <= f x /\ f x <= h x) ==> f real_integrable_on s`, REWRITE_TAC[REAL_INTEGRABLE_ON; has_real_integral] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRABLE_STRADDLE THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXISTS_DROP; FORALL_IN_IMAGE] THEN SIMP_TAC[LEFT_IMP_EXISTS_THM; GSYM DROP_SUB; LIFT_DROP; GSYM NORM_1] THEN MAP_EVERY X_GEN_TAC [`g:real->real`; `h:real->real`; `i:real^1`; `j:real^1`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`lift o g o drop`; `lift o h o drop`; `i:real^1`; `j:real^1`] THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP]);; let HAS_REAL_INTEGRAL_STRADDLE_NULL = prove (`!f g s. (!x. x IN s ==> &0 <= f x /\ f x <= g x) /\ (g has_real_integral &0) s ==> (f has_real_integral &0) s`, REPEAT STRIP_TAC THEN REWRITE_TAC[HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_INTEGRABLE_STRADDLE THEN GEN_TAC THEN DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`(\x. &0):real->real`; `g:real->real`; `&0:real`; `&0:real`] THEN ASM_REWRITE_TAC[HAS_REAL_INTEGRAL_0; REAL_SUB_REFL; REAL_ABS_NUM]; DISCH_TAC THEN REWRITE_TAC[GSYM REAL_LE_ANTISYM] THEN CONJ_TAC THENL [MATCH_MP_TAC(ISPECL [`f:real->real`; `g:real->real`] HAS_REAL_INTEGRAL_LE); MATCH_MP_TAC(ISPECL [`(\x. &0):real->real`; `f:real->real`] HAS_REAL_INTEGRAL_LE)] THEN EXISTS_TAC `s:real->bool` THEN ASM_SIMP_TAC[GSYM HAS_REAL_INTEGRAL_INTEGRAL; HAS_REAL_INTEGRAL_0]]);; let HAS_REAL_INTEGRAL_UNION = prove (`!f i j s t. (f has_real_integral i) s /\ (f has_real_integral j) t /\ real_negligible(s INTER t) ==> (f has_real_integral (i + j)) (s UNION t)`, REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral; real_negligible; LIFT_ADD; IMAGE_UNION] THEN DISCH_TAC THEN MATCH_MP_TAC HAS_INTEGRAL_UNION THEN POP_ASSUM MP_TAC THEN REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[LIFT_DROP]);; let HAS_REAL_INTEGRAL_UNIONS = prove (`!f:real->real i t. FINITE t /\ (!s. s IN t ==> (f has_real_integral (i s)) s) /\ (!s s'. s IN t /\ s' IN t /\ ~(s = s') ==> real_negligible(s INTER s')) ==> (f has_real_integral (sum t i)) (UNIONS t)`, REPEAT GEN_TAC THEN REWRITE_TAC[has_real_integral; real_negligible; LIFT_ADD; IMAGE_UNIONS] THEN SIMP_TAC[LIFT_SUM] THEN DISCH_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `\s. lift(i(IMAGE drop s))`; `IMAGE (IMAGE lift) t`] HAS_INTEGRAL_UNIONS) THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM; IMAGE_LIFT_DROP; GSYM IMAGE_o] THEN ASM_SIMP_TAC[LIFT_EQ; SET_RULE `(!x y. f x = f y <=> x = y) ==> (IMAGE f s = IMAGE f t <=> s = t) /\ (IMAGE f s INTER IMAGE f t = IMAGE f (s INTER t))`] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o lhand o snd) THEN ANTS_TAC THENL [ASM SET_TAC[LIFT_DROP]; ALL_TAC] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF; GSYM IMAGE_o; IMAGE_LIFT_DROP]);; let REAL_INDEFINITE_INTEGRAL_CONTINUOUS = prove (`!f a b c d e. f real_integrable_on real_interval[a,b] /\ c IN real_interval[a,b] /\ d IN real_interval[a,b] /\ &0 < e ==> ?k. &0 < k /\ !c' d'. c' IN real_interval[a,b] /\ d' IN real_interval[a,b] /\ abs(c' - c) <= k /\ abs(d' - d) <= k ==> abs(real_integral (real_interval[c',d']) f - real_integral (real_interval[c,d]) f) < e`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`; `lift c`; `lift d`; `e:real`] INDEFINITE_INTEGRAL_CONTINUOUS) THEN ASM_REWRITE_TAC[GSYM REAL_INTEGRABLE_ON; GSYM IMAGE_LIFT_REAL_INTERVAL] THEN ASM_SIMP_TAC[FUN_IN_IMAGE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:real` THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[IMP_IMP; RIGHT_IMP_FORALL_THM; GSYM LIFT_SUB; NORM_LIFT] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`c':real`; `d':real`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`c':real`; `d':real`]) THEN ASM_REWRITE_TAC[NORM_1; DROP_SUB] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN BINOP_TAC THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC REAL_INTEGRAL THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_INTEGRABLE_ON_SUBINTERVAL)) THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL]) THEN ASM_REAL_ARITH_TAC);; let REAL_MONOTONE_CONVERGENCE_INCREASING = prove (`!f:num->real->real g s. (!k. (f k) real_integrable_on s) /\ (!k x. x IN s ==> f k x <= f (SUC k) x) /\ (!x. x IN s ==> ((\k. f k x) ---> g x) sequentially) /\ real_bounded {real_integral s (f k) | k IN (:num)} ==> g real_integrable_on s /\ ((\k. real_integral s (f k)) ---> real_integral s g) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`; `lift o g o drop`; `IMAGE lift s`] MONOTONE_CONVERGENCE_INCREASING) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN SUBGOAL_THEN `!k:num. real_integral s (f k) = drop(integral (IMAGE lift s) (lift o f k o drop))` (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM NORM_1] THEN DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL [REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV]; ALL_TAC] THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN REWRITE_TAC[LIFT_DROP] THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]);; let REAL_MONOTONE_CONVERGENCE_DECREASING = prove (`!f:num->real->real g s. (!k. (f k) real_integrable_on s) /\ (!k x. x IN s ==> f (SUC k) x <= f k x) /\ (!x. x IN s ==> ((\k. f k x) ---> g x) sequentially) /\ real_bounded {real_integral s (f k) | k IN (:num)} ==> g real_integrable_on s /\ ((\k. real_integral s (f k)) ---> real_integral s g) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`; `lift o g o drop`; `IMAGE lift s`] MONOTONE_CONVERGENCE_DECREASING) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN SUBGOAL_THEN `!k:num. real_integral s (f k) = drop(integral (IMAGE lift s) (lift o f k o drop))` (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM NORM_1] THEN DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL [REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV]; ALL_TAC] THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN REWRITE_TAC[LIFT_DROP] THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]);; let REAL_BEPPO_LEVI_INCREASING = prove (`!f s. (!k. (f k) real_integrable_on s) /\ (!k x. x IN s ==> f k x <= f (SUC k) x) /\ real_bounded {real_integral s (f k) | k IN (:num)} ==> ?g k. real_negligible k /\ !x. x IN (s DIFF k) ==> ((\k. f k x) ---> g x) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`; `IMAGE lift s`] BEPPO_LEVI_INCREASING) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN SUBGOAL_THEN `!k:num. real_integral s (f k) = drop(integral (IMAGE lift s) (lift o f k o drop))` (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM NORM_1] THEN DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL [REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `k:real^1->bool`] THEN REWRITE_TAC[IMP_IMP; LIFT_DROP] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`drop o g o lift`; `IMAGE drop k`] THEN ASM_REWRITE_TAC[real_negligible; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN ASM_REWRITE_TAC[IN_IMAGE_LIFT_DROP; o_THM; LIFT_DROP]);; let REAL_BEPPO_LEVI_DECREASING = prove (`!f s. (!k. (f k) real_integrable_on s) /\ (!k x. x IN s ==> f (SUC k) x <= f k x) /\ real_bounded {real_integral s (f k) | k IN (:num)} ==> ?g k. real_negligible k /\ !x. x IN (s DIFF k) ==> ((\k. f k x) ---> g x) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`; `IMAGE lift s`] BEPPO_LEVI_DECREASING) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN SUBGOAL_THEN `!k:num. real_integral s (f k) = drop(integral (IMAGE lift s) (lift o f k o drop))` (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM NORM_1] THEN DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL [REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `k:real^1->bool`] THEN REWRITE_TAC[IMP_IMP; LIFT_DROP] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`drop o g o lift`; `IMAGE drop k`] THEN ASM_REWRITE_TAC[real_negligible; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN ASM_REWRITE_TAC[IN_IMAGE_LIFT_DROP; o_THM; LIFT_DROP]);; let REAL_BEPPO_LEVI_MONOTONE_CONVERGENCE_INCREASING = prove (`!f s. (!k. (f k) real_integrable_on s) /\ (!k x. x IN s ==> f k x <= f (SUC k) x) /\ real_bounded {real_integral s (f k) | k IN (:num)} ==> ?g k. real_negligible k /\ (!x. x IN (s DIFF k) ==> ((\k. f k x) ---> g x) sequentially) /\ g real_integrable_on s /\ ((\k. real_integral s (f k)) ---> real_integral s g) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`; `IMAGE lift s`] BEPPO_LEVI_MONOTONE_CONVERGENCE_INCREASING) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN SUBGOAL_THEN `!k:num. real_integral s (f k) = drop(integral (IMAGE lift s) (lift o f k o drop))` (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM NORM_1] THEN DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL [REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `k:real^1->bool`] THEN REWRITE_TAC[IMP_IMP; LIFT_DROP] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`drop o g o lift`; `IMAGE drop k`] THEN ASM_REWRITE_TAC[real_negligible; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN ASM_REWRITE_TAC[IN_IMAGE_LIFT_DROP; o_THM; LIFT_DROP; ETA_AX] THEN SUBGOAL_THEN `real_integral s (drop o g o lift) = drop(integral (IMAGE lift s) (lift o (drop o g o lift) o drop))` SUBST1_TAC THENL [MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF; LIFT_DROP; ETA_AX]; ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]]);; let REAL_BEPPO_LEVI_MONOTONE_CONVERGENCE_DECREASING = prove (`!f s. (!k. (f k) real_integrable_on s) /\ (!k x. x IN s ==> f (SUC k) x <= f k x) /\ real_bounded {real_integral s (f k) | k IN (:num)} ==> ?g k. real_negligible k /\ (!x. x IN (s DIFF k) ==> ((\k. f k x) ---> g x) sequentially) /\ g real_integrable_on s /\ ((\k. real_integral s (f k)) ---> real_integral s g) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`; `IMAGE lift s`] BEPPO_LEVI_MONOTONE_CONVERGENCE_DECREASING) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF] THEN SUBGOAL_THEN `!k:num. real_integral s (f k) = drop(integral (IMAGE lift s) (lift o f k o drop))` (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV; GSYM NORM_1] THEN DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN ANTS_TAC THENL [REWRITE_TAC[bounded] THEN EXISTS_TAC `B:real` THEN RULE_ASSUM_TAC(REWRITE_RULE[o_DEF]) THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; IN_DIFF; IMP_CONJ; FORALL_IN_IMAGE] THEN MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `k:real^1->bool`] THEN REWRITE_TAC[IMP_IMP; LIFT_DROP] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`drop o g o lift`; `IMAGE drop k`] THEN ASM_REWRITE_TAC[real_negligible; GSYM IMAGE_o; IMAGE_LIFT_DROP] THEN ASM_REWRITE_TAC[IN_IMAGE_LIFT_DROP; o_THM; LIFT_DROP; ETA_AX] THEN SUBGOAL_THEN `real_integral s (drop o g o lift) = drop(integral (IMAGE lift s) (lift o (drop o g o lift) o drop))` SUBST1_TAC THENL [MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF; LIFT_DROP; ETA_AX]; ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]]);; let REAL_INTEGRAL_ABS_BOUND_INTEGRAL = prove (`!f:real->real g s. f real_integrable_on s /\ g real_integrable_on s /\ (!x. x IN s ==> abs(f x) <= g x) ==> abs(real_integral s f) <= real_integral s g`, SIMP_TAC[REAL_INTEGRAL; GSYM NORM_1] THEN SIMP_TAC[REAL_INTEGRABLE_ON; INTEGRAL_NORM_BOUND_INTEGRAL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRAL_NORM_BOUND_INTEGRAL THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; NORM_LIFT]);; let ABSOLUTELY_REAL_INTEGRABLE_LE = prove (`!f:real->real s. f absolutely_real_integrable_on s ==> abs(real_integral s f) <= real_integral s (\x. abs(f x))`, SIMP_TAC[absolutely_real_integrable_on] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_ABS_BOUND_INTEGRAL THEN ASM_REWRITE_TAC[REAL_LE_REFL]);; let ABSOLUTELY_REAL_INTEGRABLE_0 = prove (`!s. (\x. &0) absolutely_real_integrable_on s`, REWRITE_TAC[absolutely_real_integrable_on; REAL_ABS_NUM; REAL_INTEGRABLE_0]);; let ABSOLUTELY_REAL_INTEGRABLE_CONST = prove (`!a b c. (\x. c) absolutely_real_integrable_on real_interval[a,b]`, REWRITE_TAC[absolutely_real_integrable_on; REAL_INTEGRABLE_CONST]);; let ABSOLUTELY_REAL_INTEGRABLE_LMUL = prove (`!f s c. f absolutely_real_integrable_on s ==> (\x. c * f(x)) absolutely_real_integrable_on s`, SIMP_TAC[absolutely_real_integrable_on; REAL_INTEGRABLE_LMUL; REAL_ABS_MUL]);; let ABSOLUTELY_REAL_INTEGRABLE_RMUL = prove (`!f s c. f absolutely_real_integrable_on s ==> (\x. f(x) * c) absolutely_real_integrable_on s`, SIMP_TAC[absolutely_real_integrable_on; REAL_INTEGRABLE_RMUL; REAL_ABS_MUL]);; let ABSOLUTELY_REAL_INTEGRABLE_NEG = prove (`!f s. f absolutely_real_integrable_on s ==> (\x. --f(x)) absolutely_real_integrable_on s`, SIMP_TAC[absolutely_real_integrable_on; REAL_INTEGRABLE_NEG; REAL_ABS_NEG]);; let ABSOLUTELY_REAL_INTEGRABLE_ABS = prove (`!f s. f absolutely_real_integrable_on s ==> (\x. abs(f x)) absolutely_real_integrable_on s`, SIMP_TAC[absolutely_real_integrable_on; REAL_ABS_ABS]);; let ABSOLUTELY_REAL_INTEGRABLE_ON_SUBINTERVAL = prove (`!f:real->real s a b. f absolutely_real_integrable_on s /\ real_interval[a,b] SUBSET s ==> f absolutely_real_integrable_on real_interval[a,b]`, REWRITE_TAC[absolutely_real_integrable_on] THEN MESON_TAC[REAL_INTEGRABLE_ON_SUBINTERVAL]);; let ABSOLUTELY_REAL_INTEGRABLE_RESTRICT_UNIV = prove (`!f s. (\x. if x IN s then f x else &0) absolutely_real_integrable_on (:real) <=> f absolutely_real_integrable_on s`, REWRITE_TAC[absolutely_real_integrable_on; REAL_INTEGRABLE_RESTRICT_UNIV; COND_RAND; REAL_ABS_NUM]);; let ABSOLUTELY_REAL_INTEGRABLE_ADD = prove (`!f:real->real g s. f absolutely_real_integrable_on s /\ g absolutely_real_integrable_on s ==> (\x. f(x) + g(x)) absolutely_real_integrable_on s`, REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_ON] THEN SIMP_TAC[o_DEF; LIFT_ADD; ABSOLUTELY_INTEGRABLE_ADD]);; let ABSOLUTELY_REAL_INTEGRABLE_SUB = prove (`!f:real->real g s. f absolutely_real_integrable_on s /\ g absolutely_real_integrable_on s ==> (\x. f(x) - g(x)) absolutely_real_integrable_on s`, REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_ON] THEN SIMP_TAC[o_DEF; LIFT_SUB; ABSOLUTELY_INTEGRABLE_SUB]);; let ABSOLUTELY_REAL_INTEGRABLE_LINEAR = prove (`!f h s. f absolutely_real_integrable_on s /\ linear(lift o h o drop) ==> (h o f) absolutely_real_integrable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_ON] THEN DISCH_THEN(MP_TAC o MATCH_MP ABSOLUTELY_INTEGRABLE_LINEAR) THEN REWRITE_TAC[o_DEF; LIFT_DROP]);; let ABSOLUTELY_REAL_INTEGRABLE_SUM = prove (`!f:A->real->real s t. FINITE t /\ (!a. a IN t ==> (f a) absolutely_real_integrable_on s) ==> (\x. sum t (\a. f a x)) absolutely_real_integrable_on s`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; ABSOLUTELY_REAL_INTEGRABLE_0; IN_INSERT; ABSOLUTELY_REAL_INTEGRABLE_ADD; ETA_AX]);; let ABSOLUTELY_REAL_INTEGRABLE_MAX = prove (`!f:real->real g:real->real s. f absolutely_real_integrable_on s /\ g absolutely_real_integrable_on s ==> (\x. max (f x) (g x)) absolutely_real_integrable_on s`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH `max a b = &1 / &2 * ((a + b) + abs(a - b))`] THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_LMUL THEN ASM_SIMP_TAC[ABSOLUTELY_REAL_INTEGRABLE_SUB; ABSOLUTELY_REAL_INTEGRABLE_ADD; ABSOLUTELY_REAL_INTEGRABLE_ABS]);; let ABSOLUTELY_REAL_INTEGRABLE_MIN = prove (`!f:real->real g:real->real s. f absolutely_real_integrable_on s /\ g absolutely_real_integrable_on s ==> (\x. min (f x) (g x)) absolutely_real_integrable_on s`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH `min a b = &1 / &2 * ((a + b) - abs(a - b))`] THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_LMUL THEN ASM_SIMP_TAC[ABSOLUTELY_REAL_INTEGRABLE_SUB; ABSOLUTELY_REAL_INTEGRABLE_ADD; ABSOLUTELY_REAL_INTEGRABLE_ABS]);; let ABSOLUTELY_REAL_INTEGRABLE_IMP_INTEGRABLE = prove (`!f s. f absolutely_real_integrable_on s ==> f real_integrable_on s`, SIMP_TAC[absolutely_real_integrable_on]);; let ABSOLUTELY_REAL_INTEGRABLE_CONTINUOUS = prove (`!f a b. f real_continuous_on real_interval[a,b] ==> f absolutely_real_integrable_on real_interval[a,b]`, REWRITE_TAC[REAL_CONTINUOUS_ON; ABSOLUTELY_REAL_INTEGRABLE_ON; has_real_integral; GSYM integrable_on; GSYM EXISTS_LIFT] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; ABSOLUTELY_INTEGRABLE_CONTINUOUS]);; let NONNEGATIVE_ABSOLUTELY_REAL_INTEGRABLE = prove (`!f s. (!x. x IN s ==> &0 <= f(x)) /\ f real_integrable_on s ==> f absolutely_real_integrable_on s`, SIMP_TAC[absolutely_real_integrable_on] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRABLE_EQ THEN EXISTS_TAC `f:real->real` THEN ASM_SIMP_TAC[real_abs]);; let ABSOLUTELY_REAL_INTEGRABLE_INTEGRABLE_BOUND = prove (`!f:real->real g s. (!x. x IN s ==> abs(f x) <= g x) /\ f real_integrable_on s /\ g real_integrable_on s ==> f absolutely_real_integrable_on s`, REWRITE_TAC[REAL_INTEGRABLE_ON; ABSOLUTELY_REAL_INTEGRABLE_ON] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_INTEGRABLE_BOUND THEN EXISTS_TAC `lift o g o drop` THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP; NORM_LIFT]);; let ABSOLUTELY_REAL_INTEGRABLE_ABSOLUTELY_REAL_INTEGRABLE_BOUND = prove (`!f:real->real g:real->real s. (!x. x IN s ==> abs(f x) <= abs(g x)) /\ f real_integrable_on s /\ g absolutely_real_integrable_on s ==> f absolutely_real_integrable_on s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_INTEGRABLE_BOUND THEN EXISTS_TAC `\x:real. abs(g x)` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[absolutely_real_integrable_on]) THEN ASM_REWRITE_TAC[]);; let ABSOLUTELY_REAL_INTEGRABLE_ABSOLUTELY_REAL_INTEGRABLE_UBOUND = prove (`!f:real->real g:real->real s. (!x. x IN s ==> f x <= g x) /\ f real_integrable_on s /\ g absolutely_real_integrable_on s ==> g absolutely_real_integrable_on s`, REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_ON; REAL_INTEGRABLE_ON] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_ABSOLUTELY_INTEGRABLE_COMPONENT_UBOUND THEN EXISTS_TAC `lift o g o drop` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[IMP_IMP; DIMINDEX_1; FORALL_1; o_THM; LIFT_DROP; GSYM drop]);; let ABSOLUTELY_REAL_INTEGRABLE_ABSOLUTELY_REAL_INTEGRABLE_LBOUND = prove (`!f:real->real g:real->real s. (!x. x IN s ==> f x <= g x) /\ f absolutely_real_integrable_on s /\ g real_integrable_on s ==> g absolutely_real_integrable_on s`, REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_ON; REAL_INTEGRABLE_ON] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_ABSOLUTELY_INTEGRABLE_COMPONENT_LBOUND THEN EXISTS_TAC `lift o f o drop` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[IMP_IMP; DIMINDEX_1; FORALL_1; o_THM; LIFT_DROP; GSYM drop]);; let ABSOLUTELY_REAL_INTEGRABLE_INF = prove (`!fs s:real->bool k:A->bool. FINITE k /\ ~(k = {}) /\ (!i. i IN k ==> (\x. fs x i) absolutely_real_integrable_on s) ==> (\x. inf (IMAGE (fs x) k)) absolutely_real_integrable_on s`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IMAGE_CLAUSES] THEN SIMP_TAC[INF_INSERT_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN MAP_EVERY X_GEN_TAC [`a:A`; `k:A->bool`] THEN ASM_CASES_TAC `k:A->bool = {}` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[IN_SING; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_MIN THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_INSERT]);; let ABSOLUTELY_REAL_INTEGRABLE_SUP = prove (`!fs s:real->bool k:A->bool. FINITE k /\ ~(k = {}) /\ (!i. i IN k ==> (\x. fs x i) absolutely_real_integrable_on s) ==> (\x. sup (IMAGE (fs x) k)) absolutely_real_integrable_on s`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN REWRITE_TAC[IMAGE_CLAUSES] THEN SIMP_TAC[SUP_INSERT_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN MAP_EVERY X_GEN_TAC [`a:A`; `k:A->bool`] THEN ASM_CASES_TAC `k:A->bool = {}` THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[IN_SING; LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_MAX THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_INSERT]);; let REAL_DOMINATED_CONVERGENCE = prove (`!f:num->real->real g h s. (!k. (f k) real_integrable_on s) /\ h real_integrable_on s /\ (!k x. x IN s ==> abs(f k x) <= h x) /\ (!x. x IN s ==> ((\k. f k x) ---> g x) sequentially) ==> g real_integrable_on s /\ ((\k. real_integral s (f k)) ---> real_integral s g) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_INTEGRABLE_ON; TENDSTO_REAL] THEN REWRITE_TAC[o_DEF] THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n x. lift(f (n:num) (drop x))`; `lift o g o drop`; `lift o h o drop`; `IMAGE lift s`] DOMINATED_CONVERGENCE) THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; LIFT_DROP; o_DEF; NORM_LIFT] THEN SUBGOAL_THEN `!k:num. real_integral s (f k) = drop(integral (IMAGE lift s) (lift o f k o drop))` (fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN REWRITE_TAC[th]) THENL [GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]; ALL_TAC] THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN REWRITE_TAC[LIFT_DROP] THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC REAL_INTEGRAL THEN ASM_REWRITE_TAC[REAL_INTEGRABLE_ON; o_DEF]);; let HAS_REAL_MEASURE_HAS_MEASURE = prove (`!s m. s has_real_measure m <=> (IMAGE lift s) has_measure m`, REWRITE_TAC[has_real_measure; has_measure; has_real_integral] THEN REWRITE_TAC[o_DEF; LIFT_NUM]);; let REAL_MEASURABLE_MEASURABLE = prove (`!s. real_measurable s <=> measurable(IMAGE lift s)`, REWRITE_TAC[real_measurable; measurable; HAS_REAL_MEASURE_HAS_MEASURE]);; let REAL_MEASURE_MEASURE = prove (`!s. real_measure s = measure (IMAGE lift s)`, REWRITE_TAC[real_measure; measure; HAS_REAL_MEASURE_HAS_MEASURE]);; let HAS_REAL_MEASURE_MEASURE = prove (`!s. real_measurable s <=> s has_real_measure (real_measure s)`, REWRITE_TAC[real_measure; real_measurable] THEN MESON_TAC[]);; let HAS_REAL_MEASURE_UNIQUE = prove (`!s m1 m2. s has_real_measure m1 /\ s has_real_measure m2 ==> m1 = m2`, REWRITE_TAC[has_real_measure] THEN MESON_TAC[HAS_REAL_INTEGRAL_UNIQUE]);; let REAL_MEASURE_UNIQUE = prove (`!s m. s has_real_measure m ==> real_measure s = m`, MESON_TAC[HAS_REAL_MEASURE_UNIQUE; HAS_REAL_MEASURE_MEASURE; real_measurable]);; let HAS_REAL_MEASURE_REAL_MEASURABLE_REAL_MEASURE = prove (`!s m. s has_real_measure m <=> real_measurable s /\ real_measure s = m`, REWRITE_TAC[HAS_REAL_MEASURE_MEASURE] THEN MESON_TAC[REAL_MEASURE_UNIQUE]);; let HAS_REAL_MEASURE_IMP_REAL_MEASURABLE = prove (`!s m. s has_real_measure m ==> real_measurable s`, REWRITE_TAC[real_measurable] THEN MESON_TAC[]);; let HAS_REAL_MEASURE = prove (`!s m. s has_real_measure m <=> ((\x. if x IN s then &1 else &0) has_real_integral m) (:real)`, SIMP_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV; has_real_measure]);; let REAL_MEASURABLE = prove (`!s. real_measurable s <=> (\x. &1) real_integrable_on s`, REWRITE_TAC[real_measurable; real_integrable_on; has_real_measure; EXISTS_DROP; LIFT_DROP]);; let REAL_MEASURABLE_REAL_INTEGRABLE = prove (`real_measurable s <=> (\x. if x IN s then &1 else &0) real_integrable_on UNIV`, REWRITE_TAC[real_measurable; real_integrable_on; HAS_REAL_MEASURE]);; let REAL_MEASURE_REAL_INTEGRAL = prove (`!s. real_measurable s ==> real_measure s = real_integral s (\x. &1)`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN ASM_REWRITE_TAC[GSYM has_real_measure; GSYM HAS_REAL_MEASURE_MEASURE]);; let REAL_MEASURE_REAL_INTEGRAL_UNIV = prove (`!s. real_measurable s ==> real_measure s = real_integral UNIV (\x. if x IN s then &1 else &0)`, REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN ASM_REWRITE_TAC[GSYM HAS_REAL_MEASURE; GSYM HAS_REAL_MEASURE_MEASURE]);; let REAL_INTEGRAL_REAL_MEASURE = prove (`!s. real_measurable s ==> real_integral s (\x. &1) = real_measure s`, SIMP_TAC[GSYM DROP_EQ; LIFT_DROP; REAL_MEASURE_REAL_INTEGRAL]);; let REAL_INTEGRAL_REAL_MEASURE_UNIV = prove (`!s. real_measurable s ==> real_integral UNIV (\x. if x IN s then &1 else &0) = real_measure s`, SIMP_TAC[REAL_MEASURE_REAL_INTEGRAL_UNIV]);; let HAS_REAL_MEASURE_REAL_INTERVAL = prove (`(!a b. real_interval[a,b] has_real_measure (max (b - a) (&0))) /\ (!a b. real_interval(a,b) has_real_measure (max (b - a) (&0)))`, REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; IMAGE_LIFT_REAL_INTERVAL] THEN REWRITE_TAC[HAS_MEASURE_MEASURABLE_MEASURE; MEASURABLE_INTERVAL; MEASURE_INTERVAL] THEN REWRITE_TAC[CONTENT_CLOSED_INTERVAL_CASES; DIMINDEX_1; FORALL_1] THEN REWRITE_TAC[PRODUCT_1; GSYM drop; LIFT_DROP] THEN REAL_ARITH_TAC);; let REAL_MEASURABLE_REAL_INTERVAL = prove (`(!a b. real_measurable (real_interval[a,b])) /\ (!a b. real_measurable (real_interval(a,b)))`, REWRITE_TAC[real_measurable] THEN MESON_TAC[HAS_REAL_MEASURE_REAL_INTERVAL]);; let REAL_MEASURE_REAL_INTERVAL = prove (`(!a b. real_measure(real_interval[a,b]) = max (b - a) (&0)) /\ (!a b. real_measure(real_interval(a,b)) = max (b - a) (&0))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN REWRITE_TAC[HAS_REAL_MEASURE_REAL_INTERVAL]);; let REAL_MEASURABLE_INTER = prove (`!s t. real_measurable s /\ real_measurable t ==> real_measurable (s INTER t)`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_MEASURABLE_MEASURABLE] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_INTER) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[LIFT_DROP]);; let REAL_MEASURABLE_UNION = prove (`!s t. real_measurable s /\ real_measurable t ==> real_measurable (s UNION t)`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_MEASURABLE_MEASURABLE] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_UNION) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[LIFT_DROP]);; let HAS_REAL_MEASURE_DISJOINT_UNION = prove (`!s1 s2 m1 m2. s1 has_real_measure m1 /\ s2 has_real_measure m2 /\ DISJOINT s1 s2 ==> (s1 UNION s2) has_real_measure (m1 + m2)`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; IMAGE_UNION] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_MEASURE_DISJOINT_UNION THEN ASM SET_TAC[LIFT_DROP]);; let REAL_MEASURE_DISJOINT_UNION = prove (`!s t. real_measurable s /\ real_measurable t /\ DISJOINT s t ==> real_measure(s UNION t) = real_measure s + real_measure t`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_MEASURE_DISJOINT_UNION; GSYM HAS_REAL_MEASURE_MEASURE]);; let HAS_REAL_MEASURE_POS_LE = prove (`!m s. s has_real_measure m ==> &0 <= m`, REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; HAS_MEASURE_POS_LE]);; let REAL_MEASURE_POS_LE = prove (`!s. real_measurable s ==> &0 <= real_measure s`, REWRITE_TAC[HAS_REAL_MEASURE_MEASURE; HAS_REAL_MEASURE_POS_LE]);; let HAS_REAL_MEASURE_SUBSET = prove (`!s1 s2 m1 m2. s1 has_real_measure m1 /\ s2 has_real_measure m2 /\ s1 SUBSET s2 ==> m1 <= m2`, REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPECL [`IMAGE lift s1`; `IMAGE lift s2`] HAS_MEASURE_SUBSET) THEN ASM SET_TAC[HAS_MEASURE_SUBSET]);; let REAL_MEASURE_SUBSET = prove (`!s t. real_measurable s /\ real_measurable t /\ s SUBSET t ==> real_measure s <= real_measure t`, REWRITE_TAC[HAS_REAL_MEASURE_MEASURE] THEN MESON_TAC[HAS_REAL_MEASURE_SUBSET]);; let HAS_REAL_MEASURE_0 = prove (`!s. s has_real_measure &0 <=> real_negligible s`, REWRITE_TAC[real_negligible; HAS_REAL_MEASURE_HAS_MEASURE] THEN REWRITE_TAC[HAS_MEASURE_0]);; let REAL_MEASURE_EQ_0 = prove (`!s. real_negligible s ==> real_measure s = &0`, MESON_TAC[REAL_MEASURE_UNIQUE; HAS_REAL_MEASURE_0]);; let HAS_REAL_MEASURE_EMPTY = prove (`{} has_real_measure &0`, REWRITE_TAC[HAS_REAL_MEASURE_0; REAL_NEGLIGIBLE_EMPTY]);; let REAL_MEASURE_EMPTY = prove (`real_measure {} = &0`, SIMP_TAC[REAL_MEASURE_EQ_0; REAL_NEGLIGIBLE_EMPTY]);; let REAL_MEASURABLE_EMPTY = prove (`real_measurable {}`, REWRITE_TAC[real_measurable] THEN MESON_TAC[HAS_REAL_MEASURE_EMPTY]);; let REAL_MEASURABLE_REAL_MEASURE_EQ_0 = prove (`!s. real_measurable s ==> (real_measure s = &0 <=> real_negligible s)`, REWRITE_TAC[HAS_REAL_MEASURE_MEASURE; GSYM HAS_REAL_MEASURE_0] THEN MESON_TAC[REAL_MEASURE_UNIQUE]);; let REAL_MEASURABLE_REAL_MEASURE_POS_LT = prove (`!s. real_measurable s ==> (&0 < real_measure s <=> ~real_negligible s)`, SIMP_TAC[REAL_LT_LE; REAL_MEASURE_POS_LE; GSYM REAL_MEASURABLE_REAL_MEASURE_EQ_0] THEN REWRITE_TAC[EQ_SYM_EQ]);; let REAL_NEGLIGIBLE_REAL_INTERVAL = prove (`(!a b. real_negligible(real_interval[a,b]) <=> real_interval(a,b) = {}) /\ (!a b. real_negligible(real_interval(a,b)) <=> real_interval(a,b) = {})`, REWRITE_TAC[real_negligible; IMAGE_LIFT_REAL_INTERVAL] THEN REWRITE_TAC[NEGLIGIBLE_INTERVAL] THEN REWRITE_TAC[REAL_INTERVAL_EQ_EMPTY; INTERVAL_EQ_EMPTY_1; LIFT_DROP]);; let REAL_MEASURABLE_UNIONS = prove (`!f. FINITE f /\ (!s. s IN f ==> real_measurable s) ==> real_measurable (UNIONS f)`, REWRITE_TAC[REAL_MEASURABLE_MEASURABLE; IMAGE_UNIONS] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURABLE_UNIONS THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE]);; let HAS_REAL_MEASURE_DIFF_SUBSET = prove (`!s1 s2 m1 m2. s1 has_real_measure m1 /\ s2 has_real_measure m2 /\ s2 SUBSET s1 ==> (s1 DIFF s2) has_real_measure (m1 - m2)`, REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE] THEN REPEAT STRIP_TAC THEN SIMP_TAC[IMAGE_DIFF_INJ; LIFT_EQ] THEN MATCH_MP_TAC HAS_MEASURE_DIFF_SUBSET THEN ASM_SIMP_TAC[IMAGE_SUBSET]);; let REAL_MEASURABLE_DIFF = prove (`!s t. real_measurable s /\ real_measurable t ==> real_measurable (s DIFF t)`, SIMP_TAC[REAL_MEASURABLE_MEASURABLE; IMAGE_DIFF_INJ; LIFT_EQ] THEN REWRITE_TAC[MEASURABLE_DIFF]);; let REAL_MEASURE_DIFF_SUBSET = prove (`!s t. real_measurable s /\ real_measurable t /\ t SUBSET s ==> real_measure(s DIFF t) = real_measure s - real_measure t`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_MEASURE_DIFF_SUBSET; GSYM HAS_REAL_MEASURE_MEASURE]);; let HAS_REAL_MEASURE_UNION_REAL_NEGLIGIBLE = prove (`!s t m. s has_real_measure m /\ real_negligible t ==> (s UNION t) has_real_measure m`, REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible; IMAGE_UNION] THEN REWRITE_TAC[HAS_MEASURE_UNION_NEGLIGIBLE]);; let HAS_REAL_MEASURE_DIFF_REAL_NEGLIGIBLE = prove (`!s t m. s has_real_measure m /\ real_negligible t ==> (s DIFF t) has_real_measure m`, REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible] THEN SIMP_TAC[IMAGE_DIFF_INJ; LIFT_EQ] THEN REWRITE_TAC[HAS_MEASURE_DIFF_NEGLIGIBLE]);; let HAS_REAL_MEASURE_UNION_REAL_NEGLIGIBLE_EQ = prove (`!s t m. real_negligible t ==> ((s UNION t) has_real_measure m <=> s has_real_measure m)`, REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible; IMAGE_UNION] THEN REWRITE_TAC[HAS_MEASURE_UNION_NEGLIGIBLE_EQ]);; let HAS_REAL_MEASURE_DIFF_REAL_NEGLIGIBLE_EQ = prove (`!s t m. real_negligible t ==> ((s DIFF t) has_real_measure m <=> s has_real_measure m)`, REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible] THEN SIMP_TAC[IMAGE_DIFF_INJ; LIFT_EQ] THEN REWRITE_TAC[HAS_MEASURE_DIFF_NEGLIGIBLE_EQ]);; let HAS_REAL_MEASURE_ALMOST = prove (`!s s' t m. s has_real_measure m /\ real_negligible t /\ s UNION t = s' UNION t ==> s' has_real_measure m`, REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible; IMAGE_UNION] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_MEASURE_ALMOST THEN MAP_EVERY EXISTS_TAC [`IMAGE lift s`; `IMAGE lift t`] THEN ASM SET_TAC[]);; let HAS_REAL_MEASURE_ALMOST_EQ = prove (`!s s' t. real_negligible t /\ s UNION t = s' UNION t ==> (s has_real_measure m <=> s' has_real_measure m)`, MESON_TAC[HAS_REAL_MEASURE_ALMOST]);; let REAL_MEASURABLE_ALMOST = prove (`!s s' t. real_measurable s /\ real_negligible t /\ s UNION t = s' UNION t ==> real_measurable s'`, REWRITE_TAC[real_measurable] THEN MESON_TAC[HAS_REAL_MEASURE_ALMOST]);; let HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNION = prove (`!s1 s2 m1 m2. s1 has_real_measure m1 /\ s2 has_real_measure m2 /\ real_negligible(s1 INTER s2) ==> (s1 UNION s2) has_real_measure (m1 + m2)`, REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE; real_negligible; IMAGE_UNION] THEN SIMP_TAC[IMAGE_INTER_INJ; LIFT_EQ] THEN REWRITE_TAC[HAS_MEASURE_NEGLIGIBLE_UNION]);; let REAL_MEASURE_REAL_NEGLIGIBLE_UNION = prove (`!s t. real_measurable s /\ real_measurable t /\ real_negligible(s INTER t) ==> real_measure(s UNION t) = real_measure s + real_measure t`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNION; GSYM HAS_REAL_MEASURE_MEASURE]);; let HAS_REAL_MEASURE_REAL_NEGLIGIBLE_SYMDIFF = prove (`!s t m. s has_real_measure m /\ real_negligible((s DIFF t) UNION (t DIFF s)) ==> t has_real_measure m`, REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_MEASURE_ALMOST THEN MAP_EVERY EXISTS_TAC [`s:real->bool`; `(s DIFF t) UNION (t DIFF s):real->bool`] THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);; let REAL_MEASURABLE_REAL_NEGLIGIBLE_SYMDIFF = prove (`!s t. real_measurable s /\ real_negligible((s DIFF t) UNION (t DIFF s)) ==> real_measurable t`, REWRITE_TAC[real_measurable] THEN MESON_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_SYMDIFF]);; let REAL_MEASURE_REAL_NEGLIGIBLE_SYMDIFF = prove (`!s t. (real_measurable s \/ real_measurable t) /\ real_negligible((s DIFF t) UNION (t DIFF s)) ==> real_measure s = real_measure t`, MESON_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_SYMDIFF; REAL_MEASURE_UNIQUE; UNION_COMM; HAS_REAL_MEASURE_MEASURE]);; let HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS = prove (`!m f. FINITE f /\ (!s. s IN f ==> s has_real_measure (m s)) /\ (!s t. s IN f /\ t IN f /\ ~(s = t) ==> real_negligible(s INTER t)) ==> (UNIONS f) has_real_measure (sum f m)`, GEN_TAC THEN ONCE_REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[SUM_CLAUSES; UNIONS_0; UNIONS_INSERT; HAS_REAL_MEASURE_EMPTY] THEN REWRITE_TAC[IN_INSERT] THEN MAP_EVERY X_GEN_TAC [`s:real->bool`; `f:(real->bool)->bool`] THEN STRIP_TAC THEN STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNION THEN REPEAT(CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN REWRITE_TAC[INTER_UNIONS] THEN MATCH_MP_TAC REAL_NEGLIGIBLE_UNIONS THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_MESON_TAC[]);; let REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS = prove (`!m f. FINITE f /\ (!s. s IN f ==> s has_real_measure (m s)) /\ (!s t. s IN f /\ t IN f /\ ~(s = t) ==> real_negligible(s INTER t)) ==> real_measure(UNIONS f) = sum f m`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS]);; let HAS_REAL_MEASURE_DISJOINT_UNIONS = prove (`!m f. FINITE f /\ (!s. s IN f ==> s has_real_measure (m s)) /\ (!s t. s IN f /\ t IN f /\ ~(s = t) ==> DISJOINT s t) ==> (UNIONS f) has_real_measure (sum f m)`, REWRITE_TAC[DISJOINT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS THEN ASM_SIMP_TAC[REAL_NEGLIGIBLE_EMPTY]);; let REAL_MEASURE_DISJOINT_UNIONS = prove (`!m f:(real->bool)->bool. FINITE f /\ (!s. s IN f ==> s has_real_measure (m s)) /\ (!s t. s IN f /\ t IN f /\ ~(s = t) ==> DISJOINT s t) ==> real_measure(UNIONS f) = sum f m`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_MEASURE_DISJOINT_UNIONS]);; let HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE = prove (`!f:A->(real->bool) s. FINITE s /\ (!x. x IN s ==> real_measurable(f x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> real_negligible((f x) INTER (f y))) ==> (UNIONS (IMAGE f s)) has_real_measure (sum s (\x. real_measure(f x)))`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `sum s (\x. real_measure(f x)) = sum (IMAGE (f:A->real->bool) s) real_measure` SUBST1_TAC THENL [CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC SUM_IMAGE_NONZERO THEN ASM_REWRITE_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `y:A`]) THEN ASM_SIMP_TAC[INTER_ACI; REAL_MEASURABLE_REAL_MEASURE_EQ_0]; MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS THEN ASM_SIMP_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; FORALL_IN_IMAGE] THEN ASM_MESON_TAC[FINITE_IMAGE; HAS_REAL_MEASURE_MEASURE]]);; let REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE = prove (`!f:A->real->bool s. FINITE s /\ (!x. x IN s ==> real_measurable(f x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> real_negligible((f x) INTER (f y))) ==> real_measure(UNIONS (IMAGE f s)) = sum s (\x. real_measure(f x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE]);; let HAS_REAL_MEASURE_DISJOINT_UNIONS_IMAGE = prove (`!f:A->real->bool s. FINITE s /\ (!x. x IN s ==> real_measurable(f x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (f x) (f y)) ==> (UNIONS (IMAGE f s)) has_real_measure (sum s (\x. real_measure(f x)))`, REWRITE_TAC[DISJOINT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE THEN ASM_SIMP_TAC[REAL_NEGLIGIBLE_EMPTY]);; let REAL_MEASURE_DISJOINT_UNIONS_IMAGE = prove (`!f:A->real->bool s. FINITE s /\ (!x. x IN s ==> real_measurable(f x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (f x) (f y)) ==> real_measure(UNIONS (IMAGE f s)) = sum s (\x. real_measure(f x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_MEASURE_DISJOINT_UNIONS_IMAGE]);; let HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE_STRONG = prove (`!f:A->real->bool s. FINITE {x | x IN s /\ ~(f x = {})} /\ (!x. x IN s ==> real_measurable(f x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> real_negligible((f x) INTER (f y))) ==> (UNIONS (IMAGE f s)) has_real_measure (sum s (\x. real_measure(f x)))`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:A->real->bool`; `{x | x IN s /\ ~((f:A->real->bool) x = {})}`] HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE) THEN ASM_SIMP_TAC[IN_ELIM_THM; FINITE_RESTRICT] THEN MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_UNIONS; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[NOT_IN_EMPTY]; CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_SUPERSET THEN SIMP_TAC[SUBSET; IN_ELIM_THM; TAUT `a /\ ~(a /\ b) <=> a /\ ~b`] THEN REWRITE_TAC[REAL_MEASURE_EMPTY]]);; let REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE_STRONG = prove (`!f:A->real->bool s. FINITE {x | x IN s /\ ~(f x = {})} /\ (!x. x IN s ==> real_measurable(f x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> real_negligible((f x) INTER (f y))) ==> real_measure(UNIONS (IMAGE f s)) = sum s (\x. real_measure(f x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE_STRONG]);; let HAS_REAL_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG = prove (`!f:A->real->bool s. FINITE {x | x IN s /\ ~(f x = {})} /\ (!x. x IN s ==> real_measurable(f x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (f x) (f y)) ==> (UNIONS (IMAGE f s)) has_real_measure (sum s (\x. real_measure(f x)))`, REWRITE_TAC[DISJOINT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE_STRONG THEN ASM_SIMP_TAC[REAL_NEGLIGIBLE_EMPTY]);; let REAL_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG = prove (`!f:A->real->bool s. FINITE {x | x IN s /\ ~(f x = {})} /\ (!x. x IN s ==> real_measurable(f x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (f x) (f y)) ==> real_measure(UNIONS (IMAGE f s)) = sum s (\x. real_measure(f x))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG]);; let REAL_MEASURE_UNION = prove (`!s t. real_measurable s /\ real_measurable t ==> real_measure(s UNION t) = real_measure(s) + real_measure(t) - real_measure(s INTER t)`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SET_RULE `s UNION t = (s INTER t) UNION (s DIFF t) UNION (t DIFF s)`] THEN ONCE_REWRITE_TAC[REAL_ARITH `a + b - c:real = c + (a - c) + (b - c)`] THEN MP_TAC(ISPECL [`s DIFF t:real->bool`; `t DIFF s:real->bool`] REAL_MEASURE_DISJOINT_UNION) THEN ASM_SIMP_TAC[REAL_MEASURABLE_DIFF] THEN ANTS_TAC THENL [SET_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`s INTER t:real->bool`; `(s DIFF t) UNION (t DIFF s):real->bool`] REAL_MEASURE_DISJOINT_UNION) THEN ASM_SIMP_TAC[REAL_MEASURABLE_DIFF; REAL_MEASURABLE_UNION; REAL_MEASURABLE_INTER] THEN ANTS_TAC THENL [SET_TAC[]; ALL_TAC] THEN REPEAT(DISCH_THEN SUBST1_TAC) THEN AP_TERM_TAC THEN BINOP_TAC THEN REWRITE_TAC[REAL_EQ_SUB_LADD] THEN MATCH_MP_TAC EQ_TRANS THENL [EXISTS_TAC `real_measure((s DIFF t) UNION (s INTER t):real->bool)`; EXISTS_TAC `real_measure((t DIFF s) UNION (s INTER t):real->bool)`] THEN (CONJ_TAC THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_MEASURE_DISJOINT_UNION THEN ASM_SIMP_TAC[REAL_MEASURABLE_DIFF; REAL_MEASURABLE_INTER]; AP_TERM_TAC] THEN SET_TAC[]));; let REAL_MEASURE_UNION_LE = prove (`!s t. real_measurable s /\ real_measurable t ==> real_measure(s UNION t) <= real_measure s + real_measure t`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[REAL_MEASURE_UNION] THEN REWRITE_TAC[REAL_ARITH `a + b - c <= a + b <=> &0 <= c`] THEN MATCH_MP_TAC REAL_MEASURE_POS_LE THEN ASM_SIMP_TAC[REAL_MEASURABLE_INTER]);; let REAL_MEASURE_UNIONS_LE = prove (`!f. FINITE f /\ (!s. s IN f ==> real_measurable s) ==> real_measure(UNIONS f) <= sum f (\s. real_measure s)`, REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[UNIONS_0; UNIONS_INSERT; SUM_CLAUSES] THEN REWRITE_TAC[REAL_MEASURE_EMPTY; REAL_LE_REFL] THEN MAP_EVERY X_GEN_TAC [`s:real->bool`; `f:(real->bool)->bool`] THEN REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `real_measure(s) + real_measure(UNIONS f)` THEN ASM_SIMP_TAC[REAL_MEASURE_UNION_LE; REAL_MEASURABLE_UNIONS] THEN REWRITE_TAC[REAL_LE_LADD] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[]);; let REAL_MEASURE_UNIONS_LE_IMAGE = prove (`!f:A->bool s:A->(real->bool). FINITE f /\ (!a. a IN f ==> real_measurable(s a)) ==> real_measure(UNIONS (IMAGE s f)) <= sum f (\a. real_measure(s a))`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum (IMAGE s (f:A->bool)) (\k:real->bool. real_measure k)` THEN ASM_SIMP_TAC[REAL_MEASURE_UNIONS_LE; FORALL_IN_IMAGE; FINITE_IMAGE] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN REWRITE_TAC[ETA_AX] THEN MATCH_MP_TAC SUM_IMAGE_LE THEN ASM_SIMP_TAC[REAL_MEASURE_POS_LE]);; let REAL_NEGLIGIBLE_OUTER = prove (`!s. real_negligible s <=> !e. &0 < e ==> ?t. s SUBSET t /\ real_measurable t /\ real_measure t < e`, REWRITE_TAC[real_negligible; REAL_MEASURABLE_MEASURABLE; REAL_MEASURE_MEASURE; SUBSET_LIFT_IMAGE; NEGLIGIBLE_OUTER; EXISTS_LIFT_IMAGE]);; let REAL_NEGLIGIBLE_OUTER_LE = prove (`!s. real_negligible s <=> !e. &0 < e ==> ?t. s SUBSET t /\ real_measurable t /\ real_measure t <= e`, REWRITE_TAC[real_negligible; REAL_MEASURABLE_MEASURABLE; REAL_MEASURE_MEASURE; SUBSET_LIFT_IMAGE; NEGLIGIBLE_OUTER_LE; EXISTS_LIFT_IMAGE]);; let REAL_MEASURABLE_INNER_OUTER = prove (`!s. real_measurable s <=> !e. &0 < e ==> ?t u. t SUBSET s /\ s SUBSET u /\ real_measurable t /\ real_measurable u /\ abs(real_measure t - real_measure u) < e`, GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL [GEN_TAC THEN DISCH_TAC THEN REPEAT(EXISTS_TAC `s:real->bool`) THEN ASM_REWRITE_TAC[SUBSET_REFL; REAL_SUB_REFL; REAL_ABS_NUM]; ALL_TAC] THEN REWRITE_TAC[REAL_MEASURABLE_REAL_INTEGRABLE] THEN MATCH_MP_TAC REAL_INTEGRABLE_STRADDLE THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`t:real->bool`; `u:real->bool`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`(\x. if x IN t then &1 else &0):real->real`; `(\x. if x IN u then &1 else &0):real->real`; `real_measure(t:real->bool)`; `real_measure(u:real->bool)`] THEN ASM_REWRITE_TAC[GSYM HAS_REAL_MEASURE; GSYM HAS_REAL_MEASURE_MEASURE] THEN ASM_REWRITE_TAC[GSYM LIFT_SUB; NORM_LIFT] THEN REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[DROP_VEC; REAL_POS; REAL_LE_REFL]) THEN ASM SET_TAC[]);; let HAS_REAL_MEASURE_INNER_OUTER = prove (`!s m. s has_real_measure m <=> (!e. &0 < e ==> ?t. t SUBSET s /\ real_measurable t /\ m - e < real_measure t) /\ (!e. &0 < e ==> ?u. s SUBSET u /\ real_measurable u /\ real_measure u < m + e)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [HAS_REAL_MEASURE_REAL_MEASURABLE_REAL_MEASURE] THEN EQ_TAC THENL [REPEAT STRIP_TAC THEN EXISTS_TAC `s:real->bool` THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "t") (LABEL_TAC "u")) THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [GEN_REWRITE_TAC I [REAL_MEASURABLE_INNER_OUTER] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN REMOVE_THEN "u" (MP_TAC o SPEC `e / &2`) THEN REMOVE_THEN "t" (MP_TAC o SPEC `e / &2`) THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN REWRITE_TAC[IMP_IMP; LEFT_AND_EXISTS_THM] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `&0 < e /\ t <= u /\ m - e / &2 < t /\ u < m + e / &2 ==> abs(t - u) < e`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_MEASURE_SUBSET THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]; DISCH_TAC THEN MATCH_MP_TAC(REAL_ARITH `~(&0 < x - y) /\ ~(&0 < y - x) ==> x = y`) THEN CONJ_TAC THEN DISCH_TAC THENL [REMOVE_THEN "u" (MP_TAC o SPEC `real_measure(s:real->bool) - m`) THEN ASM_REWRITE_TAC[REAL_SUB_ADD2; GSYM REAL_NOT_LE]; REMOVE_THEN "t" (MP_TAC o SPEC `m - real_measure(s:real->bool)`) THEN ASM_REWRITE_TAC[REAL_SUB_SUB2; GSYM REAL_NOT_LE]] THEN ASM_MESON_TAC[REAL_MEASURE_SUBSET]]);; let HAS_REAL_MEASURE_INNER_OUTER_LE = prove (`!s:real->bool m. s has_real_measure m <=> (!e. &0 < e ==> ?t. t SUBSET s /\ real_measurable t /\ m - e <= real_measure t) /\ (!e. &0 < e ==> ?u. s SUBSET u /\ real_measurable u /\ real_measure u <= m + e)`, REWRITE_TAC[HAS_REAL_MEASURE_INNER_OUTER] THEN MESON_TAC[REAL_ARITH `&0 < e /\ m - e / &2 <= t ==> m - e < t`; REAL_ARITH `&0 < e /\ u <= m + e / &2 ==> u < m + e`; REAL_ARITH `&0 < e <=> &0 < e / &2`; REAL_LT_IMP_LE]);; let HAS_REAL_MEASURE_AFFINITY = prove (`!s m c y. s has_real_measure y ==> (IMAGE (\x. m * x + c) s) has_real_measure abs(m) * y`, REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_MEASURE_HAS_MEASURE] THEN DISCH_THEN(MP_TAC o SPECL [`m:real`; `lift c`] o MATCH_MP HAS_MEASURE_AFFINITY) THEN REWRITE_TAC[DIMINDEX_1; REAL_POW_1; GSYM IMAGE_o] THEN MATCH_MP_TAC EQ_IMP THEN REPEAT(AP_THM_TAC THEN AP_TERM_TAC) THEN SIMP_TAC[FUN_EQ_THM; FORALL_DROP; o_THM; LIFT_DROP; LIFT_ADD; LIFT_CMUL]);; let HAS_REAL_MEASURE_SCALING = prove (`!s m y. s has_real_measure y ==> (IMAGE (\x. m * x) s) has_real_measure abs(m) * y`, ONCE_REWRITE_TAC[REAL_ARITH `m * x = m * x + &0`] THEN REWRITE_TAC[REAL_ARITH `abs m * x + &0 = abs m * x`] THEN REWRITE_TAC[HAS_REAL_MEASURE_AFFINITY]);; let HAS_REAL_MEASURE_TRANSLATION = prove (`!s m a. s has_real_measure m ==> (IMAGE (\x. a + x) s) has_real_measure m`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `a + x = &1 * x + a`] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [REAL_ARITH `m = abs(&1) * m`] THEN REWRITE_TAC[HAS_REAL_MEASURE_AFFINITY]);; let REAL_NEGLIGIBLE_TRANSLATION = prove (`!s a. real_negligible s ==> real_negligible (IMAGE (\x. a + x) s)`, SIMP_TAC[GSYM HAS_REAL_MEASURE_0; HAS_REAL_MEASURE_TRANSLATION]);; let HAS_REAL_MEASURE_TRANSLATION_EQ = prove (`!s m. (IMAGE (\x. a + x) s) has_real_measure m <=> s has_real_measure m`, REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[HAS_REAL_MEASURE_TRANSLATION] THEN DISCH_THEN(MP_TAC o SPEC `--a:real` o MATCH_MP HAS_REAL_MEASURE_TRANSLATION) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; REAL_ARITH `--a + a + b:real = b`] THEN SET_TAC[]);; let REAL_NEGLIGIBLE_TRANSLATION_REV = prove (`!s a. real_negligible (IMAGE (\x. a + x) s) ==> real_negligible s`, SIMP_TAC[GSYM HAS_REAL_MEASURE_0; HAS_REAL_MEASURE_TRANSLATION_EQ]);; let REAL_NEGLIGIBLE_TRANSLATION_EQ = prove (`!s a. real_negligible (IMAGE (\x. a + x) s) <=> real_negligible s`, SIMP_TAC[GSYM HAS_REAL_MEASURE_0; HAS_REAL_MEASURE_TRANSLATION_EQ]);; let REAL_MEASURABLE_TRANSLATION = prove (`!s. real_measurable (IMAGE (\x. a + x) s) <=> real_measurable s`, REWRITE_TAC[real_measurable; HAS_REAL_MEASURE_TRANSLATION_EQ]);; let REAL_MEASURE_TRANSLATION = prove (`!s. real_measurable s ==> real_measure(IMAGE (\x. a + x) s) = real_measure s`, REWRITE_TAC[HAS_REAL_MEASURE_MEASURE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_REWRITE_TAC[HAS_REAL_MEASURE_TRANSLATION_EQ]);; let HAS_REAL_MEASURE_SCALING_EQ = prove (`!s m c. ~(c = &0) ==> ((IMAGE (\x. c * x) s) has_real_measure (abs(c) * m) <=> s has_real_measure m)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[HAS_REAL_MEASURE_SCALING] THEN DISCH_THEN(MP_TAC o SPEC `inv(c:real)` o MATCH_MP HAS_REAL_MEASURE_SCALING) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; GSYM REAL_ABS_MUL] THEN REWRITE_TAC[GSYM REAL_POW_MUL; REAL_MUL_ASSOC] THEN ASM_SIMP_TAC[GSYM REAL_ABS_MUL; REAL_MUL_LINV] THEN REWRITE_TAC[REAL_POW_ONE; REAL_ABS_NUM; REAL_MUL_LID] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN SET_TAC[]);; let REAL_MEASURABLE_SCALING = prove (`!s c. real_measurable s ==> real_measurable (IMAGE (\x. c * x) s)`, REWRITE_TAC[real_measurable] THEN MESON_TAC[HAS_REAL_MEASURE_SCALING]);; let REAL_MEASURABLE_SCALING_EQ = prove (`!s c. ~(c = &0) ==> (real_measurable (IMAGE (\x. c * x) s) <=> real_measurable s)`, REPEAT STRIP_TAC THEN EQ_TAC THEN REWRITE_TAC[REAL_MEASURABLE_SCALING] THEN DISCH_THEN(MP_TAC o SPEC `inv c:real` o MATCH_MP REAL_MEASURABLE_SCALING) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; GSYM REAL_ABS_MUL] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_MUL_LID] THEN SET_TAC[]);; let REAL_MEASURE_SCALING = prove (`!s. real_measurable s ==> real_measure(IMAGE (\x. c * x) s) = abs(c) * real_measure s`, REWRITE_TAC[HAS_REAL_MEASURE_MEASURE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURE_UNIQUE THEN ASM_SIMP_TAC[HAS_REAL_MEASURE_SCALING]);; let HAS_REAL_MEASURE_NESTED_UNIONS = prove (`!s B. (!n. real_measurable(s n)) /\ (!n. real_measure(s n) <= B) /\ (!n. s(n) SUBSET s(SUC n)) ==> real_measurable(UNIONS { s(n) | n IN (:num) }) /\ ((\n. real_measure(s n)) ---> real_measure(UNIONS { s(n) | n IN (:num) })) sequentially`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL; o_DEF] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[REAL_MEASURE_MEASURE] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[REAL_MEASURABLE_MEASURABLE] THEN REPEAT(DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN MP_TAC(ISPECL [`IMAGE lift o (s:num->real->bool)`; `B:real`] HAS_MEASURE_NESTED_UNIONS) THEN ASM_SIMP_TAC[o_THM; IMAGE_SUBSET] THEN REWRITE_TAC[SET_RULE `{IMAGE f (s n) | P n} = IMAGE (IMAGE f) {s n | P n}`; GSYM IMAGE_UNIONS] THEN SIMP_TAC[REAL_MEASURE_MEASURE; REAL_MEASURABLE_MEASURABLE]);; let REAL_MEASURABLE_NESTED_UNIONS = prove (`!s B. (!n. real_measurable(s n)) /\ (!n. real_measure(s n) <= B) /\ (!n. s(n) SUBSET s(SUC n)) ==> real_measurable(UNIONS { s(n) | n IN (:num) })`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_MEASURE_NESTED_UNIONS) THEN SIMP_TAC[]);; let HAS_REAL_MEASURE_COUNTABLE_REAL_NEGLIGIBLE_UNIONS = prove (`!s:num->real->bool B. (!n. real_measurable(s n)) /\ (!m n. ~(m = n) ==> real_negligible(s m INTER s n)) /\ (!n. sum (0..n) (\k. real_measure(s k)) <= B) ==> real_measurable(UNIONS { s(n) | n IN (:num) }) /\ ((\n. real_measure(s n)) real_sums real_measure(UNIONS { s(n) | n IN (:num) })) (from 0)`, REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n. UNIONS (IMAGE s (0..n)):real->bool`; `B:real`] HAS_REAL_MEASURE_NESTED_UNIONS) THEN REWRITE_TAC[real_sums; FROM_0; INTER_UNIV] THEN SUBGOAL_THEN `!n. (UNIONS (IMAGE s (0..n)):real->bool) has_real_measure (sum(0..n) (\k. real_measure(s k)))` MP_TAC THENL [GEN_TAC THEN MATCH_MP_TAC HAS_REAL_MEASURE_REAL_NEGLIGIBLE_UNIONS_IMAGE THEN ASM_SIMP_TAC[FINITE_NUMSEG]; ALL_TAC] THEN DISCH_THEN(fun th -> ASSUME_TAC th THEN ASSUME_TAC(GEN `n:num` (MATCH_MP REAL_MEASURE_UNIQUE (SPEC `n:num` th)))) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[real_measurable]; ALL_TAC] THEN GEN_TAC THEN MATCH_MP_TAC SUBSET_UNIONS THEN MATCH_MP_TAC IMAGE_SUBSET THEN REWRITE_TAC[SUBSET; IN_NUMSEG] THEN ARITH_TAC; ALL_TAC] THEN SIMP_TAC[LIFT_SUM; FINITE_NUMSEG; o_DEF] THEN SUBGOAL_THEN `UNIONS {UNIONS (IMAGE s (0..n)) | n IN (:num)}:real->bool = UNIONS (IMAGE s (:num))` (fun th -> REWRITE_TAC[th] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[]) THEN GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_UNIONS] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[EXISTS_IN_IMAGE; EXISTS_IN_UNIONS; IN_UNIV] THEN REWRITE_TAC[IN_UNIONS; EXISTS_IN_IMAGE] THEN REWRITE_TAC[IN_NUMSEG; LE_0] THEN MESON_TAC[LE_REFL]);; let REAL_NEGLIGIBLE_COUNTABLE_UNIONS = prove (`!s:num->real->bool. (!n. real_negligible(s n)) ==> real_negligible(UNIONS {s(n) | n IN (:num)})`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`s:num->real->bool`; `&0`] HAS_REAL_MEASURE_COUNTABLE_REAL_NEGLIGIBLE_UNIONS) THEN ASM_SIMP_TAC[REAL_MEASURE_EQ_0; SUM_0; REAL_LE_REFL; LIFT_NUM] THEN ANTS_TAC THENL [ASM_MESON_TAC[HAS_REAL_MEASURE_0; real_measurable; INTER_SUBSET; REAL_NEGLIGIBLE_SUBSET]; ALL_TAC] THEN SIMP_TAC[GSYM REAL_MEASURABLE_REAL_MEASURE_EQ_0] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_SERIES_UNIQUE THEN REWRITE_TAC[LIFT_NUM] THEN MAP_EVERY EXISTS_TAC [`(\k. &0):num->real`; `from 0`] THEN ASM_REWRITE_TAC[REAL_SERIES_0]);; let REAL_MEASURABLE_COUNTABLE_UNIONS_STRONG = prove (`!s:num->real->bool B. (!n. real_measurable(s n)) /\ (!n. real_measure(UNIONS {s k | k <= n}) <= B) ==> real_measurable(UNIONS { s(n) | n IN (:num) })`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n. UNIONS (IMAGE s (0..n)):real->bool`; `B:real`] REAL_MEASURABLE_NESTED_UNIONS) THEN SUBGOAL_THEN `UNIONS {UNIONS (IMAGE s (0..n)) | n IN (:num)}:real->bool = UNIONS (IMAGE s (:num))` (fun th -> REWRITE_TAC[th]) THENL [GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_UNIONS] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[EXISTS_IN_IMAGE; EXISTS_IN_UNIONS; IN_UNIV] THEN REWRITE_TAC[IN_UNIONS; EXISTS_IN_IMAGE] THEN REWRITE_TAC[IN_NUMSEG; LE_0] THEN MESON_TAC[LE_REFL]; ALL_TAC] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [GEN_TAC THEN MATCH_MP_TAC REAL_MEASURABLE_UNIONS THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE; FINITE_NUMSEG]; ONCE_REWRITE_TAC[GSYM SIMPLE_IMAGE] THEN ASM_REWRITE_TAC[IN_NUMSEG; LE_0]; GEN_TAC THEN MATCH_MP_TAC SUBSET_UNIONS THEN MATCH_MP_TAC IMAGE_SUBSET THEN REWRITE_TAC[SUBSET; IN_NUMSEG; LE_0] THEN ARITH_TAC]);; let HAS_REAL_MEASURE_COUNTABLE_REAL_NEGLIGIBLE_UNIONS_BOUNDED = prove (`!s. (!n. real_measurable(s n)) /\ (!m n. ~(m = n) ==> real_negligible(s m INTER s n)) /\ real_bounded(UNIONS { s(n) | n IN (:num) }) ==> real_measurable(UNIONS { s(n) | n IN (:num) }) /\ ((\n. real_measure(s n)) real_sums real_measure(UNIONS { s(n) | n IN (:num) })) (from 0)`, REPEAT GEN_TAC THEN REWRITE_TAC[TENDSTO_REAL; o_DEF] THEN REWRITE_TAC[REAL_BOUNDED] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_SIMP_TAC[REAL_MEASURE_MEASURE] THEN POP_ASSUM MP_TAC THEN REWRITE_TAC[REAL_MEASURABLE_MEASURABLE; real_negligible] THEN REPEAT(DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN MP_TAC(ISPEC `IMAGE lift o (s:num->real->bool)` HAS_MEASURE_COUNTABLE_NEGLIGIBLE_UNIONS_BOUNDED) THEN ASM_SIMP_TAC[o_THM; IMAGE_SUBSET] THEN REWRITE_TAC[SET_RULE `{IMAGE f (s n) | P n} = IMAGE (IMAGE f) {s n | P n}`; GSYM IMAGE_UNIONS] THEN ASM_SIMP_TAC[GSYM IMAGE_INTER_INJ; LIFT_EQ] THEN SIMP_TAC[REAL_SUMS; o_DEF; REAL_MEASURE_MEASURE; REAL_MEASURABLE_MEASURABLE]);; let REAL_MEASURABLE_COUNTABLE_UNIONS = prove (`!s B. (!n. real_measurable(s n)) /\ (!n. sum (0..n) (\k. real_measure(s k)) <= B) ==> real_measurable(UNIONS { s(n) | n IN (:num) })`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURABLE_COUNTABLE_UNIONS_STRONG THEN EXISTS_TAC `B:real` THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `n:num` THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(0..n) (\k. real_measure(s k:real->bool))` THEN ASM_REWRITE_TAC[] THEN W(MP_TAC o PART_MATCH (rand o rand) REAL_MEASURE_UNIONS_LE_IMAGE o rand o snd) THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN ONCE_REWRITE_TAC[GSYM SIMPLE_IMAGE] THEN REWRITE_TAC[IN_NUMSEG; LE_0]);; let REAL_MEASURABLE_COUNTABLE_UNIONS_BOUNDED = prove (`!s. (!n. real_measurable(s n)) /\ real_bounded(UNIONS { s(n) | n IN (:num) }) ==> real_measurable(UNIONS { s(n) | n IN (:num) })`, REWRITE_TAC[REAL_MEASURABLE_MEASURABLE; REAL_BOUNDED] THEN SIMP_TAC[IMAGE_INTER_INJ; LIFT_EQ; IMAGE_UNIONS] THEN REWRITE_TAC[SET_RULE `IMAGE f {g x | x IN s} = {f(g x) | x IN s}`] THEN REWRITE_TAC[MEASURABLE_COUNTABLE_UNIONS_BOUNDED]);; let REAL_MEASURABLE_COUNTABLE_INTERS = prove (`!s. (!n. real_measurable(s n)) ==> real_measurable(INTERS { s(n) | n IN (:num) })`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `INTERS { s(n):real->bool | n IN (:num) } = s 0 DIFF (UNIONS {s 0 DIFF s n | n IN (:num)})` SUBST1_TAC THENL [GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_INTERS; IN_DIFF; IN_UNIONS] THEN REWRITE_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; EXISTS_IN_IMAGE] THEN ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC REAL_MEASURABLE_DIFF THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_MEASURABLE_COUNTABLE_UNIONS_STRONG THEN EXISTS_TAC `real_measure(s 0:real->bool)` THEN ASM_SIMP_TAC[REAL_MEASURABLE_DIFF; LE_0] THEN GEN_TAC THEN MATCH_MP_TAC REAL_MEASURE_SUBSET THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[SUBSET; FORALL_IN_UNIONS; IN_ELIM_THM; IN_DIFF] THEN MESON_TAC[IN_DIFF]] THEN ONCE_REWRITE_TAC[GSYM IN_NUMSEG_0] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; FINITE_IMAGE; FINITE_NUMSEG; REAL_MEASURABLE_DIFF; REAL_MEASURABLE_UNIONS]);; let REAL_NEGLIGIBLE_COUNTABLE = prove (`!s. COUNTABLE s ==> real_negligible s`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_negligible] THEN MATCH_MP_TAC NEGLIGIBLE_COUNTABLE THEN ASM_SIMP_TAC[COUNTABLE_IMAGE]);; let REAL_MEASURABLE_COMPACT = prove (`!s. real_compact s ==> real_measurable s`, REWRITE_TAC[REAL_MEASURABLE_MEASURABLE; real_compact; MEASURABLE_COMPACT]);; let REAL_MEASURABLE_OPEN = prove (`!s. real_bounded s /\ real_open s ==> real_measurable s`, REWRITE_TAC[REAL_MEASURABLE_MEASURABLE; REAL_OPEN; REAL_BOUNDED; MEASURABLE_OPEN]);; let HAS_REAL_INTEGRAL_NEGLIGIBLE_EQ = prove (`!f s. (!x. x IN s ==> &0 <= f(x)) ==> ((f has_real_integral &0) s <=> real_negligible {x | x IN s /\ ~(f x = &0)})`, REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL [ALL_TAC; MATCH_MP_TAC HAS_REAL_INTEGRAL_NEGLIGIBLE THEN EXISTS_TAC `{x | x IN s /\ ~((f:real->real) x = &0)}` THEN ASM_REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN MESON_TAC[]] THEN MATCH_MP_TAC REAL_NEGLIGIBLE_SUBSET THEN EXISTS_TAC `UNIONS {{x:real | x IN s /\ abs(f x) >= &1 / (&n + &1)} | n IN (:num)}` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_NEGLIGIBLE_COUNTABLE_UNIONS THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[GSYM HAS_REAL_MEASURE_0] THEN REWRITE_TAC[HAS_REAL_MEASURE] THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_STRADDLE_NULL THEN EXISTS_TAC `\x:real. if x IN s then (&n + &1) * f(x) else &0` THEN CONJ_TAC THENL [REWRITE_TAC[IN_UNIV; IN_ELIM_THM; real_ge] THEN X_GEN_TAC `x:real` THEN COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_POS] THENL [ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; REAL_ARITH `&0 < &n + &1`] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ a <= abs x ==> a <= x`) THEN ASM_SIMP_TAC[]; COND_CASES_TAC THEN REWRITE_TAC[REAL_POS] THEN ASM_SIMP_TAC[REAL_POS; REAL_LE_MUL; REAL_LE_ADD]]; REWRITE_TAC[HAS_REAL_INTEGRAL_RESTRICT_UNIV] THEN SUBST1_TAC(REAL_ARITH `&0 = (&n + &1) * &0`) THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_LMUL THEN ASM_REWRITE_TAC[]]; REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:real` THEN REWRITE_TAC[REAL_ABS_NZ] THEN ONCE_REWRITE_TAC[REAL_ARCH_INV] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC)) THEN REWRITE_TAC[IN_UNIONS; EXISTS_IN_GSPEC] THEN EXISTS_TAC `n - 1` THEN ASM_SIMP_TAC[IN_UNIV; IN_ELIM_THM; real_ge] THEN ASM_SIMP_TAC[REAL_OF_NUM_ADD; SUB_ADD; LE_1] THEN ASM_SIMP_TAC[real_div; REAL_MUL_LID; REAL_LT_IMP_LE]]);; (* ------------------------------------------------------------------------- *) (* Integration by parts. *) (* ------------------------------------------------------------------------- *) let REAL_INTEGRATION_BY_PARTS = prove (`!f g f' g' a b c. a <= b /\ COUNTABLE c /\ (\x. f x * g x) real_continuous_on real_interval[a,b] /\ (!x. x IN real_interval(a,b) DIFF c ==> (f has_real_derivative f'(x)) (atreal x) /\ (g has_real_derivative g'(x)) (atreal x)) /\ ((\x. f(x) * g'(x)) has_real_integral ((f b * g b - f a * g a) - y)) (real_interval[a,b]) ==> ((\x. f'(x) * g(x)) has_real_integral y) (real_interval[a,b])`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x. (f:real->real)(x) * g(x)`; `\x. (f:real->real)(x) * g'(x) + f'(x) * g(x)`; `c:real->bool`; `a:real`; `b:real`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG) THEN ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_MUL_ATREAL] THEN FIRST_ASSUM(fun th -> MP_TAC th THEN REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_SUB)) THEN REWRITE_TAC[REAL_ARITH `b - a - (b - a - y):real = y`; REAL_ADD_SUB]);; let REAL_INTEGRATION_BY_PARTS_SIMPLE = prove (`!f g f' g' a b. a <= b /\ (!x. x IN real_interval[a,b] ==> (f has_real_derivative f'(x)) (atreal x within real_interval[a,b]) /\ (g has_real_derivative g'(x)) (atreal x within real_interval[a,b])) /\ ((\x. f(x) * g'(x)) has_real_integral ((f b * g b - f a * g a) - y)) (real_interval[a,b]) ==> ((\x. f'(x) * g(x)) has_real_integral y) (real_interval[a,b])`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x. (f:real->real)(x) * g(x)`; `\x. (f:real->real)(x) * g'(x) + f'(x) * g(x)`; `a:real`; `b:real`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_MUL_WITHIN] THEN FIRST_ASSUM(fun th -> MP_TAC th THEN REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_SUB)) THEN REWRITE_TAC[REAL_ARITH `b - a - (b - a - y):real = y`; REAL_ADD_SUB]);; let REAL_INTEGRABLE_BY_PARTS = prove (`!f g f' g' a b c. COUNTABLE c /\ (\x. f x * g x) real_continuous_on real_interval[a,b] /\ (!x. x IN real_interval(a,b) DIFF c ==> (f has_real_derivative f'(x)) (atreal x) /\ (g has_real_derivative g'(x)) (atreal x)) /\ (\x. f(x) * g'(x)) real_integrable_on real_interval[a,b] ==> (\x. f'(x) * g(x)) real_integrable_on real_interval[a,b]`, REPEAT GEN_TAC THEN DISJ_CASES_TAC(REAL_ARITH `b <= a \/ a <= b`) THEN ASM_SIMP_TAC[REAL_INTEGRABLE_ON_NULL] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN REWRITE_TAC[real_integrable_on] THEN DISCH_THEN(X_CHOOSE_THEN `y:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `((f:real->real) b * g b - f a * g a) - y` THEN MATCH_MP_TAC REAL_INTEGRATION_BY_PARTS THEN MAP_EVERY EXISTS_TAC [`f:real->real`; `g':real->real`; `c:real->bool`] THEN ASM_REWRITE_TAC[REAL_ARITH `b - a - ((b - a) - y):real = y`]);; let REAL_INTEGRABLE_BY_PARTS_EQ = prove (`!f g f' g' a b c. COUNTABLE c /\ (\x. f x * g x) real_continuous_on real_interval[a,b] /\ (!x. x IN real_interval(a,b) DIFF c ==> (f has_real_derivative f'(x)) (atreal x) /\ (g has_real_derivative g'(x)) (atreal x)) ==> ((\x. f(x) * g'(x)) real_integrable_on real_interval[a,b] <=> (\x. f'(x) * g(x)) real_integrable_on real_interval[a,b])`, REPEAT STRIP_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[REAL_INTEGRABLE_BY_PARTS]; DISCH_TAC] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_MP_TAC REAL_INTEGRABLE_BY_PARTS THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_MESON_TAC[]);; let ABSOLUTE_REAL_INTEGRATION_BY_PARTS = prove (`!f g f' g' a b. a <= b /\ f' absolutely_real_integrable_on real_interval[a,b] /\ g' absolutely_real_integrable_on real_interval[a,b] /\ (!x. x IN real_interval[a,b] ==> (f' has_real_integral f(x)) (real_interval[a,x])) /\ (!x. x IN real_interval[a,b] ==> (g' has_real_integral g(x)) (real_interval[a,x])) ==> (\x. f x * g' x) absolutely_real_integrable_on real_interval[a,b] /\ (\x. f' x * g x) absolutely_real_integrable_on real_interval[a,b] /\ real_integral (real_interval[a,b]) (\x. f x * g' x) + real_integral (real_interval[a,b]) (\x. f' x * g x) = f b * g b - f a * g a`, REWRITE_TAC[FORALL_DROP; ABSOLUTELY_REAL_INTEGRABLE_ON; HAS_REAL_INTEGRAL; GSYM IMAGE_DROP_INTERVAL; DROP_IN_IMAGE_DROP] THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; LIFT_DROP; IMAGE_ID] THEN REPEAT GEN_TAC THEN SUBGOAL_THEN `bilinear (\x y. lift(drop x * drop y))` MP_TAC THENL [REWRITE_TAC[bilinear; linear; FORALL_LIFT; LIFT_DROP; DROP_ADD; DROP_CMUL; GSYM LIFT_ADD; LIFT_EQ; GSYM LIFT_CMUL] THEN REAL_ARITH_TAC; REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN DISCH_THEN(MP_TAC o MATCH_MP ABSOLUTE_INTEGRATION_BY_PARTS) THEN REWRITE_TAC[LIFT_DROP] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN ASM_REWRITE_TAC[GSYM LIFT_EQ; LIFT_ADD; LIFT_SUB] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN BINOP_TAC THEN REWRITE_TAC[GSYM DROP_EQ; LIFT_DROP] THEN W(MP_TAC o PART_MATCH (lhs o rand) REAL_INTEGRAL o lhs o snd) THEN ASM_SIMP_TAC[REAL_INTEGRABLE_ON; GSYM IMAGE_o; o_DEF; IMAGE_ID; LIFT_DROP; ABSOLUTELY_INTEGRABLE_IMP_INTEGRABLE]]);; (* ------------------------------------------------------------------------- *) (* Change of variable in real integral (one that we know exists). *) (* ------------------------------------------------------------------------- *) let HAS_REAL_INTEGRAL_SUBSTITUTION_STRONG = prove (`!f g g' a b c d k. COUNTABLE k /\ f real_integrable_on real_interval[c,d] /\ g real_continuous_on real_interval[a,b] /\ IMAGE g (real_interval[a,b]) SUBSET real_interval[c,d] /\ (!x. x IN real_interval[a,b] DIFF k ==> (g has_real_derivative g'(x)) (atreal x within real_interval[a,b]) /\ f real_continuous (atreal(g x)) within real_interval[c,d]) /\ a <= b /\ c <= d /\ g a <= g b ==> ((\x. f(g x) * g'(x)) has_real_integral real_integral (real_interval[g a,g b]) f) (real_interval[a,b])`, REPEAT STRIP_TAC THEN ABBREV_TAC `ff = \x. real_integral (real_interval[c,x]) f` THEN MP_TAC(ISPECL [`(ff:real->real) o (g:real->real)`; `\x:real. (f:real->real)(g x) * g'(x)`; `k:real->bool`; `a:real`; `b:real`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `real_interval [c,d]` THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "ff" THEN MATCH_MP_TAC REAL_INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT THEN ASM_REWRITE_TAC[]; X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[SUBSET] REAL_INTERVAL_OPEN_SUBSET_CLOSED)) THEN SUBGOAL_THEN `(ff o g has_real_derivative f (g x:real) * g' x) (atreal x within real_interval[a,b])` MP_TAC THENL [MATCH_MP_TAC REAL_DIFF_CHAIN_WITHIN THEN ASM_SIMP_TAC[HAS_REAL_DERIVATIVE_ATREAL_WITHIN; IN_DIFF] THEN MP_TAC(ISPECL [`f:real->real`; `c:real`; `d:real`; `(g:real->real) x`] REAL_INTEGRAL_HAS_REAL_DERIVATIVE_POINTWISE) THEN ASM_SIMP_TAC[REAL_CONTINUOUS_ATREAL_WITHINREAL; IN_DIFF] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[HAS_REAL_DERIVATIVE_WITHIN_SUBSET]; DISCH_THEN(MP_TAC o SPEC `real_interval(a,b)` o MATCH_MP (REWRITE_RULE[IMP_CONJ] HAS_REAL_DERIVATIVE_WITHIN_SUBSET)) THEN REWRITE_TAC[REAL_INTERVAL_OPEN_SUBSET_CLOSED] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_WITHINREAL] THEN ASM_SIMP_TAC[REALLIM_WITHIN_REAL_OPEN; REAL_OPEN_REAL_INTERVAL] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_ATREAL]]]; EXPAND_TAC "ff" THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[o_DEF] THEN MATCH_MP_TAC(REAL_ARITH `z + w:real = y ==> y - z = w`) THEN MATCH_MP_TAC REAL_INTEGRAL_COMBINE THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_INTEGRABLE_SUBINTERVAL))] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_REAL_INTERVAL; SUBSET] THEN ASM_MESON_TAC[REAL_LE_REFL; REAL_LE_TRANS]]);; let HAS_REAL_INTEGRAL_SUBSTITUTION = prove (`!f g g' a b c d k. COUNTABLE k /\ f real_continuous_on real_interval[c,d] /\ g real_continuous_on real_interval[a,b] /\ IMAGE g (real_interval[a,b]) SUBSET real_interval[c,d] /\ (!x. x IN real_interval[a,b] DIFF k ==> (g has_real_derivative g'(x)) (atreal x)) /\ a <= b /\ c <= d /\ g a <= g b ==> ((\x. f(g x) * g'(x)) has_real_integral real_integral (real_interval[g a,g b]) f) (real_interval[a,b])`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real->real`; `c:real`; `d:real`] REAL_INTEGRAL_HAS_REAL_DERIVATIVE) THEN ASM_REWRITE_TAC[] THEN ABBREV_TAC `h = \u. real_integral (real_interval[c,u]) f` THEN DISCH_TAC THEN MP_TAC(ISPECL [`(h:real->real) o (g:real->real)`; `\x:real. (f:real->real)(g x) * g' x`; `k:real->bool`; `a:real`; `b:real`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS_INTERIOR_STRONG) THEN MP_TAC(ISPECL [`h:real->real`; `f:real->real`; `(g:real->real) a`; `(g:real->real) b`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [X_GEN_TAC `x:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `x IN s ==> s SUBSET t ==> x IN t`)); MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HAS_REAL_DERIVATIVE_WITHIN_SUBSET)] THEN REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN DISJ2_TAC THEN MATCH_MP_TAC(REAL_ARITH `(c <= ga /\ ga <= d) /\ (c <= gb /\ gb <= d) /\ ga <= gb ==> c <= ga /\ ga <= gb /\ gb <= d`) THEN ASM_REWRITE_TAC[GSYM IN_REAL_INTERVAL] THEN CONJ_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL; REAL_LE_REFL]; DISCH_THEN(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN REWRITE_TAC[o_THM] THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "h" THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] REAL_CONTINUOUS_ON_SUBSET)) THEN MATCH_MP_TAC REAL_INDEFINITE_INTEGRAL_CONTINUOUS_RIGHT THEN ASM_SIMP_TAC[REAL_INTEGRABLE_CONTINUOUS]; X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REWRITE_RULE[SUBSET] REAL_INTERVAL_OPEN_SUBSET_CLOSED)) THEN SUBGOAL_THEN `(h o (g:real->real) has_real_derivative f(g x) * g' x) (atreal x within real_interval[a,b])` MP_TAC THENL [MATCH_MP_TAC REAL_DIFF_CHAIN_WITHIN THEN ASM_SIMP_TAC[IN_DIFF; HAS_REAL_DERIVATIVE_ATREAL_WITHIN] THEN FIRST_X_ASSUM(MP_TAC o SPEC `(g:real->real) x`) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HAS_REAL_DERIVATIVE_WITHIN_SUBSET) THEN ASM_REWRITE_TAC[]; REWRITE_TAC[HAS_REAL_DERIVATIVE_WITHINREAL; HAS_REAL_DERIVATIVE_ATREAL; REALLIM_WITHINREAL_WITHIN; REALLIM_ATREAL_AT] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; TENDSTO_REAL] THEN MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC LIM_WITHIN_INTERIOR THEN REWRITE_TAC[INTERIOR_INTERVAL; GSYM IMAGE_LIFT_REAL_INTERVAL] THEN ASM_SIMP_TAC[FUN_IN_IMAGE]]]]);; let REAL_INTEGRAL_SUBSTITUTION = prove (`!f g g' a b c d k. COUNTABLE k /\ f real_continuous_on real_interval[c,d] /\ g real_continuous_on real_interval[a,b] /\ IMAGE g (real_interval[a,b]) SUBSET real_interval[c,d] /\ (!x. x IN real_interval[a,b] DIFF k ==> (g has_real_derivative g'(x)) (atreal x)) /\ a <= b /\ c <= d /\ g a <= g b ==> real_integral (real_interval[a,b]) (\x. f(g x) * g'(x)) = real_integral (real_interval[g a,g b]) f`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN ASM_MESON_TAC[HAS_REAL_INTEGRAL_SUBSTITUTION]);; let HAS_REAL_INTEGRAL_SUBSTITUTION_SIMPLE = prove (`!f g g' a b c d. f real_continuous_on real_interval[c,d] /\ (!x. x IN real_interval[a,b] ==> (g has_real_derivative g'(x)) (atreal x within real_interval[a,b])) /\ IMAGE g (real_interval[a,b]) SUBSET real_interval[c,d] /\ a <= b /\ c <= d /\ g a <= g b ==> ((\x. f(g x) * g'(x)) has_real_integral real_integral (real_interval[g a,g b]) f) (real_interval[a,b])`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP REAL_INTEGRAL_HAS_REAL_DERIVATIVE) THEN ABBREV_TAC `h = \u. real_integral (real_interval[c,u]) f` THEN DISCH_TAC THEN MP_TAC(ISPECL [`(h:real->real) o (g:real->real)`; `\x:real. (f:real->real)(g x) * g' x`; `a:real`; `b:real`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN MP_TAC(ISPECL [`h:real->real`; `f:real->real`; `(g:real->real) a`; `(g:real->real) b`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [X_GEN_TAC `x:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `x IN s ==> s SUBSET t ==> x IN t`)); MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HAS_REAL_DERIVATIVE_WITHIN_SUBSET)] THEN REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN DISJ2_TAC THEN MATCH_MP_TAC(REAL_ARITH `(c <= ga /\ ga <= d) /\ (c <= gb /\ gb <= d) /\ ga <= gb ==> c <= ga /\ ga <= gb /\ gb <= d`) THEN ASM_REWRITE_TAC[GSYM IN_REAL_INTERVAL] THEN CONJ_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL; REAL_LE_REFL]; DISCH_THEN(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN REWRITE_TAC[o_THM] THEN DISCH_THEN MATCH_MP_TAC THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_DIFF_CHAIN_WITHIN THEN ASM_SIMP_TAC[] THEN FIRST_X_ASSUM(MP_TAC o SPEC `(g:real->real) x`) THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HAS_REAL_DERIVATIVE_WITHIN_SUBSET) THEN ASM_REWRITE_TAC[]]);; let REAL_INTEGRAL_SUBSTITUTION_SIMPLE = prove (`!f g g' a b c d. f real_continuous_on real_interval[c,d] /\ (!x. x IN real_interval[a,b] ==> (g has_real_derivative g'(x)) (atreal x within real_interval[a,b])) /\ IMAGE g (real_interval[a,b]) SUBSET real_interval[c,d] /\ a <= b /\ c <= d /\ g a <= g b ==> real_integral (real_interval[a,b]) (\x. f(g x) * g'(x)) = real_integral (real_interval[g a,g b]) f`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN ASM_MESON_TAC[HAS_REAL_INTEGRAL_SUBSTITUTION_SIMPLE]);; (* ------------------------------------------------------------------------- *) (* Take slice of set s at x$k = t and drop the k'th coordinate. *) (* ------------------------------------------------------------------------- *) let slice = new_definition `slice k t s = IMAGE (dropout k) (s INTER {x | x$k = t})`;; let IN_SLICE = prove (`!s:real^N->bool y:real^M. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) ==> (y IN slice k t s <=> pushin k t y IN s)`, SIMP_TAC[slice; IN_IMAGE_DROPOUT; IN_INTER; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[pushin] THEN ASM_SIMP_TAC[LAMBDA_BETA; LT_REFL] THEN MESON_TAC[]);; let INTERVAL_INTER_HYPERPLANE = prove (`!k t a b:real^N. 1 <= k /\ k <= dimindex(:N) ==> interval[a,b] INTER {x | x$k = t} = if a$k <= t /\ t <= b$k then interval[(lambda i. if i = k then t else a$i), (lambda i. if i = k then t else b$i)] else {}`, REPEAT STRIP_TAC THEN REWRITE_TAC[EXTENSION; IN_INTER; IN_INTERVAL; IN_ELIM_THM] THEN X_GEN_TAC `x:real^N` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[NOT_IN_EMPTY]] THEN SIMP_TAC[IN_INTERVAL; LAMBDA_BETA] THEN EQ_TAC THEN STRIP_TAC THENL [ASM_MESON_TAC[REAL_LE_ANTISYM]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[REAL_LE_ANTISYM]] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; let SLICE_INTERVAL = prove (`!k a b t. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) ==> slice k t (interval[a,b]) = if a$k <= t /\ t <= b$k then interval[(dropout k:real^N->real^M) a,dropout k b] else {}`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[slice; INTERVAL_INTER_HYPERPLANE] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[IMAGE_CLAUSES] THEN ASM_SIMP_TAC[IMAGE_DROPOUT_CLOSED_INTERVAL; LAMBDA_BETA; REAL_LE_REFL] THEN MATCH_MP_TAC(MESON[] `a = a' /\ b = b' ==> interval[a,b] = interval[a',b']`) THEN SIMP_TAC[CART_EQ; LAMBDA_BETA; dropout] THEN SUBGOAL_THEN `!i. i <= dimindex(:M) ==> i <= dimindex(:N) /\ i + 1 <= dimindex(:N)` MP_TAC THENL [ASM_ARITH_TAC; ASM_SIMP_TAC[LAMBDA_BETA; ARITH_RULE `1 <= i + 1`] THEN ARITH_TAC]);; let SLICE_DIFF = prove (`!k a s t. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) ==> (slice k a:(real^N->bool)->(real^M->bool)) (s DIFF t) = (slice k a s) DIFF (slice k a t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN SIMP_TAC[SET_RULE `(s DIFF t) INTER u = (s INTER u) DIFF (t INTER u)`] THEN MATCH_MP_TAC(SET_RULE `(!x y. x IN a /\ y IN a /\ f x = f y ==> x = y) ==> IMAGE f ((s INTER a) DIFF (t INTER a)) = IMAGE f (s INTER a) DIFF IMAGE f (t INTER a)`) THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[DROPOUT_EQ]);; let SLICE_UNIV = prove (`!k a. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) ==> slice k a (:real^N) = (:real^M)`, REPEAT STRIP_TAC THEN SIMP_TAC[EXTENSION; IN_UNIV; IN_IMAGE; slice; INTER_UNIV; IN_ELIM_THM] THEN X_GEN_TAC `y:real^M` THEN EXISTS_TAC `(pushin k a:real^M->real^N) y` THEN ASM_SIMP_TAC[DROPOUT_PUSHIN] THEN ASM_SIMP_TAC[pushin; LAMBDA_BETA; LT_REFL]);; let SLICE_EMPTY = prove (`!k a. slice k a {} = {}`, REWRITE_TAC[slice; INTER_EMPTY; IMAGE_CLAUSES]);; let SLICE_SUBSET = prove (`!s t k a. s SUBSET t ==> slice k a s SUBSET slice k a t`, REWRITE_TAC[slice] THEN SET_TAC[]);; let SLICE_UNIONS = prove (`!s k a. slice k a (UNIONS s) = UNIONS (IMAGE (slice k a) s)`, REPEAT GEN_TAC THEN REWRITE_TAC[slice; INTER_UNIONS; IMAGE_UNIONS] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[GSYM IMAGE_o] THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM; slice]);; let SLICE_UNION = prove (`!k a s t. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) ==> (slice k a:(real^N->bool)->(real^M->bool)) (s UNION t) = (slice k a s) UNION (slice k a t)`, REPEAT GEN_TAC THEN REWRITE_TAC[slice; IMAGE_UNION; SET_RULE `(s UNION t) INTER u = (s INTER u) UNION (t INTER u)`] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[GSYM IMAGE_o] THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM; slice]);; let SLICE_INTER = prove (`!k a s t. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) ==> (slice k a:(real^N->bool)->(real^M->bool)) (s INTER t) = (slice k a s) INTER (slice k a t)`, REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN MATCH_MP_TAC(SET_RULE `(!x y. x IN u /\ y IN u /\ f x = f y ==> x = y) ==> IMAGE f ((s INTER t) INTER u) = IMAGE f (s INTER u) INTER IMAGE f (t INTER u)`) THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[DROPOUT_EQ]);; let CONVEX_SLICE = prove (`!k t s. dimindex(:M) < dimindex(:N) /\ convex s ==> convex((slice k t:(real^N->bool)->(real^M->bool)) s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN MATCH_MP_TAC CONVEX_LINEAR_IMAGE THEN ASM_SIMP_TAC[LINEAR_DROPOUT] THEN MATCH_MP_TAC CONVEX_INTER THEN ASM_REWRITE_TAC[CONVEX_STANDARD_HYPERPLANE]);; let COMPACT_SLICE = prove (`!k t s. dimindex(:M) < dimindex(:N) /\ compact s ==> compact((slice k t:(real^N->bool)->(real^M->bool)) s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN MATCH_MP_TAC COMPACT_LINEAR_IMAGE THEN ASM_SIMP_TAC[LINEAR_DROPOUT] THEN REWRITE_TAC[COMPACT_EQ_BOUNDED_CLOSED] THEN CONJ_TAC THENL [MATCH_MP_TAC BOUNDED_INTER THEN ASM_SIMP_TAC[COMPACT_IMP_BOUNDED]; MATCH_MP_TAC CLOSED_INTER THEN ASM_SIMP_TAC[COMPACT_IMP_CLOSED; CLOSED_STANDARD_HYPERPLANE]]);; let CLOSED_SLICE = prove (`!k t s. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ closed s ==> closed((slice k t:(real^N->bool)->(real^M->bool)) s)`, REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN SUBGOAL_THEN `closed(IMAGE (dropout k:real^N->real^M) (IMAGE (\x. x - t % basis k) (s INTER {x | x$k = t})))` MP_TAC THENL [ALL_TAC; REWRITE_TAC[GSYM IMAGE_o] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM; dropout] THEN SUBGOAL_THEN `!i. i <= dimindex(:M) ==> i <= dimindex(:N) /\ i + 1 <= dimindex(:N)` MP_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN SIMP_TAC[VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT; CART_EQ; LAMBDA_BETA; BASIS_COMPONENT; ARITH_RULE `1 <= i + 1`] THEN SIMP_TAC[ARITH_RULE `i:num < k ==> ~(i = k)`; ARITH_RULE `~(i < k) ==> ~(i + 1 = k)`] THEN REWRITE_TAC[REAL_MUL_RZERO; REAL_SUB_RZERO]] THEN MATCH_MP_TAC CLOSED_INJECTIVE_IMAGE_SUBSET_SUBSPACE THEN EXISTS_TAC `{x:real^N | x$k = &0}` THEN ASM_SIMP_TAC[SUBSPACE_SPECIAL_HYPERPLANE; LINEAR_DROPOUT; ARITH_RULE `m + 1 = n ==> m < n`] THEN REPEAT CONJ_TAC THENL [ONCE_REWRITE_TAC[VECTOR_ARITH `x - t % b:real^N = --(t % b) + x`] THEN ASM_SIMP_TAC[CLOSED_TRANSLATION_EQ; CLOSED_INTER; CLOSED_STANDARD_HYPERPLANE]; MATCH_MP_TAC(SET_RULE `IMAGE f t SUBSET u ==> IMAGE f (s INTER t) SUBSET u`) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN ASM_SIMP_TAC[VECTOR_SUB_COMPONENT; VECTOR_MUL_COMPONENT; BASIS_COMPONENT; REAL_MUL_RID; REAL_SUB_REFL]; REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC DROPOUT_EQ THEN EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[DROPOUT_0; VEC_COMPONENT]]);; let OPEN_SLICE = prove (`!k t s. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ open s ==> open((slice k t:(real^N->bool)->(real^M->bool)) s)`, REWRITE_TAC[OPEN_CLOSED] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `closed(slice k t ((:real^N) DIFF s):real^M->bool)` MP_TAC THENL [ASM_SIMP_TAC[CLOSED_SLICE]; ASM_SIMP_TAC[SLICE_DIFF; SLICE_UNIV]]);; let BOUNDED_SLICE = prove (`!k t s. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ bounded s ==> bounded((slice k t:(real^N->bool)->(real^M->bool)) s)`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP BOUNDED_SUBSET_CLOSED_INTERVAL) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN DISCH_TAC THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `(slice k t:(real^N->bool)->(real^M->bool)) (interval[a,b])` THEN ASM_SIMP_TAC[SLICE_SUBSET] THEN ASM_SIMP_TAC[SLICE_INTERVAL] THEN MESON_TAC[BOUNDED_EMPTY; BOUNDED_INTERVAL]);; let SLICE_CBALL = prove (`!k t x r. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) ==> (slice k t:(real^N->bool)->(real^M->bool)) (cball(x,r)) = if abs(t - x$k) <= r then cball(dropout k x,sqrt(r pow 2 - (t - x$k) pow 2)) else {}`, REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN COND_CASES_TAC THENL [ALL_TAC; REWRITE_TAC[IMAGE_EQ_EMPTY] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; NOT_IN_EMPTY; IN_CBALL] THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[dist] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `~(a <= r) ==> a <= b ==> b <= r ==> F`)) THEN ASM_MESON_TAC[VECTOR_SUB_COMPONENT; COMPONENT_LE_NORM; NORM_SUB]] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP(REAL_ARITH `abs(x) <= r ==> &0 <= r`)) THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_CBALL] THEN X_GEN_TAC `y:real^M` THEN ASM_SIMP_TAC[DROPOUT_GALOIS; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[IN_CBALL; IN_INTER; IN_ELIM_THM] THEN ASM_SIMP_TAC[pushin; LAMBDA_BETA; LT_REFL] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM2] THEN ASM_REWRITE_TAC[dist; NORM_LE_SQUARE; GSYM pushin] THEN ASM_SIMP_TAC[SQRT_POW_2; SQRT_POS_LE; REAL_SUB_LE; GSYM REAL_LE_SQUARE_ABS; REAL_ARITH `abs(x) <= r ==> abs(x) <= abs(r)`] THEN REWRITE_TAC[VECTOR_ARITH `(x - y:real^N) dot (x - y) = x dot x + y dot y - &2 * x dot y`] THEN ASM_SIMP_TAC[DOT_DROPOUT; DOT_PUSHIN] THEN MATCH_MP_TAC(REAL_FIELD `a = t * k + b ==> (xx + (yy + t * t) - &2 * a <= r pow 2 <=> xx - k * k + yy - &2 * b <= r pow 2 - (t - k) pow 2)`) THEN SUBGOAL_THEN `y:real^M = dropout k (pushin k t y:real^N)` (fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [th]) THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC DROPOUT_PUSHIN THEN ASM_ARITH_TAC; ASM_SIMP_TAC[DOT_DROPOUT] THEN ASM_SIMP_TAC[pushin; LAMBDA_BETA; LT_REFL] THEN REAL_ARITH_TAC]);; let SLICE_BALL = prove (`!k t x r. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) ==> (slice k t:(real^N->bool)->(real^M->bool)) (ball(x,r)) = if abs(t - x$k) < r then ball(dropout k x,sqrt(r pow 2 - (t - x$k) pow 2)) else {}`, REPEAT STRIP_TAC THEN REWRITE_TAC[slice] THEN COND_CASES_TAC THENL [ALL_TAC; REWRITE_TAC[IMAGE_EQ_EMPTY] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER; NOT_IN_EMPTY; IN_BALL] THEN X_GEN_TAC `y:real^N` THEN REWRITE_TAC[dist] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `~(a < r) ==> a <= b ==> b < r ==> F`)) THEN ASM_MESON_TAC[VECTOR_SUB_COMPONENT; COMPONENT_LE_NORM; NORM_SUB]] THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP(REAL_ARITH `abs(x) < r ==> &0 < r`)) THEN REWRITE_TAC[EXTENSION; IN_IMAGE; IN_BALL] THEN X_GEN_TAC `y:real^M` THEN ASM_SIMP_TAC[DROPOUT_GALOIS; LEFT_AND_EXISTS_THM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[IN_BALL; IN_INTER; IN_ELIM_THM] THEN ASM_SIMP_TAC[pushin; LAMBDA_BETA; LT_REFL] THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[UNWIND_THM2] THEN ASM_REWRITE_TAC[dist; NORM_LT_SQUARE; GSYM pushin] THEN ASM_SIMP_TAC[SQRT_POW_2; SQRT_POS_LT; REAL_SUB_LT; GSYM REAL_LT_SQUARE_ABS; REAL_LT_IMP_LE; REAL_ARITH `abs(x) < r ==> abs(x) < abs(r)`] THEN REWRITE_TAC[VECTOR_ARITH `(x - y:real^N) dot (x - y) = x dot x + y dot y - &2 * x dot y`] THEN ASM_SIMP_TAC[DOT_DROPOUT; DOT_PUSHIN] THEN MATCH_MP_TAC(REAL_FIELD `a = t * k + b ==> (xx + (yy + t * t) - &2 * a < r pow 2 <=> xx - k * k + yy - &2 * b < r pow 2 - (t - k) pow 2)`) THEN SUBGOAL_THEN `y:real^M = dropout k (pushin k t y:real^N)` (fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [th]) THENL [CONV_TAC SYM_CONV THEN MATCH_MP_TAC DROPOUT_PUSHIN THEN ASM_ARITH_TAC; ASM_SIMP_TAC[DOT_DROPOUT] THEN ASM_SIMP_TAC[pushin; LAMBDA_BETA; LT_REFL] THEN REAL_ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* Weak but useful versions of Fubini's theorem. *) (* ------------------------------------------------------------------------- *) let FUBINI_CLOSED_INTERVAL = prove (`!k a b:real^N. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ a$k <= b$k ==> ((\t. measure (slice k t (interval[a,b]) :real^M->bool)) has_real_integral (measure(interval[a,b]))) (:real)`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[SLICE_INTERVAL] THEN ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[MEASURE_EMPTY; MEASURE_INTERVAL] THEN REWRITE_TAC[GSYM IN_REAL_INTERVAL] THEN SIMP_TAC[HAS_REAL_INTEGRAL_RESTRICT; SUBSET_UNIV] THEN SUBGOAL_THEN `content(interval[a:real^N,b]) = content(interval[dropout k a:real^M,dropout k b]) * (b$k - a$k)` SUBST1_TAC THEN ASM_SIMP_TAC[HAS_REAL_INTEGRAL_CONST] THEN REWRITE_TAC[CONTENT_CLOSED_INTERVAL_CASES] THEN GEN_REWRITE_TAC (RAND_CONV o RATOR_CONV) [COND_RAND] THEN GEN_REWRITE_TAC RAND_CONV [COND_RATOR] THEN REWRITE_TAC[REAL_MUL_LZERO] THEN MATCH_MP_TAC(TAUT `(p <=> p') /\ x = x' ==> (if p then x else y) = (if p' then x' else y)`) THEN CONJ_TAC THENL [SIMP_TAC[dropout; LAMBDA_BETA] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN (ASM_CASES_TAC `i <= dimindex(:N)` THENL [ASM_REWRITE_TAC[]; ASM_ARITH_TAC]) THENL [REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_LE_REFL]) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC; ASM_CASES_TAC `i:num = k` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `i:num < k` THENL [FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[]; FIRST_X_ASSUM(MP_TAC o SPEC `i - 1`) THEN COND_CASES_TAC THENL [ASM_ARITH_TAC; ASM_SIMP_TAC[SUB_ADD]]] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_ARITH_TAC]; ALL_TAC] THEN SUBGOAL_THEN `1..dimindex(:N) = (1..(k-1)) UNION (k INSERT (IMAGE (\x. x + 1) (k..dimindex(:M))))` SUBST1_TAC THENL [REWRITE_TAC[EXTENSION; IN_NUMSEG; IN_UNION; IN_INSERT; IN_IMAGE] THEN ASM_SIMP_TAC[ARITH_RULE `1 <= k ==> (x = y + 1 /\ k <= y /\ y <= n <=> y = x - 1 /\ k + 1 <= x /\ x <= n + 1)`] THEN REWRITE_TAC[CONJ_ASSOC; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN ASM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[SET_RULE `s UNION (x INSERT t) = x INSERT (s UNION t)`] THEN SIMP_TAC[PRODUCT_CLAUSES; FINITE_NUMSEG; FINITE_UNION; FINITE_IMAGE] THEN ASM_SIMP_TAC[IN_NUMSEG; IN_UNION; IN_IMAGE; ARITH_RULE `1 <= k ==> ~(k <= k - 1)`] THEN COND_CASES_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN AP_TERM_TAC THEN MP_TAC(ISPECL [`1`; `k - 1`; `dimindex(:M)`] NUMSEG_COMBINE_R) THEN ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN(SUBST1_TAC o SYM)] THEN W(MP_TAC o PART_MATCH (lhs o rand) PRODUCT_UNION o lhand o snd) THEN SIMP_TAC[FINITE_NUMSEG; FINITE_IMAGE; IN_NUMSEG; SET_RULE `DISJOINT s (IMAGE f t) <=> !x. x IN t ==> ~(f x IN s)`] THEN ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN W(MP_TAC o PART_MATCH (lhs o rand) PRODUCT_UNION o rand o snd) THEN SIMP_TAC[FINITE_NUMSEG; FINITE_IMAGE; IN_NUMSEG; SET_RULE `DISJOINT s t <=> !x. ~(x IN s /\ x IN t)`] THEN ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN ASM_SIMP_TAC[PRODUCT_IMAGE; EQ_ADD_RCANCEL; SUB_ADD] THEN BINOP_TAC THEN MATCH_MP_TAC PRODUCT_EQ_NUMSEG THEN SIMP_TAC[dropout; LAMBDA_BETA; o_THM] THEN REPEAT STRIP_TAC THEN BINOP_TAC THEN (W(MP_TAC o PART_MATCH (lhs o rand) LAMBDA_BETA o rand o snd) THEN ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC));; let MEASURABLE_OUTER_INTERVALS_BOUNDED_EXPLICIT_SPECIAL = prove (`!s a b e. 2 <= dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ measurable s /\ s SUBSET interval[a,b] /\ &0 < e ==> ?f:num->real^N->bool. (!i. (f i) SUBSET interval[a,b] /\ ?c d. c$k <= d$k /\ f i = interval[c,d]) /\ (!i j. ~(i = j) ==> negligible(f i INTER f j)) /\ s SUBSET UNIONS {f n | n IN (:num)} /\ measurable(UNIONS {f n | n IN (:num)}) /\ measure(UNIONS {f n | n IN (:num)}) <= measure s + e`, let lemma = prove (`UNIONS {if n IN s then f n else {} | n IN (:num)} = UNIONS (IMAGE f s)`, SIMP_TAC[EXTENSION; IN_UNIONS; IN_ELIM_THM; IN_UNIV; EXISTS_IN_IMAGE] THEN MESON_TAC[NOT_IN_EMPTY]) in REPEAT GEN_TAC THEN REPLICATE_TAC 3 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN DISCH_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP MEASURABLE_OUTER_INTERVALS_BOUNDED) THEN DISCH_THEN(X_CHOOSE_THEN `d:(real^N->bool)->bool` STRIP_ASSUME_TAC) THEN ASM_CASES_TAC `FINITE(d:(real^N->bool)->bool)` THENL [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITE_INDEX_NUMSEG]) THEN DISCH_THEN(X_CHOOSE_THEN `f:num->real^N->bool` (fun th -> SUBST_ALL_TAC(CONJUNCT2 th) THEN ASSUME_TAC(CONJUNCT1 th))) THEN RULE_ASSUM_TAC(REWRITE_RULE[IMP_CONJ; FORALL_IN_IMAGE; RIGHT_FORALL_IMP_THM; IN_UNIV]) THEN EXISTS_TAC `\k. if k IN 1..CARD(d:(real^N->bool)->bool) then f k else ({}:real^N->bool)` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [X_GEN_TAC `i:num` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL [ASM_MESON_TAC[REAL_NOT_LT; IN_NUMSEG; REAL_NOT_LE; INTERVAL_EQ_EMPTY]; REWRITE_TAC[EMPTY_SUBSET] THEN CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN EXISTS_TAC `(lambda i. if i = k then &0 else &1):real^N` THEN EXISTS_TAC `(lambda i. if i = k then &1 else &0):real^N` THEN REWRITE_TAC[INTERVAL_EQ_EMPTY] THEN CONJ_TAC THENL [SIMP_TAC[LAMBDA_BETA; ASSUME `1 <= k`; ASSUME `k <= dimindex(:N)`; REAL_POS]; ALL_TAC] THEN SUBGOAL_THEN `?j. 1 <= j /\ j <= dimindex(:N) /\ ~(j = k)` MP_TAC THENL [MATCH_MP_TAC(MESON[] `P(k - 1) \/ P(k + 1) ==> ?i. P i`) THEN ASM_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[LAMBDA_BETA] THEN REAL_ARITH_TAC]]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; ASM_REWRITE_TAC[lemma]] THEN REPEAT GEN_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[INTER_EMPTY; NEGLIGIBLE_EMPTY]); MP_TAC(ISPEC `d:(real^N->bool)->bool` COUNTABLE_AS_INJECTIVE_IMAGE) THEN ASM_REWRITE_TAC[INFINITE] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `f:num->real^N->bool` THEN DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE[IMP_CONJ; FORALL_IN_IMAGE; RIGHT_FORALL_IMP_THM; IN_UNIV]) THEN RULE_ASSUM_TAC(REWRITE_RULE[GSYM SIMPLE_IMAGE]) THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[REAL_NOT_LT; IN_NUMSEG; REAL_NOT_LE; INTERVAL_EQ_EMPTY]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`i:num`; `j:num`]] THEN (DISCH_TAC THEN SUBGOAL_THEN `negligible(interior((f:num->real^N->bool) i) INTER interior(f j))` MP_TAC THENL [ASM_MESON_TAC[NEGLIGIBLE_EMPTY]; ALL_TAC] THEN REWRITE_TAC[GSYM INTERIOR_INTER] THEN REWRITE_TAC[GSYM HAS_MEASURE_0] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HAS_MEASURE_NEGLIGIBLE_SYMDIFF) THEN SIMP_TAC[INTERIOR_SUBSET; SET_RULE `interior(s) SUBSET s ==> (interior s DIFF s) UNION (s DIFF interior s) = s DIFF interior s`] THEN SUBGOAL_THEN `(?c d. (f:num->real^N->bool) i = interval[c,d]) /\ (?c d. (f:num->real^N->bool) j = interval[c,d])` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[INTER_INTERVAL; NEGLIGIBLE_FRONTIER_INTERVAL; INTERIOR_CLOSED_INTERVAL]));; let REAL_MONOTONE_CONVERGENCE_INCREASING_AE = prove (`!f:num->real->real g s. (!k. (f k) real_integrable_on s) /\ (!k x. x IN s ==> f k x <= f (SUC k) x) /\ (?t. real_negligible t /\ !x. x IN (s DIFF t) ==> ((\k. f k x) ---> g x) sequentially) /\ real_bounded {real_integral s (f k) | k IN (:num)} ==> g real_integrable_on s /\ ((\k. real_integral s (f k)) ---> real_integral s g) sequentially`, REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `g real_integrable_on (s DIFF t) /\ ((\k. real_integral (s DIFF t) (f k)) ---> real_integral (s DIFF t) g) sequentially` MP_TAC THENL [MATCH_MP_TAC REAL_MONOTONE_CONVERGENCE_INCREASING THEN REPEAT CONJ_TAC THENL [UNDISCH_TAC `!k:num. f k real_integrable_on s` THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC REAL_INTEGRABLE_SPIKE_SET; ASM_SIMP_TAC[IN_DIFF]; ASM_REWRITE_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_bounded]) THEN REWRITE_TAC[real_bounded; FORALL_IN_GSPEC; IN_UNIV] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `B:real` THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_SPIKE_SET]; MATCH_MP_TAC EQ_IMP THEN BINOP_TAC THENL [MATCH_MP_TAC REAL_INTEGRABLE_SPIKE_SET_EQ THEN MATCH_MP_TAC REAL_NEGLIGIBLE_SUBSET THEN EXISTS_TAC `t:real->bool` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]; AP_THM_TAC THEN BINOP_TAC THENL [ABS_TAC; ALL_TAC] THEN MATCH_MP_TAC REAL_INTEGRAL_SPIKE_SET]] THEN MATCH_MP_TAC REAL_NEGLIGIBLE_SUBSET THEN EXISTS_TAC `t:real->bool` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);; let FUBINI_SIMPLE_LEMMA = prove (`!k s:real^N->bool e. &0 < e /\ dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ bounded s /\ measurable s /\ (!t. measurable(slice k t s:real^M->bool)) /\ (\t. measure (slice k t s:real^M->bool)) real_integrable_on (:real) ==> real_integral(:real) (\t. measure (slice k t s :real^M->bool)) <= measure s + e`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP BOUNDED_SUBSET_CLOSED_INTERVAL) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN DISCH_TAC THEN MP_TAC(ISPECL [`s:real^N->bool`; `a:real^N`; `b:real^N`; `e:real`] MEASURABLE_OUTER_INTERVALS_BOUNDED_EXPLICIT_SPECIAL) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [SUBGOAL_THEN `1 <= dimindex(:M)` MP_TAC THENL [REWRITE_TAC[DIMINDEX_GE_1]; ASM_ARITH_TAC]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `d:num->(real^N->bool)` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `!t n:num. measurable((slice k t:(real^N->bool)->real^M->bool) (d n))` ASSUME_TAC THENL [MAP_EVERY X_GEN_TAC [`t:real`; `n:num`] THEN FIRST_X_ASSUM(STRIP_ASSUME_TAC o CONJUNCT2 o SPEC `n:num`) THEN ASM_SIMP_TAC[SLICE_INTERVAL] THEN MESON_TAC[MEASURABLE_EMPTY; MEASURABLE_INTERVAL]; ALL_TAC] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `measure(UNIONS {d n | n IN (:num)}:real^N->bool)` THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`\n t. sum(0..n) (\m. measure((slice k t:(real^N->bool)->real^M->bool) (d m)))`; `\t. measure((slice k t:(real^N->bool)->real^M->bool) (UNIONS {d n | n IN (:num)}))`; `(:real)`] REAL_MONOTONE_CONVERGENCE_INCREASING_AE) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [X_GEN_TAC `i:num` THEN MATCH_MP_TAC REAL_INTEGRABLE_SUM THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN X_GEN_TAC `j:num` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o CONJUNCT2 o SPEC `j:num`) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN STRIP_TAC THEN MP_TAC(ISPECL [`k:num`; `u:real^N`; `v:real^N`] FUBINI_CLOSED_INTERVAL) THEN ASM_REWRITE_TAC[] THEN MESON_TAC[real_integrable_on]; ALL_TAC] THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0] THEN REWRITE_TAC[REAL_LE_ADDR] THEN MATCH_MP_TAC MEASURE_POS_LE THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN CONJ_TAC THENL [ALL_TAC; REWRITE_TAC[real_bounded; FORALL_IN_GSPEC; IN_UNIV] THEN EXISTS_TAC `measure(interval[a:real^N,b])` THEN X_GEN_TAC `i:num` THEN W(MP_TAC o PART_MATCH (lhand o rand) REAL_INTEGRAL_SUM o rand o lhand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[FINITE_NUMSEG] THEN X_GEN_TAC `j:num` THEN DISCH_TAC THEN SUBGOAL_THEN `?u v. u$k <= v$k /\ (d:num->real^N->bool) j = interval[u,v]` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_integrable_on] THEN EXISTS_TAC `measure(interval[u:real^N,v])` THEN MATCH_MP_TAC FUBINI_CLOSED_INTERVAL THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(sum(0..i) (\m. measure(d m:real^N->bool)))` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_EQ_IMP_LE THEN AP_TERM_TAC THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN SUBGOAL_THEN `?u v. u$k <= v$k /\ (d:num->real^N->bool) j = interval[u,v]` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC FUBINI_CLOSED_INTERVAL THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= a ==> abs x <= a`) THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_POS_LE THEN REWRITE_TAC[FINITE_NUMSEG] THEN ASM_MESON_TAC[MEASURE_POS_LE; MEASURABLE_INTERVAL]; ALL_TAC] THEN W(MP_TAC o PART_MATCH (rhs o rand) MEASURE_NEGLIGIBLE_UNIONS_IMAGE o lhand o snd) THEN ANTS_TAC THENL [ASM_SIMP_TAC[FINITE_NUMSEG] THEN ASM_MESON_TAC[MEASURABLE_INTERVAL]; ALL_TAC] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC MEASURE_SUBSET THEN REWRITE_TAC[MEASURABLE_INTERVAL] THEN CONJ_TAC THENL [MATCH_MP_TAC MEASURABLE_UNIONS THEN ASM_SIMP_TAC[FINITE_NUMSEG; FINITE_IMAGE; FORALL_IN_IMAGE] THEN ASM_MESON_TAC[MEASURABLE_INTERVAL]; REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_IMAGE] THEN ASM_MESON_TAC[]]] THEN EXISTS_TAC `(IMAGE (\i. (interval_lowerbound(d i):real^N)$k) (:num)) UNION (IMAGE (\i. (interval_upperbound(d i):real^N)$k) (:num))` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_NEGLIGIBLE_COUNTABLE THEN SIMP_TAC[COUNTABLE_UNION; COUNTABLE_IMAGE; NUM_COUNTABLE]; ALL_TAC] THEN X_GEN_TAC `t:real` THEN REWRITE_TAC[IN_DIFF; IN_UNION; IN_IMAGE] THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [IN_UNIV] THEN REWRITE_TAC[DE_MORGAN_THM; NOT_EXISTS_THM] THEN DISCH_TAC THEN MP_TAC(ISPEC `\n:num. (slice k t:(real^N->bool)->real^M->bool) (d n)` HAS_MEASURE_COUNTABLE_NEGLIGIBLE_UNIONS_BOUNDED) THEN ASM_REWRITE_TAC[SLICE_UNIONS] THEN ANTS_TAC THENL [ALL_TAC; DISCH_THEN(MP_TAC o CONJUNCT2) THEN GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o LAND_CONV) [GSYM o_DEF] THEN REWRITE_TAC[GSYM REAL_SUMS; real_sums; FROM_INTER_NUMSEG] THEN REWRITE_TAC[SIMPLE_IMAGE; GSYM IMAGE_o; o_DEF]] THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `(slice k t:(real^N->bool)->real^M->bool) (interval[a,b])` THEN CONJ_TAC THENL [ASM_SIMP_TAC[SLICE_INTERVAL] THEN MESON_TAC[BOUNDED_INTERVAL; BOUNDED_EMPTY]; REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN ASM_MESON_TAC[SLICE_SUBSET]]] THEN MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`i:num`; `j:num`]) THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `(d:num->real^N->bool) i = {}` THENL [ASM_REWRITE_TAC[INTER_EMPTY; NEGLIGIBLE_EMPTY; SLICE_EMPTY]; UNDISCH_TAC `~((d:num->real^N->bool) i = {})`] THEN ASM_CASES_TAC `(d:num->real^N->bool) j = {}` THENL [ASM_REWRITE_TAC[INTER_EMPTY; NEGLIGIBLE_EMPTY; SLICE_EMPTY]; UNDISCH_TAC `~((d:num->real^N->bool) j = {})`] THEN FIRST_ASSUM(fun th -> MAP_EVERY (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) [SPEC `i:num` th; SPEC `j:num` th]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`w:real^N`; `x:real^N`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN STRIP_TAC THEN ASM_SIMP_TAC[SLICE_INTERVAL; INTERVAL_NE_EMPTY] THEN DISCH_TAC THEN DISCH_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[INTER_EMPTY; NEGLIGIBLE_EMPTY]) THEN REWRITE_TAC[INTER_INTERVAL; NEGLIGIBLE_INTERVAL; INTERVAL_EQ_EMPTY] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> ~(a /\ b ==> ~c)`] THEN SIMP_TAC[LAMBDA_BETA] THEN REWRITE_TAC[NOT_IMP] THEN DISCH_THEN(X_CHOOSE_THEN `l:num` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `~(l:num = k)` ASSUME_TAC THENL [FIRST_X_ASSUM(CONJUNCTS_THEN (fun th -> MP_TAC(SPEC `i:num` th) THEN MP_TAC(SPEC `j:num` th))) THEN ASM_SIMP_TAC[INTERVAL_LOWERBOUND; INTERVAL_UPPERBOUND] THEN REWRITE_TAC[IMP_IMP] THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN DISCH_THEN SUBST_ALL_TAC THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE `~(l:num = k) ==> l < k \/ k < l`)) THENL [EXISTS_TAC `l:num` THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [ASM_ARITH_TAC; SIMP_TAC[dropout; LAMBDA_BETA]] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN EXISTS_TAC `l - 1` THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [ASM_ARITH_TAC; SIMP_TAC[dropout; LAMBDA_BETA]] THEN ASM_SIMP_TAC[ARITH_RULE `k < l ==> ~(l - 1 < k)`] THEN ASM_SIMP_TAC[SUB_ADD]; ALL_TAC] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `real_integral (:real) (\t. measure ((slice k t :(real^N->bool)->real^M->bool) (UNIONS {d n | n IN (:num)})))` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_INTEGRAL_LE THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `t:real` THEN DISCH_TAC THEN MATCH_MP_TAC MEASURE_SUBSET THEN ASM_SIMP_TAC[SLICE_SUBSET; SLICE_UNIONS] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN REWRITE_TAC[GSYM IMAGE_o] THEN ONCE_REWRITE_TAC[GSYM SIMPLE_IMAGE] THEN MATCH_MP_TAC MEASURABLE_COUNTABLE_UNIONS_BOUNDED THEN ASM_REWRITE_TAC[o_THM] THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `(slice k t:(real^N->bool)->real^M->bool) (interval[a,b])` THEN CONJ_TAC THENL [ASM_SIMP_TAC[SLICE_INTERVAL] THEN MESON_TAC[BOUNDED_INTERVAL; BOUNDED_EMPTY]; REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN ASM_MESON_TAC[SLICE_SUBSET]]; MATCH_MP_TAC REAL_EQ_IMP_LE THEN MATCH_MP_TAC(ISPEC `sequentially` REALLIM_UNIQUE) THEN EXISTS_TAC `\n. real_integral (:real) (\t. sum (0..n) (\m. measure((slice k t:(real^N->bool)->real^M->bool) (d m))))` THEN ASM_REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN MP_TAC(ISPEC `d:num->(real^N->bool)` HAS_MEASURE_COUNTABLE_NEGLIGIBLE_UNIONS_BOUNDED) THEN ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ASM_MESON_TAC[MEASURABLE_INTERVAL]; ALL_TAC] THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `interval[a:real^N,b]` THEN REWRITE_TAC[BOUNDED_INTERVAL; UNIONS_SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o LAND_CONV) [GSYM o_DEF] THEN REWRITE_TAC[GSYM REAL_SUMS] THEN REWRITE_TAC[real_sums; FROM_INTER_NUMSEG] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `i:num` THEN REWRITE_TAC[] THEN W(MP_TAC o PART_MATCH (lhand o rand) REAL_INTEGRAL_SUM o rand o snd) THEN ANTS_TAC THENL [REWRITE_TAC[FINITE_NUMSEG] THEN X_GEN_TAC `j:num` THEN DISCH_TAC THEN SUBGOAL_THEN `?u v. u$k <= v$k /\ (d:num->real^N->bool) j = interval[u,v]` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[real_integrable_on] THEN EXISTS_TAC `measure(interval[u:real^N,v])` THEN MATCH_MP_TAC FUBINI_CLOSED_INTERVAL THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN SUBGOAL_THEN `?u v. u$k <= v$k /\ (d:num->real^N->bool) j = interval[u,v]` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC FUBINI_CLOSED_INTERVAL THEN ASM_REWRITE_TAC[]]);; let FUBINI_SIMPLE = prove (`!k s:real^N->bool. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ bounded s /\ measurable s /\ (!t. measurable(slice k t s :real^M->bool)) /\ (\t. measure (slice k t s :real^M->bool)) real_integrable_on (:real) ==> measure s = real_integral(:real)(\t. measure (slice k t s :real^M->bool))`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[SLICE_EMPTY; MEASURE_EMPTY; REAL_INTEGRAL_0]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o MATCH_MP BOUNDED_SUBSET_CLOSED_INTERVAL) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `b:real^N`] THEN DISCH_TAC THEN SUBGOAL_THEN `~(interval[a:real^N,b] = {})` MP_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[INTERVAL_NE_EMPTY] THEN DISCH_TAC] THEN MATCH_MP_TAC(REAL_ARITH `~(&0 < b - a) /\ ~(&0 < a - b) ==> a:real = b`) THEN CONJ_TAC THEN MATCH_MP_TAC(MESON[] `(!e. x - y = e ==> ~(&0 < e)) ==> ~(&0 < x - y)`) THEN X_GEN_TAC `e:real` THEN REPEAT STRIP_TAC THENL [MP_TAC(ISPECL [`k:num`; `s:real^N->bool`; `e / &2`] FUBINI_SIMPLE_LEMMA) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN MP_TAC(ISPECL [`k:num`; `interval[a:real^N,b] DIFF s`; `e / &2`] FUBINI_SIMPLE_LEMMA) THEN ASM_REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [SIMP_TAC[BOUNDED_DIFF; BOUNDED_INTERVAL]; ALL_TAC] THEN CONJ_TAC THENL [ASM_SIMP_TAC[MEASURABLE_DIFF; MEASURABLE_INTERVAL]; ALL_TAC] THEN ASM_SIMP_TAC[SLICE_DIFF] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [X_GEN_TAC `t:real` THEN MATCH_MP_TAC MEASURABLE_DIFF THEN ASM_SIMP_TAC[SLICE_INTERVAL] THEN MESON_TAC[MEASURABLE_EMPTY; MEASURABLE_INTERVAL]; DISCH_TAC] THEN SUBGOAL_THEN `!t. measure(slice k t (interval[a:real^N,b]) DIFF slice k t (s:real^N->bool) :real^M->bool) = measure(slice k t (interval[a:real^N,b]):real^M->bool) - measure(slice k t s :real^M->bool)` (fun th -> REWRITE_TAC[th]) THENL [X_GEN_TAC `t:real` THEN MATCH_MP_TAC MEASURE_DIFF_SUBSET THEN ASM_SIMP_TAC[SLICE_SUBSET] THEN ASM_SIMP_TAC[SLICE_INTERVAL] THEN MESON_TAC[MEASURABLE_EMPTY; MEASURABLE_INTERVAL]; ALL_TAC] THEN MP_TAC(ISPECL [`k:num`; `a:real^N`; `b:real^N`] FUBINI_CLOSED_INTERVAL) THEN ASM_SIMP_TAC[] THEN DISCH_TAC THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_INTEGRABLE_SUB THEN ASM_MESON_TAC[real_integrable_on]; ALL_TAC] THEN REWRITE_TAC[REAL_NOT_LE] THEN ASM_SIMP_TAC[MEASURE_DIFF_SUBSET; MEASURABLE_INTERVAL] THEN W(MP_TAC o PART_MATCH (lhs o rand) REAL_INTEGRAL_SUB o rand o snd) THEN ANTS_TAC THENL [ASM_MESON_TAC[real_integrable_on]; DISCH_THEN SUBST1_TAC] THEN FIRST_ASSUM(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN ASM_REAL_ARITH_TAC);; let FUBINI_SIMPLE_ALT = prove (`!k s:real^N->bool. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ bounded s /\ measurable s /\ (!t. measurable(slice k t s :real^M->bool)) /\ ((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real) ==> measure s = B`, REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `real_integral (:real) (\t. measure (slice k t (s:real^N->bool) :real^M->bool))` THEN CONJ_TAC THENL [MATCH_MP_TAC FUBINI_SIMPLE THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[real_integrable_on]; MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN ASM_REWRITE_TAC[]]);; let FUBINI_SIMPLE_COMPACT_STRONG = prove (`!k s:real^N->bool. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ compact s /\ ((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real) ==> measurable s /\ measure s = B`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MEASURABLE_COMPACT] THEN MATCH_MP_TAC FUBINI_SIMPLE_ALT THEN EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[COMPACT_IMP_BOUNDED; MEASURABLE_COMPACT] THEN GEN_TAC THEN MATCH_MP_TAC MEASURABLE_COMPACT THEN MATCH_MP_TAC COMPACT_SLICE THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let FUBINI_SIMPLE_COMPACT = prove (`!k s:real^N->bool. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ compact s /\ ((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real) ==> measure s = B`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP FUBINI_SIMPLE_COMPACT_STRONG) THEN SIMP_TAC[]);; let FUBINI_SIMPLE_CONVEX_STRONG = prove (`!k s:real^N->bool. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ bounded s /\ convex s /\ ((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real) ==> measurable s /\ measure s = B`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MEASURABLE_CONVEX] THEN MATCH_MP_TAC FUBINI_SIMPLE_ALT THEN EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[MEASURABLE_CONVEX] THEN GEN_TAC THEN MATCH_MP_TAC MEASURABLE_CONVEX THEN CONJ_TAC THENL [MATCH_MP_TAC CONVEX_SLICE; MATCH_MP_TAC BOUNDED_SLICE] THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let FUBINI_SIMPLE_CONVEX = prove (`!k s:real^N->bool. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ bounded s /\ convex s /\ ((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real) ==> measure s = B`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP FUBINI_SIMPLE_CONVEX_STRONG) THEN SIMP_TAC[]);; let FUBINI_SIMPLE_OPEN_STRONG = prove (`!k s:real^N->bool. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ bounded s /\ open s /\ ((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real) ==> measurable s /\ measure s = B`, REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MEASURABLE_OPEN] THEN MATCH_MP_TAC FUBINI_SIMPLE_ALT THEN EXISTS_TAC `k:num` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[MEASURABLE_OPEN] THEN GEN_TAC THEN MATCH_MP_TAC MEASURABLE_OPEN THEN CONJ_TAC THENL [MATCH_MP_TAC BOUNDED_SLICE; MATCH_MP_TAC OPEN_SLICE] THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);; let FUBINI_SIMPLE_OPEN = prove (`!k s:real^N->bool. dimindex(:M) + 1 = dimindex(:N) /\ 1 <= k /\ k <= dimindex(:N) /\ bounded s /\ open s /\ ((\t. measure (slice k t s :real^M->bool)) has_real_integral B) (:real) ==> measure s = B`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP FUBINI_SIMPLE_OPEN_STRONG) THEN SIMP_TAC[]);; (* ------------------------------------------------------------------------- *) (* Scaled integer, and hence rational, values are dense in the reals. *) (* ------------------------------------------------------------------------- *) let REAL_OPEN_SET_RATIONAL = prove (`!s. real_open s /\ ~(s = {}) ==> ?x. rational x /\ x IN s`, REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN MP_TAC(ISPEC `IMAGE lift s` OPEN_SET_RATIONAL_COORDINATES) THEN ASM_REWRITE_TAC[GSYM REAL_OPEN; IMAGE_EQ_EMPTY; EXISTS_IN_IMAGE] THEN SIMP_TAC[DIMINDEX_1; FORALL_1; GSYM drop; LIFT_DROP]);; let REAL_OPEN_RATIONAL = prove (`!P. real_open {x | P x} /\ (?x. P x) ==> ?x. rational x /\ P x`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `{x:real | P x}` REAL_OPEN_SET_RATIONAL) THEN ASM_REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN ASM_MESON_TAC[]);; let REAL_OPEN_SET_EXISTS_RATIONAL = prove (`!s. real_open s ==> ((?x. rational x /\ x IN s) <=> (?x. x IN s))`, REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_MESON_TAC[REAL_OPEN_SET_RATIONAL; GSYM MEMBER_NOT_EMPTY]);; let REAL_OPEN_EXISTS_RATIONAL = prove (`!P. real_open {x | P x} ==> ((?x. rational x /\ P x) <=> (?x. P x))`, GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_OPEN_SET_EXISTS_RATIONAL) THEN REWRITE_TAC[IN_ELIM_THM]);; (* ------------------------------------------------------------------------- *) (* Hence a criterion for two functions to agree. *) (* ------------------------------------------------------------------------- *) let CONTINUOUS_ON_CONST_DYADIC_RATIONALS = prove (`!f:real^M->real^N a. f continuous_on (:real^M) /\ (!x. (!i. 1 <= i /\ i <= dimindex(:M) ==> integer(x$i)) ==> f(x) = a) /\ (!x. f(x) = a ==> f(inv(&2) % x) = a) ==> !x. f(x) = a`, REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL [`f:real^M->real^N`; `{ inv(&2 pow n) % x:real^M |n,x| !i. 1 <= i /\ i <= dimindex(:M) ==> integer(x$i) }`; `a:real^N`] CONTINUOUS_CONSTANT_ON_CLOSURE) THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC; CLOSURE_DYADIC_RATIONALS; IN_UNIV] THEN DISCH_THEN MATCH_MP_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[real_pow; REAL_INV_1; VECTOR_MUL_LID] THEN ASM_SIMP_TAC[REAL_INV_MUL; GSYM VECTOR_MUL_ASSOC]);; let REAL_CONTINUOUS_ON_CONST_DYADIC_RATIONALS = prove (`!f a. f real_continuous_on (:real) /\ (!x. integer(x) ==> f(x) = a) /\ (!x. f(x) = a ==> f(x / &2) = a) ==> !x. f(x) = a`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`] CONTINUOUS_ON_CONST_DYADIC_RATIONALS) THEN ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; GSYM IMAGE_LIFT_UNIV] THEN ASM_SIMP_TAC[o_THM; DIMINDEX_1; FORALL_1; GSYM drop; LIFT_EQ; DROP_CMUL; REAL_ARITH `inv(&2) * x = x / &2`] THEN ASM_MESON_TAC[LIFT_DROP]);; let REAL_CONTINUOUS_ADDITIVE_IMP_LINEAR = prove (`!f. f real_continuous_on (:real) /\ (!x y. f(x + y) = f(x) + f(y)) ==> !a x. f(a * x) = a * f(x)`, GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPEC `lift o f o drop` CONTINUOUS_ADDITIVE_IMP_LINEAR) THEN ASM_REWRITE_TAC[GSYM REAL_CONTINUOUS_ON; GSYM IMAGE_LIFT_UNIV] THEN ASM_REWRITE_TAC[linear; GSYM FORALL_DROP; o_THM; DROP_ADD; LIFT_DROP; DROP_CMUL; GSYM LIFT_ADD; GSYM LIFT_CMUL; LIFT_EQ]);; (* ------------------------------------------------------------------------- *) (* Extending a continuous function in a periodic way. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_FLOOR = prove (`!x. ~(integer x) ==> floor real_continuous (atreal x)`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_continuous_atreal] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `min (x - floor x) ((floor x + &1) - x)` THEN ASM_REWRITE_TAC[REAL_LT_MIN; REAL_SUB_LT; REAL_FLOOR_LT_REFL; FLOOR] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `&0 < e /\ x = y ==> abs(x - y) < e`) THEN ASM_REWRITE_TAC[GSYM FLOOR_UNIQUE; FLOOR] THEN MP_TAC(ISPEC `x:real` FLOOR) THEN ASM_REAL_ARITH_TAC);; let REAL_CONTINUOUS_FRAC = prove (`!x. ~(integer x) ==> frac real_continuous (atreal x)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM ETA_AX] THEN REWRITE_TAC[FRAC_FLOOR] THEN MATCH_MP_TAC REAL_CONTINUOUS_SUB THEN ASM_SIMP_TAC[REAL_CONTINUOUS_FLOOR; REAL_CONTINUOUS_AT_ID]);; let REAL_CONTINUOUS_ON_COMPOSE_FRAC = prove (`!f. f real_continuous_on real_interval[&0,&1] /\ f(&1) = f(&0) ==> (f o frac) real_continuous_on (:real)`, REPEAT STRIP_TAC THEN UNDISCH_TAC `f real_continuous_on real_interval[&0,&1]` THEN REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; WITHINREAL_UNIV] THEN DISCH_TAC THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN ASM_CASES_TAC `integer x` THENL [ALL_TAC; MATCH_MP_TAC REAL_CONTINUOUS_ATREAL_COMPOSE THEN ASM_SIMP_TAC[REAL_CONTINUOUS_FRAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE LAND_CONV [IN_REAL_INTERVAL] o SPEC `frac x`) THEN ASM_SIMP_TAC[FLOOR_FRAC; REAL_LT_IMP_LE] THEN REWRITE_TAC[real_continuous_atreal; real_continuous_withinreal] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d (min (frac x) (&1 - frac x))` THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_SUB_LT; FLOOR_FRAC; REAL_FRAC_POS_LT] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC] THEN ASM_SIMP_TAC[real_continuous_atreal; REAL_FRAC_ZERO; REAL_FLOOR_REFL] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE (BINDER_CONV o LAND_CONV) [IN_REAL_INTERVAL]) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `&1` th) THEN MP_TAC(SPEC `&0` th)) THEN REWRITE_TAC[REAL_LE_REFL; REAL_POS] THEN REWRITE_TAC[IMP_IMP; real_continuous_withinreal; AND_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `min (&1) (min d1 d2)` THEN ASM_REWRITE_TAC[REAL_LT_01; REAL_LT_MIN; o_DEF] THEN X_GEN_TAC `y:real` THEN STRIP_TAC THEN DISJ_CASES_TAC(REAL_ARITH `x <= y \/ y < x`) THENL [SUBGOAL_THEN `floor y = floor x` ASSUME_TAC THENL [REWRITE_TAC[GSYM FLOOR_UNIQUE; FLOOR] THEN ASM_SIMP_TAC[REAL_FLOOR_REFL] THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[FRAC_FLOOR; REAL_FLOOR_REFL; REAL_SUB_REFL] THEN FIRST_X_ASSUM(fun th -> MATCH_MP_TAC th THEN ASM_REAL_ARITH_TAC)]; SUBGOAL_THEN `floor y = floor x - &1` ASSUME_TAC THENL [REWRITE_TAC[GSYM FLOOR_UNIQUE; FLOOR] THEN ASM_SIMP_TAC[REAL_FLOOR_REFL; INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[FRAC_FLOOR; REAL_FLOOR_REFL; REAL_SUB_REFL] THEN FIRST_X_ASSUM(fun th -> MATCH_MP_TAC th THEN ASM_REAL_ARITH_TAC)]]);; let REAL_TIETZE_PERIODIC_INTERVAL = prove (`!f a b. f real_continuous_on real_interval[a,b] /\ f(a) = f(b) ==> ?g. g real_continuous_on (:real) /\ (!x. x IN real_interval[a,b] ==> g(x) = f(x)) /\ (!x. g(x + (b - a)) = g x)`, REPEAT STRIP_TAC THEN DISJ_CASES_TAC(REAL_ARITH `b:real <= a \/ a < b`) THENL [EXISTS_TAC `\x:real. (f:real->real) a` THEN REWRITE_TAC[IN_REAL_INTERVAL; REAL_CONTINUOUS_ON_CONST] THEN ASM_MESON_TAC[REAL_LE_TRANS; REAL_LE_ANTISYM]; EXISTS_TAC `(f:real->real) o (\y. a + (b - a) * y) o frac o (\x. (x - a) / (b - a))` THEN REWRITE_TAC[o_THM] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[o_ASSOC] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[real_div; REAL_CONTINUOUS_ON_RMUL; REAL_CONTINUOUS_ON_SUB; REAL_CONTINUOUS_ON_CONST; REAL_CONTINUOUS_ON_ID] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_SUBSET THEN EXISTS_TAC `(:real)` THEN REWRITE_TAC[SUBSET_UNIV] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE_FRAC THEN ASM_SIMP_TAC[o_THM; REAL_MUL_RZERO; REAL_MUL_RID; REAL_SUB_ADD2; REAL_ADD_RID] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_COMPOSE THEN SIMP_TAC[REAL_CONTINUOUS_ON_LMUL; REAL_CONTINUOUS_ON_ADD; REAL_CONTINUOUS_ON_CONST; REAL_CONTINUOUS_ON_ID] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_CONTINUOUS_ON_SUBSET)) THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_REAL_INTERVAL] THEN ASM_SIMP_TAC[REAL_LE_ADDR; REAL_LE_MUL; REAL_LT_IMP_LE; REAL_SUB_LT] THEN REWRITE_TAC[REAL_ARITH `a + (b - a) * x <= b <=> &0 <= (b - a) * (&1 - x)`] THEN ASM_SIMP_TAC[REAL_LE_ADDR; REAL_LE_MUL; REAL_LT_IMP_LE; REAL_SUB_LE]; X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN STRIP_TAC THEN ASM_CASES_TAC `x:real = b` THENL [ASM_SIMP_TAC[REAL_DIV_REFL; REAL_LT_IMP_NZ; REAL_SUB_LT] THEN ASM_REWRITE_TAC[FRAC_NUM; REAL_MUL_RZERO; REAL_ADD_RID]; SUBGOAL_THEN `frac((x - a) / (b - a)) = (x - a) / (b - a)` SUBST1_TAC THENL [REWRITE_TAC[REAL_FRAC_EQ] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LT_LDIV_EQ; REAL_SUB_LT] THEN ASM_REAL_ARITH_TAC; AP_TERM_TAC THEN UNDISCH_TAC `a:real < b` THEN CONV_TAC REAL_FIELD]]; ASM_SIMP_TAC[REAL_FIELD `a < b ==> ((x + b - a) - a) / (b - a) = &1 + (x - a) / (b - a)`] THEN REWRITE_TAC[REAL_FRAC_ADD; FRAC_NUM; FLOOR_FRAC; REAL_ADD_LID]]]);; (* ------------------------------------------------------------------------- *) (* A variant of REAL_CONTINUOUS_ADDITIVE_IMP_LINEAR for intervals. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_ADDITIVE_EXTEND = prove (`!f. f real_continuous_on real_interval[&0,&1] /\ (!x y. &0 <= x /\ &0 <= y /\ x + y <= &1 ==> f(x + y) = f(x) + f(y)) ==> ?g. g real_continuous_on (:real) /\ (!x y. g(x + y) = g(x) + g(y)) /\ (!x. x IN real_interval[&0,&1] ==> g x = f x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `f(&0) = &0` ASSUME_TAC THENL [FIRST_ASSUM(MP_TAC o ISPECL [`&0`; `&0`]) THEN REWRITE_TAC[REAL_ADD_LID] THEN REAL_ARITH_TAC; ALL_TAC] THEN EXISTS_TAC `\x. f(&1) * floor(x) + f(frac x)` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [UNDISCH_TAC `f real_continuous_on real_interval[&0,&1]` THEN REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN; WITHINREAL_UNIV] THEN DISCH_TAC THEN X_GEN_TAC `x:real` THEN DISCH_TAC THEN ASM_CASES_TAC `integer x` THENL [ALL_TAC; MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN CONJ_TAC THEN ASM_SIMP_TAC[REAL_CONTINUOUS_LMUL; REAL_CONTINUOUS_FLOOR; ETA_AX] THEN MATCH_MP_TAC(REWRITE_RULE[o_DEF] REAL_CONTINUOUS_ATREAL_COMPOSE) THEN ASM_SIMP_TAC[REAL_CONTINUOUS_FRAC] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE LAND_CONV [IN_REAL_INTERVAL] o SPEC `frac x`) THEN ASM_SIMP_TAC[FLOOR_FRAC; REAL_LT_IMP_LE] THEN REWRITE_TAC[real_continuous_atreal; real_continuous_withinreal] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d (min (frac x) (&1 - frac x))` THEN ASM_SIMP_TAC[REAL_LT_MIN; REAL_SUB_LT; FLOOR_FRAC; REAL_FRAC_POS_LT] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC] THEN ASM_SIMP_TAC[real_continuous_atreal; REAL_FRAC_ZERO; REAL_FLOOR_REFL] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE (BINDER_CONV o LAND_CONV) [IN_REAL_INTERVAL]) THEN DISCH_THEN(fun th -> MP_TAC(SPEC `&1` th) THEN MP_TAC(SPEC `&0` th)) THEN REWRITE_TAC[REAL_LE_REFL; REAL_POS] THEN REWRITE_TAC[IMP_IMP; real_continuous_withinreal; AND_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `d1:real` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `d2:real` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `min (&1) (min d1 d2)` THEN ASM_REWRITE_TAC[REAL_LT_01; REAL_LT_MIN] THEN X_GEN_TAC `y:real` THEN STRIP_TAC THEN DISJ_CASES_TAC(REAL_ARITH `x <= y \/ y < x`) THENL [SUBGOAL_THEN `floor y = floor x` ASSUME_TAC THENL [REWRITE_TAC[GSYM FLOOR_UNIQUE; FLOOR] THEN ASM_SIMP_TAC[REAL_FLOOR_REFL] THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[FRAC_FLOOR; REAL_FLOOR_REFL] THEN REWRITE_TAC[REAL_ARITH `(a + x) - (a + &0) = x - &0`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC]; SUBGOAL_THEN `floor y = floor x - &1` ASSUME_TAC THENL [REWRITE_TAC[GSYM FLOOR_UNIQUE; FLOOR] THEN ASM_SIMP_TAC[REAL_FLOOR_REFL; INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[FRAC_FLOOR; REAL_FLOOR_REFL] THEN REWRITE_TAC[REAL_ARITH `(f1 * (x - &1) + f) - (f1 * x + &0) = f - f1`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC]]; REPEAT GEN_TAC THEN REWRITE_TAC[REAL_FLOOR_ADD; REAL_FRAC_ADD] THEN COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; FLOOR_FRAC; REAL_LE_ADD] THENL [REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[REAL_ARITH `f1 * ((x + y) + &1) + g = (f1 * x + z) + f1 * y + h <=> f1 / &2 + g / &2 = z / &2 + h / &2`] THEN SUBGOAL_THEN `!t. &0 <= t /\ t <= &1 ==> f(t) / &2 = f(t / &2)` ASSUME_TAC THENL [GEN_TAC THEN FIRST_ASSUM(MP_TAC o ISPECL [`t / &2`; `t / &2`]) THEN REWRITE_TAC[REAL_HALF] THEN REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[REAL_POS; REAL_LE_REFL; FLOOR_FRAC; REAL_LT_IMP_LE; REAL_ARITH `~(x + y < &1) ==> &0 <= (x + y) - &1`; REAL_ARITH `x < &1 /\ y < &1 ==> (x + y) - &1 <= &1`] THEN MATCH_MP_TAC(MESON[] `f(a + b) = f a + f b /\ f(c + d) = f(c) + f(d) /\ a + b = c + d ==> (f:real->real)(a) + f(b) = f(c) + f(d)`) THEN REPEAT CONJ_TAC THEN TRY REAL_ARITH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN MAP_EVERY (MP_TAC o C SPEC FLOOR_FRAC) [`x:real`; `y:real`] THEN ASM_REAL_ARITH_TAC; GEN_TAC THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_CASES_TAC `x = &1` THEN ASM_REWRITE_TAC[FLOOR_NUM; FRAC_NUM; REAL_MUL_RID; REAL_ADD_RID] THEN STRIP_TAC THEN SUBGOAL_THEN `floor x = &0` ASSUME_TAC THENL [ASM_REWRITE_TAC[GSYM FLOOR_UNIQUE; INTEGER_CLOSED]; ASM_REWRITE_TAC[FRAC_FLOOR; REAL_SUB_RZERO]] THEN ASM_REAL_ARITH_TAC]);; let REAL_CONTINUOUS_ADDITIVE_IMP_LINEAR_INTERVAL = prove (`!f b. (f ---> &0) (atreal (&0) within {x | &0 <= x}) /\ (!x y. &0 <= x /\ &0 <= y /\ x + y <= b ==> f(x + y) = f(x) + f(y)) ==> !a x. &0 <= x /\ x <= b /\ &0 <= a * x /\ a * x <= b ==> f(a * x) = a * f(x)`, SUBGOAL_THEN `!f. (f ---> &0) (atreal (&0) within {x | &0 <= x}) /\ (!x y. &0 <= x /\ &0 <= y /\ x + y <= &1 ==> f(x + y) = f(x) + f(y)) ==> !a x. &0 <= x /\ x <= &1 /\ &0 <= a * x /\ a * x <= &1 ==> f(a * x) = a * f(x)` ASSUME_TAC THENL [SUBGOAL_THEN `!f. f real_continuous_on real_interval[&0,&1] /\ (!x y. &0 <= x /\ &0 <= y /\ x + y <= &1 ==> f(x + y) = f(x) + f(y)) ==> !a x. &0 <= x /\ x <= &1 /\ &0 <= a * x /\ a * x <= &1 ==> f(a * x) = a * f(x)` (fun th -> GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC th) THENL [REPEAT STRIP_TAC THEN MP_TAC(ISPEC `f:real->real` REAL_CONTINUOUS_ADDITIVE_EXTEND) THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN(X_CHOOSE_THEN `g:real->real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPEC `g:real->real` REAL_CONTINUOUS_ADDITIVE_IMP_LINEAR) THEN ASM_MESON_TAC[]; ASM_REWRITE_TAC[real_continuous_on; IN_REAL_INTERVAL] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REALLIM_WITHINREAL]) THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[REAL_SUB_RZERO] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d:real` THEN ASM_SIMP_TAC[REAL_LT_MUL] THEN X_GEN_TAC `y:real` THEN STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (REAL_ARITH `y = x \/ y < x \/ x < y`) THENL [ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_NUM]; SUBGOAL_THEN `(f:real->real)(y + (x - y)) = f(y) + f(x - y)` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[REAL_SUB_ADD2] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[REAL_ADD_SUB2; REAL_ABS_NEG] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_REAL_ARITH_TAC]; SUBGOAL_THEN `(f:real->real)(x + (y - x)) = f(x) + f(y - x)` MP_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC; REWRITE_TAC[REAL_SUB_ADD2] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[REAL_ADD_SUB] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_REAL_ARITH_TAC]]]; REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (REAL_ARITH `b < &0 \/ b = &0 \/ &0 < b`) THENL [ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[REAL_ARITH `a <= x /\ x <= a /\ a <= y /\ y <= a <=> x = a /\ y = a`] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`&0`; `&0`]) THEN ASM_REWRITE_TAC[REAL_ADD_LID; REAL_LE_REFL] THEN CONV_TAC REAL_RING; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o ISPEC `(\x. f(b * x)):real->real`) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `a:real` THEN DISCH_THEN(fun th -> X_GEN_TAC `x:real` THEN STRIP_TAC THEN MP_TAC(ISPEC `x / b:real` th)) THEN ASM_SIMP_TAC[REAL_FIELD `&0 < b ==> b * a * x / b = a * x`; REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[REAL_ARITH `a * x / b:real = (a * x) / b`] THEN ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ] THEN ASM_REAL_ARITH_TAC] THEN CONJ_TAC THENL [ALL_TAC; REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ADD_LDISTRIB] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_ARITH `b * x + b * y <= b <=> &0 <= b * (&1 - (x + y))`; REAL_LE_MUL; REAL_LT_IMP_LE; REAL_SUB_LE]] THEN REWRITE_TAC[REALLIM_WITHINREAL] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REALLIM_WITHINREAL]) THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[REAL_SUB_RZERO] THEN REWRITE_TAC[REAL_SUB_RZERO; IN_ELIM_THM] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `d / b:real` THEN ASM_SIMP_TAC[REAL_LT_DIV] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE; REAL_ABS_MUL] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < b ==> abs b * x = x * b`] THEN ASM_SIMP_TAC[REAL_LT_MUL; GSYM REAL_LT_RDIV_EQ]]);; (* ------------------------------------------------------------------------- *) (* More Steinhaus variants. *) (* ------------------------------------------------------------------------- *) let STEINHAUS_TRIVIAL = prove (`!s e. ~(negligible s) /\ &0 < e ==> ?x y:real^N. x IN s /\ y IN s /\ ~(x = y) /\ norm(x - y) < e`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN DISCH_TAC THEN MATCH_MP_TAC NEGLIGIBLE_COUNTABLE THEN MATCH_MP_TAC DISCRETE_IMP_COUNTABLE THEN ASM_MESON_TAC[REAL_NOT_LT]);; let REAL_STEINHAUS = prove (`!s. real_measurable s /\ &0 < real_measure s ==> ?d. &0 < d /\ real_interval(--d,d) SUBSET {x - y | x IN s /\ y IN s}`, GEN_TAC THEN SIMP_TAC[IMP_CONJ; REAL_MEASURE_MEASURE] THEN REWRITE_TAC[IMP_IMP; REAL_MEASURABLE_MEASURABLE] THEN DISCH_THEN(MP_TAC o MATCH_MP STEINHAUS) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN REWRITE_TAC[SUBSET; BALL_INTERVAL; IN_INTERVAL_1; IN_REAL_INTERVAL] THEN REWRITE_TAC[SET_RULE `{g x y | x IN IMAGE f s /\ y IN IMAGE f t} = {g (f x) (f y) | x IN s /\ y IN t}`] THEN REWRITE_TAC[GSYM LIFT_SUB] THEN REWRITE_TAC[SET_RULE `{lift(f x y) | P x y} = IMAGE lift {f x y | P x y}`; IN_IMAGE_LIFT_DROP; GSYM FORALL_DROP] THEN REWRITE_TAC[DROP_SUB; DROP_VEC; LIFT_DROP; DROP_ADD] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC);; (* ------------------------------------------------------------------------- *) (* Bernstein polynomials. *) (* ------------------------------------------------------------------------- *) let bernstein = new_definition `bernstein n k x = &(binom(n,k)) * x pow k * (&1 - x) pow (n - k)`;; let BERNSTEIN_CONV = GEN_REWRITE_CONV I [bernstein] THENC COMB2_CONV (RAND_CONV(RAND_CONV NUM_BINOM_CONV)) (RAND_CONV(RAND_CONV NUM_SUB_CONV)) THENC REAL_POLY_CONV;; (* ------------------------------------------------------------------------- *) (* Lemmas about Bernstein polynomials. *) (* ------------------------------------------------------------------------- *) let BERNSTEIN_POS = prove (`!n k x. &0 <= x /\ x <= &1 ==> &0 <= bernstein n k x`, REPEAT STRIP_TAC THEN REWRITE_TAC[bernstein] THEN MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POS] THEN MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THEN MATCH_MP_TAC REAL_POW_LE THEN ASM_REAL_ARITH_TAC);; let SUM_BERNSTEIN = prove (`!n. sum (0..n) (\k. bernstein n k x) = &1`, REWRITE_TAC[bernstein; GSYM REAL_BINOMIAL_THEOREM] THEN REWRITE_TAC[REAL_SUB_ADD2; REAL_POW_ONE]);; let BERNSTEIN_LEMMA = prove (`!n x. sum(0..n) (\k. (&k - &n * x) pow 2 * bernstein n k x) = &n * x * (&1 - x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x y. sum(0..n) (\k. &(binom(n,k)) * x pow k * y pow (n - k)) = (x + y) pow n` (LABEL_TAC "0") THENL [ASM_REWRITE_TAC[REAL_BINOMIAL_THEOREM]; ALL_TAC] THEN SUBGOAL_THEN `!x y. sum(0..n) (\k. &k * &(binom(n,k)) * x pow (k - 1) * y pow (n - k)) = &n * (x + y) pow (n - 1)` (LABEL_TAC "1") THENL [REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_DERIVATIVE_UNIQUE_ATREAL THEN MAP_EVERY EXISTS_TAC [`\x. sum(0..n) (\k. &(binom(n,k)) * x pow k * y pow (n - k))`; `x:real`] THEN CONJ_TAC THENL [MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUM THEN REWRITE_TAC[FINITE_NUMSEG]; ASM_REWRITE_TAC[]] THEN REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN CONV_TAC REAL_RING; ALL_TAC] THEN SUBGOAL_THEN `!x y. sum(0..n) (\k. &k * &(k - 1) * &(binom(n,k)) * x pow (k - 2) * y pow (n - k)) = &n * &(n - 1) * (x + y) pow (n - 2)` (LABEL_TAC "2") THENL [REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_DERIVATIVE_UNIQUE_ATREAL THEN MAP_EVERY EXISTS_TAC [`\x. sum(0..n) (\k. &k * &(binom(n,k)) * x pow (k - 1) * y pow (n - k))`; `x:real`] THEN CONJ_TAC THENL [MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUM THEN REWRITE_TAC[FINITE_NUMSEG]; ASM_REWRITE_TAC[]] THEN REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN REWRITE_TAC[ARITH_RULE `n - 1 - 1 = n - 2`] THEN CONV_TAC REAL_RING; ALL_TAC] THEN REWRITE_TAC[REAL_ARITH `(a - b) pow 2 * x = a * (a - &1) * x + (&1 - &2 * b) * a * x + b * b * x`] THEN REWRITE_TAC[SUM_ADD_NUMSEG; SUM_LMUL; SUM_BERNSTEIN] THEN SUBGOAL_THEN `sum(0..n) (\k. &k * bernstein n k x) = &n * x` SUBST1_TAC THENL [REMOVE_THEN "1" (MP_TAC o SPECL [`x:real`; `&1 - x`]) THEN REWRITE_TAC[REAL_SUB_ADD2; REAL_POW_ONE; bernstein; REAL_MUL_RID] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM SUM_RMUL] THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[REAL_ARITH `(k * b * xk * y) * x:real = k * b * (x * xk) * y`] THEN REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN DISJ_CASES_TAC(ARITH_RULE `k = 0 \/ SUC(k - 1) = k`) THEN ASM_REWRITE_TAC[REAL_MUL_LZERO]; ALL_TAC] THEN SUBGOAL_THEN `sum(0..n) (\k. &k * (&k - &1) * bernstein n k x) = &n * (&n - &1) * x pow 2` SUBST1_TAC THENL [ALL_TAC; CONV_TAC REAL_RING] THEN REMOVE_THEN "2" (MP_TAC o SPECL [`x:real`; `&1 - x`]) THEN REWRITE_TAC[REAL_SUB_ADD2; REAL_POW_ONE; bernstein; REAL_MUL_RID] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[SUM_SING_NUMSEG; REAL_MUL_LZERO] THEN ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; LE_1; REAL_MUL_ASSOC] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM SUM_RMUL] THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[REAL_ARITH `((((k * k1) * b) * xk) * y) * x2:real = k * k1 * b * y * (x2 * xk)`] THEN REWRITE_TAC[GSYM REAL_POW_ADD; GSYM REAL_MUL_ASSOC] THEN REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (ARITH_RULE `k = 0 \/ k = 1 \/ 1 <= k /\ 2 + k - 2 = k`) THEN ASM_REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID; SUB_REFL; REAL_SUB_REFL] THEN ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB] THEN REWRITE_TAC[REAL_MUL_AC]);; (* ------------------------------------------------------------------------- *) (* Explicit Bernstein version of 1D Weierstrass approximation theorem *) (* ------------------------------------------------------------------------- *) let BERNSTEIN_WEIERSTRASS = prove (`!f e. f real_continuous_on real_interval[&0,&1] /\ &0 < e ==> ?N. !n x. N <= n /\ x IN real_interval[&0,&1] ==> abs(f x - sum(0..n) (\k. f(&k / &n) * bernstein n k x)) < e`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `real_bounded(IMAGE f (real_interval[&0,&1]))` MP_TAC THENL [MATCH_MP_TAC REAL_COMPACT_IMP_BOUNDED THEN MATCH_MP_TAC REAL_COMPACT_CONTINUOUS_IMAGE THEN ASM_REWRITE_TAC[REAL_COMPACT_INTERVAL]; REWRITE_TAC[REAL_BOUNDED_POS; LEFT_IMP_EXISTS_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN X_GEN_TAC `M:real` THEN STRIP_TAC] THEN SUBGOAL_THEN `f real_uniformly_continuous_on real_interval[&0,&1]` MP_TAC THENL [ASM_SIMP_TAC[REAL_COMPACT_UNIFORMLY_CONTINUOUS; REAL_COMPACT_INTERVAL]; REWRITE_TAC[real_uniformly_continuous_on] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; IN_REAL_INTERVAL] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC)] THEN SUBGOAL_THEN `!n x. 0 < n /\ &0 <= x /\ x <= &1 ==> abs(f x - sum(0..n) (\k. f(&k / &n) * bernstein n k x)) <= e / &2 + (&2 * M) / (d pow 2 * &n)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `abs(sum(0..n) (\k. (f x - f(&k / &n)) * bernstein n k x))` THEN CONJ_TAC THENL [REWRITE_TAC[REAL_SUB_RDISTRIB; SUM_SUB_NUMSEG; SUM_LMUL] THEN REWRITE_TAC[SUM_BERNSTEIN; REAL_MUL_RID; REAL_LE_REFL]; ALL_TAC] THEN W(MP_TAC o PART_MATCH lhand SUM_ABS_NUMSEG o lhand o snd) THEN MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN REWRITE_TAC[REAL_ABS_MUL] THEN ASM_SIMP_TAC[BERNSTEIN_POS; REAL_ARITH `&0 <= x ==> abs x = x`] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(0..n) (\k. (e / &2 + &2 * M / d pow 2 * (x - &k / &n) pow 2) * bernstein n k x)` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_RMUL THEN ASM_SIMP_TAC[BERNSTEIN_POS] THEN SUBGOAL_THEN `&0 <= &k / &n /\ &k / &n <= &1` STRIP_ASSUME_TAC THENL [ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT] THEN ASM_REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_LE; MULT_CLAUSES]; ALL_TAC] THEN DISJ_CASES_TAC(REAL_ARITH `abs(x - &k / &n) < d \/ d <= abs(x - &k / &n)`) THENL [MATCH_MP_TAC(REAL_ARITH `x < e /\ &0 <= d ==> x <= e + d`) THEN ASM_SIMP_TAC[REAL_ARITH `&0 <= &2 * x <=> &0 <= x`] THEN ASM_SIMP_TAC[REAL_LE_MUL; REAL_LE_DIV; REAL_POW_2; REAL_LE_SQUARE; REAL_LT_IMP_LE]; MATCH_MP_TAC(REAL_ARITH `&0 < e /\ x <= d ==> x <= e / &2 + d`) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `abs(x) <= M /\ abs(y) <= M /\ M * &1 <= M * b / d ==> abs(x - y) <= &2 * M / d * b`) THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_POW_LT; REAL_LE_RDIV_EQ] THEN REWRITE_TAC[REAL_MUL_LID; GSYM REAL_LE_SQUARE_ABS] THEN ASM_REAL_ARITH_TAC]; REWRITE_TAC[REAL_ADD_RDISTRIB; SUM_ADD_NUMSEG; SUM_LMUL] THEN REWRITE_TAC[SUM_BERNSTEIN; REAL_MUL_RID; REAL_LE_LADD] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC; SUM_LMUL] THEN REWRITE_TAC[real_div; REAL_INV_MUL; GSYM REAL_MUL_ASSOC] THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_OF_NUM_LT; ARITH; REAL_POW_LT; REAL_LT_INV_EQ] THEN MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `&n pow 2` THEN ASM_SIMP_TAC[GSYM SUM_LMUL; REAL_POW_LT; REAL_OF_NUM_LT; REAL_FIELD `&0 < n ==> n pow 2 * inv(n) = n`] THEN REWRITE_TAC[REAL_MUL_ASSOC; GSYM REAL_POW_MUL] THEN ASM_SIMP_TAC[REAL_OF_NUM_LT; REAL_FIELD `&0 < n ==> n * (x - k * inv n) = n * x - k`] THEN ONCE_REWRITE_TAC[REAL_ARITH `(x - y:real) pow 2 = (y - x) pow 2`] THEN REWRITE_TAC[BERNSTEIN_LEMMA; REAL_ARITH `&n * x <= &n <=> &n * x <= &n * &1 * &1`] THEN MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_POS] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REAL_ARITH_TAC]; MP_TAC(ISPEC `(e / &4 * d pow 2) / (&2 * M)` REAL_ARCH_INV) THEN ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_OF_NUM_LT; ARITH; REAL_LT_MUL] THEN ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; REAL_POW_LT; REAL_MUL_LZERO] THEN REWRITE_TAC[real_div; REAL_MUL_LZERO] THEN REWRITE_TAC[REAL_ARITH `(x * &2 * m) * i = (&2 * m) * (i * x)`] THEN REWRITE_TAC[GSYM REAL_INV_MUL] THEN ASM_SIMP_TAC[GSYM real_div; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`n:num`; `x:real`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`n:num`; `x:real`]) THEN ASM_SIMP_TAC[] THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `&0 < e /\ k < e / &4 ==> x <= e / &2 + k ==> x < e`) THEN ASM_SIMP_TAC[] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `x < e ==> y <= x ==> y < e`)) THEN ASM_SIMP_TAC[real_div; REAL_LE_LMUL_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ; REAL_LT_MUL; REAL_POW_LT; REAL_OF_NUM_LT; LE_1; REAL_OF_NUM_LE]]);; (* ------------------------------------------------------------------------- *) (* General Stone-Weierstrass theorem. *) (* ------------------------------------------------------------------------- *) let STONE_WEIERSTRASS_ALT = prove (`!(P:(real^N->real)->bool) (s:real^N->bool). compact s /\ (!c. P(\x. c)) /\ (!f g. P(f) /\ P(g) ==> P(\x. f x + g x)) /\ (!f g. P(f) /\ P(g) ==> P(\x. f x * g x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> ?f. (!x. x IN s ==> f real_continuous (at x within s)) /\ P(f) /\ ~(f x = f y)) ==> !f e. (!x. x IN s ==> f real_continuous (at x within s)) /\ &0 < e ==> ?g. P(g) /\ !x. x IN s ==> abs(f x - g x) < e`, REPEAT GEN_TAC THEN STRIP_TAC THEN MAP_EVERY ABBREV_TAC [`C = \f. !x:real^N. x IN s ==> f real_continuous at x within s`; `A = \f. C f /\ !e. &0 < e ==> ?g. P(g) /\ !x:real^N. x IN s ==> abs(f x - g x) < e`] THEN SUBGOAL_THEN `!f:real^N->real. C(f) ==> A(f)` MP_TAC THENL [ALL_TAC; MAP_EVERY EXPAND_TAC ["A"; "C"] THEN SIMP_TAC[]] THEN SUBGOAL_THEN `!c:real. A(\x:real^N. c)` (LABEL_TAC "const") THENL [MAP_EVERY EXPAND_TAC ["A"; "C"] THEN X_GEN_TAC `c:real` THEN ASM_REWRITE_TAC[REAL_CONTINUOUS_CONST] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN EXISTS_TAC `(\x. c):real^N->real` THEN ASM_REWRITE_TAC[REAL_SUB_REFL; REAL_ABS_0]; ALL_TAC] THEN SUBGOAL_THEN `!f g:real^N->real. A(f) /\ A(g) ==> A(\x. f x + g x)` (LABEL_TAC "add") THENL [MAP_EVERY EXPAND_TAC ["A"; "C"] THEN SIMP_TAC[REAL_CONTINUOUS_ADD] THEN MAP_EVERY X_GEN_TAC [`f:real^N->real`; `g:real^N->real`] THEN DISCH_THEN(fun th -> REPEAT STRIP_TAC THEN MP_TAC th) THEN DISCH_THEN(CONJUNCTS_THEN (MP_TAC o SPEC `e / &2` o CONJUNCT2)) THEN ASM_REWRITE_TAC[REAL_HALF; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g':real^N->real` THEN STRIP_TAC THEN X_GEN_TAC `f':real^N->real` THEN STRIP_TAC THEN EXISTS_TAC `(\x. f' x + g' x):real^N->real` THEN ASM_SIMP_TAC[REAL_ARITH `abs(f - f') < e / &2 /\ abs(g - g') < e / &2 ==> abs((f + g) - (f' + g')) < e`]; ALL_TAC] THEN SUBGOAL_THEN `!f:real^N->real. A(f) ==> C(f)` (LABEL_TAC "AC") THENL [EXPAND_TAC "A" THEN SIMP_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `!f:real^N->real. C(f) ==> real_bounded(IMAGE f s)` (LABEL_TAC "bound") THENL [GEN_TAC THEN EXPAND_TAC "C" THEN REWRITE_TAC[REAL_BOUNDED; GSYM IMAGE_o] THEN REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1] THEN REWRITE_TAC[GSYM CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN ASM_SIMP_TAC[COMPACT_IMP_BOUNDED; COMPACT_CONTINUOUS_IMAGE]; ALL_TAC] THEN SUBGOAL_THEN `!f g:real^N->real. A(f) /\ A(g) ==> A(\x. f x * g x)` (LABEL_TAC "mul") THENL [MAP_EVERY X_GEN_TAC [`f:real^N->real`; `g:real^N->real`] THEN DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN MAP_EVERY EXPAND_TAC ["A"; "C"] THEN SIMP_TAC[REAL_CONTINUOUS_MUL] THEN REWRITE_TAC[IMP_CONJ] THEN MAP_EVERY (DISCH_THEN o LABEL_TAC) ["cf"; "af"; "cg"; "ag"] THEN SUBGOAL_THEN `real_bounded(IMAGE (f:real^N->real) s) /\ real_bounded(IMAGE (g:real^N->real) s)` MP_TAC THENL [ASM_SIMP_TAC[]; REWRITE_TAC[REAL_BOUNDED_POS_LT; FORALL_IN_IMAGE]] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `Bf:real` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `Bg:real` STRIP_ASSUME_TAC)) THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN REMOVE_THEN "ag" (MP_TAC o SPEC `e / &2 / Bf`) THEN ASM_SIMP_TAC[REAL_HALF; REAL_LT_DIV; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g':real^N->real` THEN STRIP_TAC THEN REMOVE_THEN "af" (MP_TAC o SPEC `e / &2 / (Bg + e / &2 / Bf)`) THEN ASM_SIMP_TAC[REAL_HALF; REAL_LT_DIV; REAL_LT_ADD] THEN DISCH_THEN(X_CHOOSE_THEN `f':real^N->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(\x. f'(x) * g'(x)):real^N->real` THEN ASM_SIMP_TAC[REAL_ARITH `f * g - f' * g':real = f * (g - g') + g' * (f - f')`] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `e = Bf * e / &2 / Bf + (Bg + e / &2 / Bf) * e / &2 / (Bg + e / &2 / Bf)` SUBST1_TAC THENL [MATCH_MP_TAC(REAL_ARITH `a = e / &2 /\ b = e / &2 ==> e = a + b`) THEN CONJ_TAC THEN MAP_EVERY MATCH_MP_TAC [REAL_DIV_LMUL; REAL_LT_IMP_NZ] THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_LT_ADD; REAL_HALF]; MATCH_MP_TAC(REAL_ARITH `abs a < c /\ abs b < d ==> abs(a + b) < c + d`) THEN REWRITE_TAC[REAL_ABS_MUL] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LT_MUL2 THEN ASM_SIMP_TAC[REAL_ABS_POS] THEN MATCH_MP_TAC(REAL_ARITH `!g. abs(g) < Bg /\ abs(g - g') < e ==> abs(g') < Bg + e`) THEN EXISTS_TAC `(g:real^N->real) x` THEN ASM_SIMP_TAC[]]; ALL_TAC] THEN SUBGOAL_THEN `!x y. x IN s /\ y IN s /\ ~(x = y) ==> ?f:real^N->real. A(f) /\ ~(f x = f y)` (LABEL_TAC "sep") THENL [MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN MAP_EVERY EXPAND_TAC ["A"; "C"] THEN ASM_MESON_TAC[REAL_SUB_REFL; REAL_ABS_0]; ALL_TAC] THEN SUBGOAL_THEN `!f. A(f) ==> A(\x:real^N. abs(f x))` (LABEL_TAC "abs") THENL [SUBGOAL_THEN `!f. A(f) /\ (!x. x IN s ==> abs(f x) <= &1 / &4) ==> A(\x:real^N. abs(f x))` ASSUME_TAC THENL [ALL_TAC; REPEAT STRIP_TAC THEN SUBGOAL_THEN `real_bounded(IMAGE (f:real^N->real) s)` MP_TAC THENL [ASM_SIMP_TAC[]; REWRITE_TAC[REAL_BOUNDED_POS_LT; FORALL_IN_IMAGE]] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `A(\x:real^N. (&4 * B) * abs(inv(&4 * B) * f x)):bool` MP_TAC THENL [USE_THEN "mul" MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[REAL_ABS_MUL] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < B ==> abs(B) = B`; REAL_LT_INV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH; REAL_MUL_ASSOC] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_SIMP_TAC[REAL_MUL_LID; REAL_LT_IMP_LE]; ASM_SIMP_TAC[REAL_ABS_MUL; REAL_ARITH `&0 < B ==> abs(B) = B`; REAL_LT_INV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN ASM_SIMP_TAC[REAL_MUL_ASSOC; REAL_MUL_RINV; REAL_MUL_LID; REAL_ARITH `&0 < B ==> ~(&4 * B = &0)`]]] THEN X_GEN_TAC `f:real^N->real` THEN MAP_EVERY EXPAND_TAC ["A"; "C"] THEN DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THENL [DISCH_THEN(MP_TAC o CONJUNCT1 o CONJUNCT1) THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT; o_DEF] REAL_CONTINUOUS_WITHIN_COMPOSE) THEN REWRITE_TAC[real_continuous_withinreal] THEN MESON_TAC[ARITH_RULE `abs(x - y) < d ==> abs(abs x - abs y) < d`]; ALL_TAC] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(fun t -> X_GEN_TAC `e:real` THEN DISCH_TAC THEN MP_TAC t) THEN DISCH_THEN(MP_TAC o SPEC `min (e / &2) (&1 / &4)`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[REAL_LT_MIN; FORALL_AND_THM; TAUT `(a ==> b /\ c) <=> (a ==> b) /\ (a ==> c)`] THEN DISCH_THEN(X_CHOOSE_THEN `p:real^N->real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPECL [`\x. abs(x - &1 / &2)`; `e / &2`] BERNSTEIN_WEIERSTRASS) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[real_continuous_on; REAL_HALF] THEN MESON_TAC[ARITH_RULE `abs(x - y) < d ==> abs(abs(x - a) - abs(y - a)) < d`]; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `n:num` (MP_TAC o SPEC `n:num`)) THEN REWRITE_TAC[LE_REFL] THEN DISCH_TAC THEN EXISTS_TAC `\x:real^N. sum(0..n) (\k. abs(&k / &n - &1 / &2) * bernstein n k (&1 / &2 + p x))` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [SUBGOAL_THEN `!m c z. P(\x:real^N. sum(0..m) (\k. c k * bernstein (z m) k (&1 / &2 + p x)))` (fun th -> REWRITE_TAC[th]) THEN SUBGOAL_THEN `!m k. P(\x:real^N. bernstein m k (&1 / &2 + p x))` ASSUME_TAC THENL [ALL_TAC; INDUCT_TAC THEN ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0]] THEN REPEAT GEN_TAC THEN REWRITE_TAC[bernstein] THEN REWRITE_TAC[REAL_ARITH `&1 - (&1 / &2 + p) = &1 / &2 + -- &1 * p`] THEN REPEAT(FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]) THEN SUBGOAL_THEN `!f:real^N->real k. P(f) ==> P(\x. f(x) pow k)` (fun th -> ASM_SIMP_TAC[th]) THEN GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[real_pow]; REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `!p. abs(abs(p x) - s) < e / &2 /\ abs(f x - p x) < e / &2 ==> abs(abs(f x) - s) < e`) THEN EXISTS_TAC `p:real^N->real` THEN ASM_SIMP_TAC[] THEN GEN_REWRITE_TAC (PAT_CONV `\x. abs(abs x - a) < e`) [REAL_ARITH `x = (&1 / &2 + x) - &1 / &2`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN MATCH_MP_TAC(REAL_ARITH `!f. abs(f) <= &1 / &4 /\ abs(f - p) < &1 / &4 ==> &0 <= &1 / &2 + p /\ &1 / &2 + p <= &1`) THEN EXISTS_TAC `(f:real^N->real) x` THEN ASM_SIMP_TAC[]]; ALL_TAC] THEN SUBGOAL_THEN `!f:real^N->real g. A(f) /\ A(g) ==> A(\x. max (f x) (g x))` (LABEL_TAC "max") THENL [REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH `max a b = inv(&2) * (a + b + abs(a + -- &1 * b))`] THEN REPEAT(FIRST_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[]); ALL_TAC] THEN SUBGOAL_THEN `!f:real^N->real g. A(f) /\ A(g) ==> A(\x. min (f x) (g x))` (LABEL_TAC "min") THENL [ASM_SIMP_TAC[REAL_ARITH `min a b = -- &1 * (max(-- &1 * a) (-- &1 * b))`]; ALL_TAC] THEN SUBGOAL_THEN `!t. FINITE t /\ (!f. f IN t ==> A(f)) ==> A(\x:real^N. sup {f(x) | f IN t})` (LABEL_TAC "sup") THENL [REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[FORALL_IN_INSERT; SIMPLE_IMAGE; IMAGE_CLAUSES] THEN ASM_SIMP_TAC[SUP_INSERT_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN MAP_EVERY X_GEN_TAC [`f:real^N->real`; `t:(real^N->real)->bool`] THEN ASM_CASES_TAC `t:(real^N->real)->bool = {}` THEN ASM_SIMP_TAC[ETA_AX]; ALL_TAC] THEN SUBGOAL_THEN `!t. FINITE t /\ (!f. f IN t ==> A(f)) ==> A(\x:real^N. inf {f(x) | f IN t})` (LABEL_TAC "inf") THENL [REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[FORALL_IN_INSERT; SIMPLE_IMAGE; IMAGE_CLAUSES] THEN ASM_SIMP_TAC[INF_INSERT_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN MAP_EVERY X_GEN_TAC [`f:real^N->real`; `t:(real^N->real)->bool`] THEN ASM_CASES_TAC `t:(real^N->real)->bool = {}` THEN ASM_SIMP_TAC[ETA_AX]; ALL_TAC] THEN SUBGOAL_THEN `!f:real^N->real e. C(f) /\ &0 < e ==> ?g. A(g) /\ !x. x IN s ==> abs(f x - g x) < e` ASSUME_TAC THENL [ALL_TAC; X_GEN_TAC `f:real^N->real` THEN DISCH_TAC THEN EXPAND_TAC "A" THEN CONJ_TAC THENL [FIRST_X_ASSUM ACCEPT_TAC; ALL_TAC] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`f:real^N->real`; `e / &2`]) THEN ASM_REWRITE_TAC[REAL_HALF; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `h:real^N->real` THEN EXPAND_TAC "A" THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN DISCH_THEN(MP_TAC o SPEC `e / &2` o CONJUNCT2) THEN ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[REAL_ARITH `abs(f - h) < e / &2 /\ abs(h - g) < e / &2 ==> abs(f - g) < e`]] THEN MAP_EVERY X_GEN_TAC [`f:real^N->real`; `e:real`] THEN EXPAND_TAC "C" THEN STRIP_TAC THEN SUBGOAL_THEN `!x y. x IN s /\ y IN s ==> ?h:real^N->real. A(h) /\ h(x) = f(x) /\ h(y) = f(y)` MP_TAC THENL [REPEAT STRIP_TAC THEN ASM_CASES_TAC `y:real^N = x` THENL [EXISTS_TAC `\z:real^N. (f:real^N->real) x` THEN ASM_SIMP_TAC[]; SUBGOAL_THEN `?h:real^N->real. A(h) /\ ~(h x = h y)` STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN EXISTS_TAC `\z. (f y - f x) / (h y - h x) * (h:real^N->real)(z) + (f x - (f y - f x) / (h y - h x) * h(x))` THEN ASM_SIMP_TAC[] THEN UNDISCH_TAC `~((h:real^N->real) x = h y)` THEN CONV_TAC REAL_FIELD]; ALL_TAC] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f2:real^N->real^N->real^N->real` THEN DISCH_TAC THEN ABBREV_TAC `G = \x y. {z | z IN s /\ (f2:real^N->real^N->real^N->real) x y z < f(z) + e}` THEN SUBGOAL_THEN `!x y:real^N. x IN s /\ y IN s ==> x IN G x y /\ y IN G x y` ASSUME_TAC THENL [EXPAND_TAC "G" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_SIMP_TAC[REAL_LT_ADDR]; ALL_TAC] THEN SUBGOAL_THEN `!x. x IN s ==> ?f1. A(f1) /\ f1 x = f x /\ !y:real^N. y IN s ==> f1 y < f y + e` MP_TAC THENL [REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COMPACT_EQ_HEINE_BOREL_SUBTOPOLOGY]) THEN DISCH_THEN(MP_TAC o SPEC `{(G:real^N->real^N->real^N->bool) x y | y IN s}`) THEN REWRITE_TAC[SIMPLE_IMAGE; UNIONS_IMAGE; FORALL_IN_IMAGE; ETA_AX] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN EXPAND_TAC "G" THEN REWRITE_TAC[] THEN X_GEN_TAC `w:real^N` THEN DISCH_TAC THEN MP_TAC(ISPECL [`lift o (\z:real^N. f2 (x:real^N) (w:real^N) z - f z)`; `s:real^N->bool`; `{x:real^1 | x$1 < e}`] CONTINUOUS_OPEN_IN_PREIMAGE) THEN REWRITE_TAC[OPEN_HALFSPACE_COMPONENT_LT; IN_ELIM_THM] THEN REWRITE_TAC[GSYM drop; LIFT_DROP; o_DEF] THEN REWRITE_TAC[LIFT_SUB; GSYM REAL_CONTINUOUS_CONTINUOUS1; REAL_ARITH `x < y + e <=> x - y < e`] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_SUB THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS1; ETA_AX] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE; UNIONS_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\z:real^N. inf {f2 (x:real^N) (y:real^N) z | y IN t}` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `x = min x x`] THEN REWRITE_TAC[REAL_MIN_INF; INSERT_AC] THEN AP_TERM_TAC THEN ASM SET_TAC[]; REMOVE_THEN "inf" (MP_TAC o SPEC `IMAGE (\y z. (f2:real^N->real^N->real^N->real) x y z) t`) THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN REWRITE_TAC[SIMPLE_IMAGE; ETA_AX] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF]; SUBGOAL_THEN `~(t:real^N->bool = {})` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN ASM_SIMP_TAC[REAL_INF_LT_FINITE; SIMPLE_IMAGE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN X_GEN_TAC `y:real^N` THEN DISCH_TAC THEN UNDISCH_TAC `s SUBSET {y:real^N | ?z:real^N. z IN t /\ y IN G (x:real^N) z}` THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `y:real^N`) THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "G" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_REWRITE_TAC[]]; GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f1:real^N->real^N->real` THEN DISCH_TAC] THEN ABBREV_TAC `H = \x:real^N. {z:real^N | z IN s /\ f z - e < f1 x z}` THEN SUBGOAL_THEN `!x:real^N. x IN s ==> x IN (H x)` ASSUME_TAC THENL [EXPAND_TAC "H" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_SIMP_TAC[REAL_ARITH `x - e < x <=> &0 < e`]; ALL_TAC] THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [COMPACT_EQ_HEINE_BOREL_SUBTOPOLOGY]) THEN DISCH_THEN(MP_TAC o SPEC `{(H:real^N->real^N->bool) x | x IN s}`) THEN REWRITE_TAC[SIMPLE_IMAGE; UNIONS_IMAGE; FORALL_IN_IMAGE; ETA_AX] THEN ANTS_TAC THENL [CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN EXPAND_TAC "H" THEN REWRITE_TAC[] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN MP_TAC(ISPECL [`lift o (\z:real^N. f z - f1 (x:real^N) z)`; `s:real^N->bool`; `{x:real^1 | x$1 < e}`] CONTINUOUS_OPEN_IN_PREIMAGE) THEN REWRITE_TAC[OPEN_HALFSPACE_COMPONENT_LT; IN_ELIM_THM] THEN REWRITE_TAC[GSYM drop; LIFT_DROP; o_DEF] THEN GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [REAL_ARITH `x - y < z <=> x - z < y`] THEN DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[LIFT_SUB; GSYM REAL_CONTINUOUS_CONTINUOUS1; REAL_ARITH `x < y + e <=> x - y < e`] THEN MATCH_MP_TAC CONTINUOUS_ON_SUB THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS1; ETA_AX] THEN ASM_MESON_TAC[]; ALL_TAC] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> b /\ a /\ c`] THEN REWRITE_TAC[EXISTS_FINITE_SUBSET_IMAGE; UNIONS_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `t:real^N->bool` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\z:real^N. sup {f1 (x:real^N) z | x IN t}` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [REMOVE_THEN "sup" (MP_TAC o SPEC `IMAGE (f1:real^N->real^N->real) t`) THEN ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE] THEN REWRITE_TAC[SIMPLE_IMAGE; ETA_AX] THEN ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF]; ALL_TAC] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `~(t:real^N->bool = {})` ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN REWRITE_TAC[SIMPLE_IMAGE; REAL_ARITH `abs(f - s) < e <=> f - e < s /\ s < f + e`] THEN ASM_SIMP_TAC[REAL_SUP_LT_FINITE; REAL_LT_SUP_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN UNDISCH_TAC `s SUBSET {y:real^N | ?x:real^N. x IN t /\ y IN H x}` THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[] THEN EXPAND_TAC "H" THEN REWRITE_TAC[IN_ELIM_THM] THEN ASM_REWRITE_TAC[]);; let STONE_WEIERSTRASS = prove (`!(P:(real^N->real)->bool) (s:real^N->bool). compact s /\ (!f. P(f) ==> !x. x IN s ==> f real_continuous (at x within s)) /\ (!c. P(\x. c)) /\ (!f g. P(f) /\ P(g) ==> P(\x. f x + g x)) /\ (!f g. P(f) /\ P(g) ==> P(\x. f x * g x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> ?f. P(f) /\ ~(f x = f y)) ==> !f e. (!x. x IN s ==> f real_continuous (at x within s)) /\ &0 < e ==> ?g. P(g) /\ !x. x IN s ==> abs(f x - g x) < e`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC STONE_WEIERSTRASS_ALT THEN ASM_SIMP_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Real and complex versions of Stone-Weierstrass theorem. *) (* ------------------------------------------------------------------------- *) let REAL_STONE_WEIERSTRASS_ALT = prove (`!P s. real_compact s /\ (!c. P (\x. c)) /\ (!f g. P f /\ P g ==> P (\x. f x + g x)) /\ (!f g. P f /\ P g ==> P (\x. f x * g x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> ?f. f real_continuous_on s /\ P f /\ ~(f x = f y)) ==> !f e. f real_continuous_on s /\ &0 < e ==> ?g. P g /\ !x. x IN s ==> abs(f x - g x) < e`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\f. (P:(real->real)->bool)(f o lift)`; `IMAGE lift s`] STONE_WEIERSTRASS_ALT) THEN ASM_SIMP_TAC[GSYM real_compact; o_DEF] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC] THEN ANTS_TAC THENL [X_GEN_TAC `x:real` THEN DISCH_TAC THEN X_GEN_TAC `y:real` THEN REWRITE_TAC[LIFT_EQ] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `g:real->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(g:real->real) o drop` THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP; ETA_AX] THEN UNDISCH_TAC `g real_continuous_on s` THEN REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_WITHINREAL] THEN REWRITE_TAC[real_continuous_within; continuous_within] THEN REWRITE_TAC[o_THM; LIFT_DROP; DIST_LIFT]; DISCH_THEN(MP_TAC o SPEC `(f:real->real) o drop`) THEN ANTS_TAC THENL [UNDISCH_TAC `f real_continuous_on s` THEN REWRITE_TAC[REAL_CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_WITHINREAL] THEN REWRITE_TAC[real_continuous_within; continuous_within] THEN REWRITE_TAC[o_THM; LIFT_DROP; DIST_LIFT]; DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^1->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(g:real^1->real) o lift` THEN ASM_REWRITE_TAC[o_DEF]]]);; let REAL_STONE_WEIERSTRASS = prove (`!P s. real_compact s /\ (!f. P f ==> f real_continuous_on s) /\ (!c. P (\x. c)) /\ (!f g. P f /\ P g ==> P (\x. f x + g x)) /\ (!f g. P f /\ P g ==> P (\x. f x * g x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> ?f. P f /\ ~(f x = f y)) ==> !f e. f real_continuous_on s /\ &0 < e ==> ?g. P g /\ !x. x IN s ==> abs(f x - g x) < e`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC REAL_STONE_WEIERSTRASS_ALT THEN ASM_SIMP_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real`; `y:real`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[]);; let COMPLEX_STONE_WEIERSTRASS_ALT = prove (`!P s. compact s /\ (!c. P (\x. c)) /\ (!f. P f ==> P(\x. cnj(f x))) /\ (!f g. P f /\ P g ==> P (\x. f x + g x)) /\ (!f g. P f /\ P g ==> P (\x. f x * g x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> ?f. P f /\ f continuous_on s /\ ~(f x = f y)) ==> !f:real^N->complex e. f continuous_on s /\ &0 < e ==> ?g. P g /\ !x. x IN s ==> norm(f x - g x) < e`, REPEAT GEN_TAC THEN STRIP_TAC THEN SUBGOAL_THEN `!f. P f ==> P(\x:real^N. Cx(Re(f x)))` ASSUME_TAC THENL [ASM_SIMP_TAC[CX_RE_CNJ; SIMPLE_COMPLEX_ARITH `x / Cx(&2) = inv(Cx(&2)) * x`]; ALL_TAC] THEN SUBGOAL_THEN `!f. P f ==> P(\x:real^N. Cx(Im(f x)))` ASSUME_TAC THENL [ASM_SIMP_TAC[CX_IM_CNJ; SIMPLE_COMPLEX_ARITH `x - y = x + --Cx(&1) * y /\ x / Cx(&2) = inv(Cx(&2)) * x`] THEN REPEAT STRIP_TAC THEN REPEAT(FIRST_ASSUM MATCH_MP_TAC ORELSE CONJ_TAC) THEN ASM_SIMP_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`\x. x IN {Re o f | P (f:real^N->complex)}`; `s:real^N->bool`] STONE_WEIERSTRASS_ALT) THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN REWRITE_TAC[EXISTS_IN_GSPEC; IMP_IMP; GSYM CONJ_ASSOC] THEN ANTS_TAC THENL [ASM_REWRITE_TAC[IMP_IMP; RIGHT_IMP_FORALL_THM; IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `c:real` THEN EXISTS_TAC `\x:real^N. Cx(c)` THEN ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; RE_CX]; MAP_EVERY X_GEN_TAC [`f:real^N->complex`; `g:real^N->complex`] THEN DISCH_TAC THEN EXISTS_TAC `(\x. f x + g x):real^N->complex` THEN ASM_SIMP_TAC[o_THM; RE_ADD; FUN_EQ_THM]; MAP_EVERY X_GEN_TAC [`f:real^N->complex`; `g:real^N->complex`] THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. Cx(Re(f x)) * Cx(Re(g x))` THEN ASM_SIMP_TAC[FUN_EQ_THM; RE_CX; o_THM; RE_MUL_CX]; MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `f:real^N->complex` THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [COMPLEX_EQ] THEN REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THENL [EXISTS_TAC `\x:real^N. Re(f x)` THEN ASM_REWRITE_TAC[o_DEF] THEN CONJ_TAC THENL [ALL_TAC; EXISTS_TAC `f:real^N->complex` THEN ASM_REWRITE_TAC[]]; EXISTS_TAC `\x:real^N. Im(f x)` THEN ASM_REWRITE_TAC[o_DEF] THEN CONJ_TAC THENL [ALL_TAC; EXISTS_TAC `\x:real^N. Cx(Im(f x))` THEN ASM_SIMP_TAC[RE_CX]]] THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC REAL_CONTINUOUS_CONTINUOUS_WITHIN_COMPOSE THEN SIMP_TAC[REAL_CONTINUOUS_COMPLEX_COMPONENTS_AT; REAL_CONTINUOUS_AT_WITHIN] THEN ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN]]; DISCH_THEN(LABEL_TAC "*") THEN X_GEN_TAC `f:real^N->complex` THEN DISCH_TAC THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN REMOVE_THEN "*" (fun th -> MP_TAC(ISPEC `Re o (f:real^N->complex)` th) THEN MP_TAC(ISPEC `Im o (f:real^N->complex)` th)) THEN MATCH_MP_TAC(TAUT `(p1 /\ p2) /\ (q1 /\ q2 ==> r) ==> (p1 ==> q1) ==> (p2 ==> q2) ==> r`) THEN CONJ_TAC THENL [CONJ_TAC THEN X_GEN_TAC `a:real^N` THEN DISCH_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_CONTINUOUS_WITHIN_COMPOSE THEN SIMP_TAC[REAL_CONTINUOUS_COMPLEX_COMPONENTS_AT; REAL_CONTINUOUS_AT_WITHIN] THEN ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN]; ALL_TAC] THEN REWRITE_TAC[AND_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; o_THM] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `g:real^N->complex` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `h:real^N->complex` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `\x:real^N. Cx(Re(h x)) + ii * Cx(Re(g x))` THEN ASM_SIMP_TAC[] THEN X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [COMPLEX_EXPAND] THEN MATCH_MP_TAC(NORM_ARITH `norm(x1 - x2) < e / &2 /\ norm(y1 - y2) < e / &2 ==> norm((x1 + y1) - (x2 + y2)) < e`) THEN ASM_SIMP_TAC[GSYM CX_SUB; COMPLEX_NORM_CX; GSYM COMPLEX_SUB_LDISTRIB; COMPLEX_NORM_MUL; COMPLEX_NORM_II; REAL_MUL_LID]]);; let COMPLEX_STONE_WEIERSTRASS = prove (`!P s. compact s /\ (!f. P f ==> f continuous_on s) /\ (!c. P (\x. c)) /\ (!f. P f ==> P(\x. cnj(f x))) /\ (!f g. P f /\ P g ==> P (\x. f x + g x)) /\ (!f g. P f /\ P g ==> P (\x. f x * g x)) /\ (!x y. x IN s /\ y IN s /\ ~(x = y) ==> ?f. P f /\ ~(f x = f y)) ==> !f:real^N->complex e. f continuous_on s /\ &0 < e ==> ?g. P g /\ !x. x IN s ==> norm(f x - g x) < e`, REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC COMPLEX_STONE_WEIERSTRASS_ALT THEN ASM_SIMP_TAC[] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[]);; (* ------------------------------------------------------------------------- *) (* Stone-Weierstrass for R^n -> R polynomials. *) (* ------------------------------------------------------------------------- *) let real_polynomial_function_RULES, real_polynomial_function_INDUCT, real_polynomial_function_CASES = new_inductive_definition `(!i. 1 <= i /\ i <= dimindex(:N) ==> real_polynomial_function(\x:real^N. x$i)) /\ (!c. real_polynomial_function(\x:real^N. c)) /\ (!f g. real_polynomial_function f /\ real_polynomial_function g ==> real_polynomial_function(\x:real^N. f x + g x)) /\ (!f g. real_polynomial_function f /\ real_polynomial_function g ==> real_polynomial_function(\x:real^N. f x * g x))`;; let REAL_POLYNOMIAL_FUNCTION_ADD = prove (`!f g. real_polynomial_function f /\ real_polynomial_function g ==> real_polynomial_function(\x. f x + g x)`, REWRITE_TAC[real_polynomial_function_RULES]);; let REAL_POLYNOMIAL_FUNCTION_MUL = prove (`!f g. real_polynomial_function f /\ real_polynomial_function g ==> real_polynomial_function(\x. f x * g x)`, REWRITE_TAC[real_polynomial_function_RULES]);; let REAL_POLYNOMIAL_FUNCTION_NEG = prove (`!f:real^N->real. real_polynomial_function(\x. --(f x)) <=> real_polynomial_function f`, MATCH_MP_TAC(MESON[] `(!x. n(n x) = x) /\ (!x. P x ==> P(n x)) ==> (!x. P(n x) <=> P x)`) THEN REWRITE_TAC[REAL_NEG_NEG; ETA_AX] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `--x:real = --(&1) * x`] THEN ASM_SIMP_TAC[real_polynomial_function_RULES; ETA_AX]);; let REAL_POLYNOMIAL_FUNCTION_SUB = prove (`!f g:real^N->real. real_polynomial_function f /\ real_polynomial_function g ==> real_polynomial_function (\x. f x - g x)`, SIMP_TAC[real_sub; REAL_POLYNOMIAL_FUNCTION_NEG; REAL_POLYNOMIAL_FUNCTION_ADD]);; let REAL_POLYNOMIAL_FUNCTION_SUM = prove (`!f s. FINITE s /\ (!a. a IN s ==> real_polynomial_function(\x. f x a)) ==> real_polynomial_function (\x. sum s (f x))`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[real_polynomial_function_RULES; SUM_CLAUSES; FORALL_IN_INSERT]);; let REAL_POLYNOMIAL_FUNCTION_PRODUCT = prove (`!f s. FINITE s /\ (!a. a IN s ==> real_polynomial_function(\x. f x a)) ==> real_polynomial_function (\x. product s (f x))`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[real_polynomial_function_RULES; PRODUCT_CLAUSES; FORALL_IN_INSERT]);; let REAL_POLYNOMIAL_FUNCTION_POW = prove (`!p n. real_polynomial_function p ==> real_polynomial_function(\x. p(x) pow n)`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[real_polynomial_function_RULES; real_pow]);; let POLYNOMIAL_FUNCTION_LIFT,POLYNOMIAL_FUNCTION_DROP = (CONJ_PAIR o prove) (`(!p. polynomial_function (p o lift) <=> real_polynomial_function p) /\ (!p. real_polynomial_function(p o drop) <=> polynomial_function p)`, SUBGOAL_THEN `!p. polynomial_function p ==> real_polynomial_function(p o drop)` ASSUME_TAC THENL [MATCH_MP_TAC POLYNOMIAL_FUNCTION_INDUCT THEN SIMP_TAC[o_DEF; real_polynomial_function_RULES; drop; DIMINDEX_1; LE_REFL]; ALL_TAC] THEN SUBGOAL_THEN `!p. real_polynomial_function p ==> polynomial_function(p o lift)` ASSUME_TAC THENL [MATCH_MP_TAC real_polynomial_function_INDUCT THEN SIMP_TAC[o_DEF; POLYNOMIAL_FUNCTION_ADD; DIMINDEX_1; FORALL_1] THEN REWRITE_TAC[GSYM drop; LIFT_DROP; POLYNOMIAL_FUNCTION_ID] THEN SIMP_TAC[POLYNOMIAL_FUNCTION_MUL; POLYNOMIAL_FUNCTION_CONST]; ALL_TAC] THEN REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]);; let REAL_POLYNOMIAL_FUNCTION_EXPLICIT, REAL_POLYNOMIAL_FUNCTION_EXPLICIT_NZ, REAL_POLYNOMIAL_FUNCTION_EXPLICIT_UNIV = let lemma1,lemma2 = (CONJ_PAIR o prove) (`(!f:real^N->real. (?a:num^N->real. FINITE {k | ~(a k = &0)} /\ f = \x. sum (:num^N) (\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))) <=> (?(s:num^N->bool) a. FINITE s /\ f = \x. sum s (\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i)))) /\ (!f:real^N->real. (?a:num^N->real. FINITE {k | ~(a k = &0)} /\ f = \x. sum (:num^N) (\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))) <=> (?(s:num^N->bool) a. FINITE s /\ (!k. k IN s ==> ~(a k = &0)) /\ f = \x. sum s (\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))))`, REWRITE_TAC[AND_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC(TAUT `(r ==> q) /\ (p ==> r) /\ (q ==> p) ==> (p <=> q) /\ (p <=> r)`) THEN REPEAT CONJ_TAC THENL [MESON_TAC[]; ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:num^N->real` THEN STRIP_TAC THEN EXISTS_TAC `{k:num^N | ~(a k = &0)}` THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN ABS_TAC THEN MATCH_MP_TAC SUM_SUPERSET THEN SIMP_TAC[SUBSET_UNIV; IN_ELIM_THM; IN_UNIV; REAL_MUL_LZERO]; REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`s:num^N->bool`; `a:num^N->real`] THEN STRIP_TAC THEN EXISTS_TAC `\k. if k IN s then (a:num^N->real) k else &0` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] FINITE_SUBSET)) THEN SET_TAC[]; ABS_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_EQ_SUPERSET THEN ASM_SIMP_TAC[SUBSET_UNIV; REAL_MUL_LZERO]]]) in let REAL_POLYNOMIAL_FUNCTION_EXPLICIT_UNIV = prove (`!f:real^N->real. real_polynomial_function f <=> ?a:num^N->real. FINITE {k | ~(a k = &0)} /\ f = \x. sum (:num^N) (\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))`, REWRITE_TAC[TAUT `(p <=> q) <=> (q ==> p) /\ (p ==> q)`; FORALL_AND_THM] THEN CONJ_TAC THENL [GEN_TAC THEN REWRITE_TAC[lemma1] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`s:num^N->bool`; `a:num^N->real`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_SUM THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_MUL THEN REWRITE_TAC[real_polynomial_function_RULES] THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_PRODUCT THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_POW THEN ASM_SIMP_TAC[real_polynomial_function_RULES]; ALL_TAC] THEN MATCH_MP_TAC real_polynomial_function_INDUCT THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [X_GEN_TAC `j:num` THEN STRIP_TAC THEN REWRITE_TAC[lemma1] THEN EXISTS_TAC `{(lambda i. if i = j then 1 else 0):num^N}` THEN EXISTS_TAC `\k:num^N. &1` THEN REWRITE_TAC[FINITE_SING; SUM_SING; REAL_MUL_LID] THEN ABS_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; COND_RAND; real_pow; PRODUCT_DELTA; IN_NUMSEG; REAL_POW_1]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [X_GEN_TAC `c:real` THEN REWRITE_TAC[lemma1] THEN EXISTS_TAC `{(lambda i. 0):num^N}` THEN EXISTS_TAC `(\k. c):num^N->real` THEN REWRITE_TAC[FINITE_SING; SUM_SING] THEN ABS_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; real_pow; PRODUCT_ONE; REAL_MUL_RID]; DISCH_TAC] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `a:num^N->real` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `b:num^N->real` STRIP_ASSUME_TAC)) THEN EXISTS_TAC `(\k. a k + b k):num^N->real` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{k:num^N | ~(a k = &0)} UNION {k:num^N | ~(b k = &0)}` THEN ASM_REWRITE_TAC[FINITE_UNION; SUBSET; IN_UNION; IN_ELIM_THM] THEN REAL_ARITH_TAC; ASM_REWRITE_TAC[REAL_ADD_RDISTRIB] THEN ABS_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SUM_ADD_GEN THEN REWRITE_TAC[IN_UNIV; REAL_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THEN MATCH_MP_TAC(MESON[FINITE_SUBSET] `FINITE {k | P k} /\ {k | P k /\ Q k} SUBSET {k | P k} ==> FINITE {k | P k /\ Q k}`) THEN ASM_REWRITE_TAC[] THEN SET_TAC[]]; DISCH_TAC] THEN REPEAT GEN_TAC THEN REWRITE_TAC[lemma1] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `s:num^N->bool` (X_CHOOSE_THEN `a:num^N->real` STRIP_ASSUME_TAC)) (X_CHOOSE_THEN `t:num^N->bool` (X_CHOOSE_THEN `b:num^N->real` STRIP_ASSUME_TAC))) THEN ASM_REWRITE_TAC[GSYM SUM_RMUL] THEN ASM_REWRITE_TAC[GSYM SUM_LMUL] THEN ASM_SIMP_TAC[SUM_SUM_PRODUCT] THEN MP_TAC(GEN `g:num^N#num^N->real` (ISPECL [`(\(k,l). lambda i. k$i + l$i):num^N#num^N->num^N`; `g:num^N#num^N->real`; `{k,l | (k:num^N) IN s /\ (l:num^N) IN t}`; `(:num^N)`] SUM_GROUP)) THEN ASM_SIMP_TAC[FINITE_PRODUCT; SUBSET_UNIV; GSYM lemma1] THEN DISCH_THEN(fun th -> REWRITE_TAC[GSYM th]) THEN EXISTS_TAC `\m:num^N. sum {(k:num^N,l:num^N) | k IN s /\ l IN t /\ (lambda i. k$i + l$i) = m} (\(k,l). (a:num^N->real) k * b l)` THEN REWRITE_TAC[] THEN CONJ_TAC THENL [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `IMAGE ((\(k,l). lambda i. k$i + l$i):num^N#num^N->num^N) {k,l | k IN s /\ l IN t}` THEN ASM_SIMP_TAC[FINITE_PRODUCT; FINITE_IMAGE] THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REWRITE_TAC[CONTRAPOS_THM; SET_RULE `x IN IMAGE f s <=> ~({y | y IN s /\ f y = x} = {})`] THEN GEN_TAC THEN DISCH_THEN(fun th -> MATCH_MP_TAC(MESON[SUM_CLAUSES] `s = {} ==> sum s f = &0`) THEN GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN REWRITE_TAC[IN_ELIM_THM; IN_ELIM_PAIR_THM; GSYM CONJ_ASSOC]; ABS_TAC THEN MATCH_MP_TAC SUM_EQ THEN X_GEN_TAC `m:num^N` THEN REWRITE_TAC[IN_UNIV; GSYM SUM_RMUL] THEN MATCH_MP_TAC(MESON[SUM_EQ] `s = t /\ (!x. x IN t ==> f x = g x) ==> sum s f = sum t g`) THEN REWRITE_TAC[FORALL_IN_GSPEC; EXTENSION; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_ELIM_THM; GSYM CONJ_ASSOC] THEN REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN MATCH_MP_TAC(REAL_RING `p1 * p2:real = p ==> (a * p1) * (b * p2) = (a * b) * p`) THEN ASM_SIMP_TAC[GSYM PRODUCT_MUL_NUMSEG; LAMBDA_BETA; REAL_POW_ADD]]) in let REAL_POLYNOMIAL_FUNCTION_EXPLICIT = prove (`!f:real^N->real. real_polynomial_function f <=> ?(s:num^N->bool) a. FINITE s /\ f = \x. sum s (\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))`, REWRITE_TAC[GSYM lemma1] THEN REWRITE_TAC[REAL_POLYNOMIAL_FUNCTION_EXPLICIT_UNIV]) in let REAL_POLYNOMIAL_FUNCTION_EXPLICIT_NZ = prove (`!f:real^N->real. real_polynomial_function f <=> ?(s:num^N->bool) a. FINITE s /\ (!k. k IN s ==> ~(a k = &0)) /\ f = \x. sum s (\k. a(k) * product(1..dimindex(:N)) (\i. x$i pow k$i))`, REWRITE_TAC[GSYM lemma2] THEN REWRITE_TAC[REAL_POLYNOMIAL_FUNCTION_EXPLICIT_UNIV]) in REAL_POLYNOMIAL_FUNCTION_EXPLICIT, REAL_POLYNOMIAL_FUNCTION_EXPLICIT_NZ, REAL_POLYNOMIAL_FUNCTION_EXPLICIT_UNIV;; let REAL_CONTINUOUS_REAL_POLYMONIAL_FUNCTION = prove (`!f x:real^N. real_polynomial_function f ==> f real_continuous at x`, REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN MATCH_MP_TAC real_polynomial_function_INDUCT THEN SIMP_TAC[REAL_CONTINUOUS_ADD; REAL_CONTINUOUS_MUL; REAL_CONTINUOUS_CONST; REAL_CONTINUOUS_AT_COMPONENT]);; let STONE_WEIERSTRASS_REAL_POLYNOMIAL_FUNCTION = prove (`!f:real^N->real s e. compact s /\ (!x. x IN s ==> f real_continuous at x within s) /\ &0 < e ==> ?g. real_polynomial_function g /\ !x. x IN s ==> abs(f x - g x) < e`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] STONE_WEIERSTRASS) THEN ASM_REWRITE_TAC[real_polynomial_function_RULES] THEN SIMP_TAC[REAL_CONTINUOUS_REAL_POLYMONIAL_FUNCTION; REAL_CONTINUOUS_AT_WITHIN] THEN MAP_EVERY X_GEN_TAC [`x:real^N`; `y:real^N`] THEN REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [CART_EQ] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN EXISTS_TAC `\x:real^N. x$i` THEN ASM_SIMP_TAC[real_polynomial_function_RULES]);; let REAL_STONE_WEIERSTRASS_POLYNOMIAL_FUNCTION = prove (`!f s e. real_compact s /\ f real_continuous_on s /\ &0 < e ==> ?g. polynomial_function g /\ !x. x IN s ==> abs(f x - g x) < e`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_IMP; RIGHT_IMP_FORALL_THM] REAL_STONE_WEIERSTRASS) THEN ASM_REWRITE_TAC[REAL_CONTINUOUS_ON_POLYNOMIAL_FUNCTION] THEN REWRITE_TAC[POLYNOMIAL_FUNCTION_CONST; POLYNOMIAL_FUNCTION_ADD] THEN REWRITE_TAC[POLYNOMIAL_FUNCTION_MUL] THEN REPEAT STRIP_TAC THEN EXISTS_TAC `\x:real. x` THEN ASM_REWRITE_TAC[POLYNOMIAL_FUNCTION_ID]);; (* ------------------------------------------------------------------------- *) (* Stone-Weierstrass for real^M->real^N polynomials. *) (* ------------------------------------------------------------------------- *) let vector_polynomial_function = new_definition `vector_polynomial_function (f:real^M->real^N) <=> !i. 1 <= i /\ i <= dimindex(:N) ==> real_polynomial_function(\x. f(x)$i)`;; let REAL_POLYNOMIAL_FUNCTION_DROP = prove (`!f. real_polynomial_function(drop o f) <=> vector_polynomial_function f`, REWRITE_TAC[vector_polynomial_function; DIMINDEX_1; FORALL_1] THEN REWRITE_TAC[o_DEF; drop]);; let VECTOR_POLYNOMIAL_FUNCTION_LIFT = prove (`!f. vector_polynomial_function(lift o f) <=> real_polynomial_function f`, REWRITE_TAC[GSYM REAL_POLYNOMIAL_FUNCTION_DROP; o_DEF; LIFT_DROP; ETA_AX]);; let VECTOR_POLYNOMIAL_FUNCTION_CONST = prove (`!c. vector_polynomial_function(\x. c)`, SIMP_TAC[vector_polynomial_function; real_polynomial_function_RULES]);; let VECTOR_POLYNOMIAL_FUNCTION_ID = prove (`vector_polynomial_function(\x. x)`, SIMP_TAC[vector_polynomial_function; real_polynomial_function_RULES]);; let VECTOR_POLYNOMIAL_FUNCTION_COMPONENT = prove (`!f:real^M->real^N i. 1 <= i /\ i <= dimindex(:N) /\ vector_polynomial_function f ==> vector_polynomial_function(\x. lift(f x$i))`, SIMP_TAC[vector_polynomial_function; FORALL_1; DIMINDEX_1; GSYM drop; LIFT_DROP]);; let VECTOR_POLYNOMIAL_FUNCTION_ADD = prove (`!f g:real^M->real^N. vector_polynomial_function f /\ vector_polynomial_function g ==> vector_polynomial_function (\x. f x + g x)`, REWRITE_TAC[vector_polynomial_function] THEN SIMP_TAC[VECTOR_ADD_COMPONENT; real_polynomial_function_RULES]);; let VECTOR_POLYNOMIAL_FUNCTION_MUL = prove (`!f g:real^M->real^N. vector_polynomial_function(lift o f) /\ vector_polynomial_function g ==> vector_polynomial_function (\x. f x % g x)`, REWRITE_TAC[vector_polynomial_function; o_DEF; VECTOR_MUL_COMPONENT] THEN REWRITE_TAC[FORALL_1; DIMINDEX_1; GSYM drop; LIFT_DROP; ETA_AX] THEN SIMP_TAC[real_polynomial_function_RULES]);; let VECTOR_POLYNOMIAL_FUNCTION_CMUL = prove (`!f:real^M->real^N c. vector_polynomial_function f ==> vector_polynomial_function (\x. c % f x)`, SIMP_TAC[VECTOR_POLYNOMIAL_FUNCTION_CONST; VECTOR_POLYNOMIAL_FUNCTION_MUL; ETA_AX; o_DEF]);; let VECTOR_POLYNOMIAL_FUNCTION_NEG = prove (`!f:real^M->real^N. vector_polynomial_function f ==> vector_polynomial_function (\x. --(f x))`, REWRITE_TAC[VECTOR_ARITH `--x:real^N = --(&1) % x`] THEN REWRITE_TAC[VECTOR_POLYNOMIAL_FUNCTION_CMUL]);; let VECTOR_POLYNOMIAL_FUNCTION_SUB = prove (`!f g:real^M->real^N. vector_polynomial_function f /\ vector_polynomial_function g ==> vector_polynomial_function (\x. f x - g x)`, SIMP_TAC[VECTOR_SUB; VECTOR_POLYNOMIAL_FUNCTION_ADD; VECTOR_POLYNOMIAL_FUNCTION_NEG]);; let VECTOR_POLYNOMIAL_FUNCTION_VSUM = prove (`!f:real^M->A->real^N s. FINITE s /\ (!i. i IN s ==> vector_polynomial_function (\x. f x i)) ==> vector_polynomial_function (\x. vsum s (f x))`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[VSUM_CLAUSES; FORALL_IN_INSERT; VECTOR_POLYNOMIAL_FUNCTION_CONST; VECTOR_POLYNOMIAL_FUNCTION_ADD]);; let REAL_VECTOR_POLYNOMIAL_FUNCTION_o = prove (`!f:real^M->real^N g. vector_polynomial_function f /\ real_polynomial_function g ==> real_polynomial_function(g o f)`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN MATCH_MP_TAC real_polynomial_function_INDUCT THEN REWRITE_TAC[o_DEF; real_polynomial_function_RULES] THEN ASM_REWRITE_TAC[GSYM vector_polynomial_function]);; let VECTOR_POLYNOMIAL_FUNCTION_o = prove (`!f:real^M->real^N g:real^N->real^P. vector_polynomial_function f /\ vector_polynomial_function g ==> vector_polynomial_function(g o f)`, REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_VECTOR_POLYNOMIAL_FUNCTION_o)) THEN SIMP_TAC[vector_polynomial_function; o_DEF]);; let VECTOR_POLYNOMIAL_FUNCTION_REFLECT = prove (`!f:real^M->real^N. vector_polynomial_function (\x. f(--x)) <=> vector_polynomial_function f`, GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM o_DEF] THEN EQ_TAC THEN DISCH_TAC THENL [SUBGOAL_THEN `f:real^M->real^N = (f o (--)) o (--)` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_DEF; VECTOR_NEG_NEG; ETA_AX]; ALL_TAC]; ALL_TAC] THEN MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_o THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_NEG THEN REWRITE_TAC[VECTOR_POLYNOMIAL_FUNCTION_ID]);; let REAL_POLYNOMIAL_FUNCTION_1 = prove (`!f. real_polynomial_function f <=> ?a n. f = \x. sum(0..n) (\i. a i * drop x pow i)`, REWRITE_TAC[TAUT `(p <=> q) <=> (p ==> q) /\ (q ==> p)`] THEN REWRITE_TAC[FORALL_AND_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC real_polynomial_function_INDUCT THEN REWRITE_TAC[DIMINDEX_1; FORALL_1; FUN_EQ_THM] THEN CONJ_TAC THENL [MAP_EVERY EXISTS_TAC [`\i. if i = 1 then &1 else &0`; `1`] THEN SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; ARITH_EQ; REAL_MUL_LZERO; drop] THEN SIMP_TAC[ARITH; SUM_SING_NUMSEG] THEN REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [X_GEN_TAC `c:real` THEN MAP_EVERY EXISTS_TAC [`(\i. c):num->real`; `0`] THEN REWRITE_TAC[SUM_SING_NUMSEG; real_pow] THEN REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`f:real^1->real`; `g:real^1->real`] THEN REWRITE_TAC[IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:num->real`; `m:num`] THEN STRIP_TAC THEN MAP_EVERY X_GEN_TAC [`b:num->real`; `n:num`] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL [MAP_EVERY EXISTS_TAC [`\i:num. (if i <= m then a i else &0) + (if i <= n then b i else &0)`; `MAX m n`] THEN GEN_TAC THEN REWRITE_TAC[REAL_ADD_RDISTRIB; SUM_ADD_NUMSEG] THEN REWRITE_TAC[COND_RAND; COND_RATOR; REAL_MUL_LZERO] THEN REWRITE_TAC[GSYM SUM_RESTRICT_SET] THEN BINOP_TAC THEN BINOP_TAC THEN REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN ARITH_TAC; REWRITE_TAC[GSYM SUM_RMUL] THEN REWRITE_TAC[GSYM SUM_LMUL] THEN SIMP_TAC[SUM_SUM_PRODUCT; FINITE_NUMSEG] THEN EXISTS_TAC `\k. sum {x | x IN {i,j | i IN 0..m /\ j IN 0..n} /\ FST x + SND x = k} (\(i,j). a i * b j)` THEN EXISTS_TAC `m + n:num` THEN X_GEN_TAC `x:real^1` THEN MP_TAC(ISPECL [`\(i:num,j). i + j`; `\(i,j). (a i * drop x pow i) * (b j * drop x pow j)`; `{i,j | i IN 0..m /\ j IN 0..n}`; `0..m+n`] SUM_GROUP) THEN SIMP_TAC[FINITE_PRODUCT; FINITE_NUMSEG; FORALL_IN_IMAGE; FORALL_IN_GSPEC; SUBSET; IN_NUMSEG; LE_0; LE_ADD2] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[GSYM SUM_RMUL] THEN MATCH_MP_TAC(MESON[SUM_EQ] `s = t /\ (!x. x IN t ==> f x = g x) ==> sum s f = sum t g`) THEN SIMP_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_GSPEC; IMP_CONJ] THEN SIMP_TAC[IN_ELIM_PAIR_THM; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[REAL_POW_ADD] THEN REAL_ARITH_TAC]; REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[GSYM VECTOR_POLYNOMIAL_FUNCTION_LIFT] THEN SIMP_TAC[LIFT_SUM; o_DEF; FINITE_NUMSEG; FORALL_1; DIMINDEX_1] THEN MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_VSUM THEN REWRITE_TAC[FINITE_NUMSEG; LIFT_CMUL] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_MUL THEN REWRITE_TAC[GSYM REAL_POLYNOMIAL_FUNCTION_DROP; o_DEF; LIFT_DROP] THEN REWRITE_TAC[real_polynomial_function_RULES] THEN SPEC_TAC(`i:num`,`k:num`) THEN REWRITE_TAC[drop] THEN INDUCT_TAC THEN ASM_SIMP_TAC[real_polynomial_function_RULES; real_pow; DIMINDEX_1; ARITH]]);; let CONTINUOUS_VECTOR_POLYNOMIAL_FUNCTION = prove (`!f:real^M->real^N x. vector_polynomial_function f ==> f continuous at x`, REWRITE_TAC[vector_polynomial_function; CONTINUOUS_COMPONENTWISE] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_CONTINUOUS_REAL_POLYMONIAL_FUNCTION THEN ASM_SIMP_TAC[]);; let CONTINUOUS_ON_VECTOR_POLYNOMIAL_FUNCTION = prove (`!f:real^M->real^N s. vector_polynomial_function f ==> f continuous_on s`, SIMP_TAC[CONTINUOUS_AT_IMP_CONTINUOUS_ON; CONTINUOUS_VECTOR_POLYNOMIAL_FUNCTION]);; let HAS_VECTOR_DERIVATIVE_VECTOR_POLYNOMIAL_FUNCTION = prove (`!p:real^1->real^N. vector_polynomial_function p ==> ?p'. vector_polynomial_function p' /\ !x. (p has_vector_derivative p'(x)) (at x)`, let lemma = prove (`!p:real^1->real. real_polynomial_function p ==> ?p'. real_polynomial_function p' /\ !x. ((p o lift) has_real_derivative (p'(lift x))) (atreal x)`, MATCH_MP_TAC (derive_strong_induction(real_polynomial_function_RULES, real_polynomial_function_INDUCT)) THEN REWRITE_TAC[DIMINDEX_1; FORALL_1; o_DEF; GSYM drop; LIFT_DROP] THEN CONJ_TAC THENL [EXISTS_TAC `\x:real^1. &1` THEN REWRITE_TAC[real_polynomial_function_RULES; HAS_REAL_DERIVATIVE_ID]; ALL_TAC] THEN CONJ_TAC THENL [X_GEN_TAC `c:real` THEN EXISTS_TAC `\x:real^1. &0` THEN REWRITE_TAC[real_polynomial_function_RULES; HAS_REAL_DERIVATIVE_CONST]; ALL_TAC] THEN CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`f:real^1->real`; `g:real^1->real`] THEN DISCH_THEN(CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `f':real^1->real` STRIP_ASSUME_TAC)) (CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_THEN `g':real^1->real` STRIP_ASSUME_TAC))) THENL [EXISTS_TAC `\x. (f':real^1->real) x + g' x`; EXISTS_TAC `\x. (f:real^1->real) x * g' x + f' x * g x`] THEN ASM_SIMP_TAC[real_polynomial_function_RULES; HAS_REAL_DERIVATIVE_ADD; HAS_REAL_DERIVATIVE_MUL_ATREAL]) in GEN_TAC THEN REWRITE_TAC[vector_polynomial_function] THEN DISCH_TAC THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> ?q. real_polynomial_function q /\ (!x. ((\x. lift(((p x):real^N)$i)) has_vector_derivative lift(q x)) (at x))` MP_TAC THENL [X_GEN_TAC `i:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `i:num`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP lemma) THEN REWRITE_TAC[HAS_REAL_VECTOR_DERIVATIVE_AT] THEN REWRITE_TAC[o_DEF; LIFT_DROP; FORALL_DROP]; GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `q:num->real^1->real` THEN DISCH_TAC THEN EXISTS_TAC `(\x. lambda i. (q:num->real^1->real) i x):real^1->real^N` THEN ASM_SIMP_TAC[LAMBDA_BETA; ETA_AX] THEN REWRITE_TAC[has_vector_derivative; has_derivative_at] THEN ONCE_REWRITE_TAC[LIM_COMPONENTWISE] THEN X_GEN_TAC `x:real^1` THEN SIMP_TAC[LINEAR_VMUL_DROP; LINEAR_ID] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:num`)) THEN ASM_REWRITE_TAC[] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^1`) THEN REWRITE_TAC[has_vector_derivative; has_derivative_at] THEN ASM_SIMP_TAC[VECTOR_MUL_COMPONENT; VEC_COMPONENT; VECTOR_SUB_COMPONENT; VECTOR_ADD_COMPONENT; LAMBDA_BETA; REAL_TENDSTO] THEN SIMP_TAC[DROP_ADD; DROP_VEC; LIFT_DROP; DROP_CMUL; DROP_SUB; o_DEF]]);; let STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION = prove (`!f:real^M->real^N s e. compact s /\ f continuous_on s /\ &0 < e ==> ?g. vector_polynomial_function g /\ !x. x IN s ==> norm(f x - g x) < e`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN]) THEN REWRITE_TAC[CONTINUOUS_COMPONENTWISE] THEN REWRITE_TAC[IMP_IMP; RIGHT_IMP_FORALL_THM] THEN DISCH_TAC THEN SUBGOAL_THEN `!i. 1 <= i /\ i <= dimindex(:N) ==> ?g. real_polynomial_function g /\ !x. x IN s ==> abs((f:real^M->real^N) x$i - g x) < e / &(dimindex(:N))` MP_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC STONE_WEIERSTRASS_REAL_POLYNOMIAL_FUNCTION THEN ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; DIMINDEX_GE_1; LE_1]; GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `g:num->real^M->real` THEN DISCH_TAC THEN EXISTS_TAC `(\x. lambda i. g i x):real^M->real^N` THEN ASM_SIMP_TAC[vector_polynomial_function; LAMBDA_BETA; ETA_AX] THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LET_TRANS) THEN MATCH_MP_TAC SUM_BOUND_LT_GEN THEN REWRITE_TAC[FINITE_NUMSEG; CARD_NUMSEG_1; NUMSEG_EMPTY; NOT_LT] THEN ASM_SIMP_TAC[IN_NUMSEG; DIMINDEX_GE_1; LAMBDA_BETA; VECTOR_SUB_COMPONENT]]);; let STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION_SUBSPACE = prove (`!f:real^M->real^N s e t. compact s /\ f continuous_on s /\ &0 < e /\ subspace t /\ IMAGE f s SUBSET t ==> ?g. vector_polynomial_function g /\ IMAGE g s SUBSET t /\ !x. x IN s ==> norm(f x - g x) < e`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP ORTHONORMAL_BASIS_SUBSPACE) THEN DISCH_THEN(X_CHOOSE_THEN `bas:real^N->bool` MP_TAC) THEN ASM_CASES_TAC `FINITE(bas:real^N->bool)` THENL [ALL_TAC; ASM_MESON_TAC[HAS_SIZE]] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [FINITE_INDEX_NUMSEG]) THEN ABBREV_TAC `n = CARD(bas:real^N->bool)` THEN REWRITE_TAC[INJECTIVE_ON_ALT; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:num->real^N` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC) THEN ASM_SIMP_TAC[REWRITE_RULE[INJECTIVE_ON_ALT] HAS_SIZE_IMAGE_INJ_EQ] THEN REWRITE_TAC[HAS_SIZE; FINITE_NUMSEG; CARD_NUMSEG_1] THEN ASM_CASES_TAC `dim(t:real^N->bool) = n` THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN STRIP_TAC THEN MP_TAC(ISPEC `t:real^N->bool` DIM_SUBSET_UNIV) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN MP_TAC(ISPECL [`(\x. lambda i. (f x:real^N) dot (b i)):real^M->real^N`; `s:real^M->bool`; `e:real`] STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ONCE_REWRITE_TAC[CONTINUOUS_ON_COMPONENTWISE_LIFT] THEN SIMP_TAC[LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_ON_LIFT_DOT2 THEN ASM_REWRITE_TAC[CONTINUOUS_ON_CONST]; DISCH_THEN(X_CHOOSE_THEN `g:real^M->real^N` STRIP_ASSUME_TAC)] THEN EXISTS_TAC `(\x. vsum(1..n) (\i. (g x:real^N)$i % b i)):real^M->real^N` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_VSUM THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_MUL THEN REWRITE_TAC[VECTOR_POLYNOMIAL_FUNCTION_CONST; o_DEF] THEN MATCH_MP_TAC VECTOR_POLYNOMIAL_FUNCTION_COMPONENT THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC; REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSPACE_VSUM THEN ASM_SIMP_TAC[SUBSPACE_MUL; FINITE_NUMSEG]; X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LET_TRANS) THEN SUBGOAL_THEN `vsum(IMAGE b (1..n)) (\v. (v dot f x) % v) = (f:real^M->real^N) x` (fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [SYM th]) THENL [MATCH_MP_TAC ORTHONORMAL_BASIS_EXPAND THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE] THEN ASM SET_TAC[]; ASM_SIMP_TAC[REWRITE_RULE[INJECTIVE_ON_ALT] VSUM_IMAGE; FINITE_NUMSEG] THEN REWRITE_TAC[GSYM VSUM_SUB_NUMSEG; o_DEF; GSYM VECTOR_SUB_RDISTRIB] THEN REWRITE_TAC[NORM_LE; GSYM NORM_POW_2] THEN W(MP_TAC o PART_MATCH (lhs o rand) NORM_VSUM_PYTHAGOREAN o lhand o snd) THEN RULE_ASSUM_TAC(REWRITE_RULE[PAIRWISE_IMAGE]) THEN RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THEN ASM_SIMP_TAC[pairwise; ORTHOGONAL_MUL; FINITE_NUMSEG] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[NORM_MUL] THEN REWRITE_TAC[NORM_POW_2] THEN GEN_REWRITE_TAC RAND_CONV [dot] THEN SIMP_TAC[GSYM REAL_POW_2; VECTOR_SUB_COMPONENT; LAMBDA_BETA] THEN MATCH_MP_TAC SUM_LE_INCLUDED THEN EXISTS_TAC `\n:num. n` THEN REWRITE_TAC[FINITE_NUMSEG; REAL_LE_POW_2] THEN ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN REWRITE_TAC[UNWIND_THM2] THEN ONCE_REWRITE_TAC[TAUT `p ==> q /\ r <=> p ==> q /\ (q ==> r)`] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_NUMSEG]) THEN ASM_SIMP_TAC[LAMBDA_BETA; UNWIND_THM2; IN_NUMSEG] THEN REWRITE_TAC[REAL_MUL_RID; REAL_POW2_ABS; REAL_LE_REFL] THEN ASM_ARITH_TAC]]);; let STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION_AFFINE = prove (`!f:real^M->real^N s e t. compact s /\ f continuous_on s /\ &0 < e /\ affine t /\ IMAGE f s SUBSET t ==> ?g. vector_polynomial_function g /\ IMAGE g s SUBSET t /\ !x. x IN s ==> norm(f x - g x) < e`, REPEAT GEN_TAC THEN ASM_CASES_TAC `t:real^N->bool = {}` THEN ASM_REWRITE_TAC[SUBSET_EMPTY; IMAGE_EQ_EMPTY] THENL [MESON_TAC[VECTOR_POLYNOMIAL_FUNCTION_CONST; NOT_IN_EMPTY]; STRIP_TAC] THEN MP_TAC(ISPEC `t:real^N->bool` AFFINE_TRANSLATION_SUBSPACE) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`a:real^N`; `u:real^N->bool`] THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN MP_TAC(ISPECL [`(\x. f x - a):real^M->real^N`; `s:real^M->bool`; `e:real`; `u:real^N->bool`] STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION_SUBSPACE) THEN ASM_SIMP_TAC[CONTINUOUS_ON_SUB; CONTINUOUS_ON_CONST] THEN FIRST_ASSUM(MP_TAC o ISPEC `\x:real^N. x - a` o MATCH_MP IMAGE_SUBSET) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; VECTOR_ADD_SUB; IMAGE_ID] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `g:real^M->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(\x. g x + a):real^M->real^N` THEN ASM_SIMP_TAC[VECTOR_POLYNOMIAL_FUNCTION_ADD; VECTOR_POLYNOMIAL_FUNCTION_CONST; VECTOR_ARITH `a - (b + c):real^N = a - c - b`] THEN FIRST_ASSUM(MP_TAC o ISPEC `\x:real^N. a + x` o MATCH_MP IMAGE_SUBSET) THEN REWRITE_TAC[GSYM IMAGE_o; o_DEF; VECTOR_ADD_AC]);; (* ------------------------------------------------------------------------- *) (* One application is to pick a smooth approximation to a path, or just pick *) (* a smooth path anyway in an open connected set. *) (* ------------------------------------------------------------------------- *) let PATH_VECTOR_POLYNOMIAL_FUNCTION = prove (`!g:real^1->real^N. vector_polynomial_function g ==> path g`, SIMP_TAC[path; CONTINUOUS_ON_VECTOR_POLYNOMIAL_FUNCTION]);; let RECTIFIABLE_PATH_VECTOR_POLYNOMIAL_FUNCTION = prove (`!p:real^1->real^N. vector_polynomial_function p ==> rectifiable_path p`, SIMP_TAC[rectifiable_path; PATH_VECTOR_POLYNOMIAL_FUNCTION] THEN REWRITE_TAC[vector_polynomial_function] THEN ONCE_REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_COMPONENTWISE] THEN GEN_TAC THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `i:num` THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th THEN ASM_REWRITE_TAC[]) THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [GSYM o_DEF] THEN SPEC_TAC(`\x. (p:real^1->real^N) x$i`,`p:real^1->real`) THEN POP_ASSUM_LIST(K ALL_TAC) THEN MATCH_MP_TAC real_polynomial_function_INDUCT THEN REWRITE_TAC[o_DEF; DIMINDEX_1; FORALL_1; LIFT_ADD] THEN REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_CONST; GSYM drop; LIFT_DROP] THEN SIMP_TAC[HAS_BOUNDED_VARIATION_ON_ID; BOUNDED_INTERVAL] THEN REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_ADD] THEN REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[IMP_CONJ] (ONCE_REWRITE_RULE[CONJ_ASSOC] HAS_BOUNDED_VARIATION_ON_MUL))) THEN REWRITE_TAC[IS_INTERVAL_INTERVAL] THEN REWRITE_TAC[LIFT_CMUL; LIFT_DROP; DROP_CMUL]);; let PATH_APPROX_VECTOR_POLYNOMIAL_FUNCTION = prove (`!g:real^1->real^N e. path g /\ &0 < e ==> ?p. vector_polynomial_function p /\ pathstart p = pathstart g /\ pathfinish p = pathfinish g /\ !t. t IN interval[vec 0,vec 1] ==> norm(p t - g t) < e`, REWRITE_TAC[path] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`g:real^1->real^N`; `interval[vec 0:real^1,vec 1]`; `e / &4`] STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION) THEN ASM_REWRITE_TAC[COMPACT_INTERVAL; REAL_ARITH `&0 < x / &4 <=> &0 < x`] THEN DISCH_THEN(X_CHOOSE_THEN `q:real^1->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\t. (q:real^1->real^N)(t) + (g(vec 0:real^1) - q(vec 0)) + drop t % ((g(vec 1) - q(vec 1)) - (g(vec 0) - q(vec 0)))` THEN REWRITE_TAC[pathstart; pathfinish; DROP_VEC] THEN REPEAT CONJ_TAC THENL [SIMP_TAC[vector_polynomial_function; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VECTOR_SUB_COMPONENT] THEN REPEAT STRIP_TAC THEN RULE_ASSUM_TAC(REWRITE_RULE[vector_polynomial_function]) THEN MATCH_MP_TAC(el 2 (CONJUNCTS real_polynomial_function_RULES)) THEN ASM_SIMP_TAC[real_polynomial_function_RULES; drop; DIMINDEX_1; ARITH]; VECTOR_ARITH_TAC; VECTOR_ARITH_TAC; REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[VECTOR_SUB_LDISTRIB] THEN MATCH_MP_TAC(NORM_ARITH `norm(x - a) < e / &4 /\ norm b < e / &4 /\ norm c <= &1 * e / &4 /\ norm d <= &1 * e / &4 ==> norm((a + b + c - d) - x:real^N) < e`) THEN ASM_SIMP_TAC[NORM_MUL; IN_INTERVAL_1; DROP_VEC; REAL_POS] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; IN_INTERVAL_1; DROP_VEC; REAL_POS; REAL_LE_REFL; NORM_POS_LE] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_INTERVAL_1; DROP_VEC]) THEN ASM_REAL_ARITH_TAC]);; let CONNECTED_OPEN_VECTOR_POLYNOMIAL_CONNECTED = prove (`!s:real^N->bool. open s /\ connected s ==> !x y. x IN s /\ y IN s ==> ?g. vector_polynomial_function g /\ path_image g SUBSET s /\ pathstart g = x /\ pathfinish g = y`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `path_connected(s:real^N->bool)` MP_TAC THENL [ASM_SIMP_TAC[CONNECTED_OPEN_PATH_CONNECTED]; REWRITE_TAC[path_connected]] THEN DISCH_THEN(MP_TAC o SPECL [`x:real^N`; `y:real^N`]) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `p:real^1->real^N` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?e. &0 < e /\ !x. x IN path_image p ==> ball(x:real^N,e) SUBSET s` STRIP_ASSUME_TAC THENL [ASM_CASES_TAC `s = (:real^N)` THEN ASM_REWRITE_TAC[SUBSET_UNIV] THENL [MESON_TAC[REAL_LT_01]; ALL_TAC] THEN EXISTS_TAC `setdist(path_image p,(:real^N) DIFF s)` THEN CONJ_TAC THENL [ASM_REWRITE_TAC[REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN ASM_SIMP_TAC[SETDIST_POS_LE; SETDIST_EQ_0_COMPACT_CLOSED; COMPACT_PATH_IMAGE; GSYM OPEN_CLOSED] THEN ASM_SIMP_TAC[PATH_IMAGE_NONEMPTY] THEN ASM SET_TAC[]; X_GEN_TAC `z:real^N` THEN DISCH_TAC THEN REWRITE_TAC[SUBSET] THEN X_GEN_TAC `w:real^N` THEN REWRITE_TAC[IN_BALL; GSYM REAL_NOT_LE] THEN MATCH_MP_TAC(SET_RULE `(w IN (UNIV DIFF s) ==> p) ==> (~p ==> w IN s)`) THEN ASM_SIMP_TAC[SETDIST_LE_DIST]]; MP_TAC(ISPECL [`p:real^1->real^N`; `e:real`] PATH_APPROX_VECTOR_POLYNOMIAL_FUNCTION) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:real^1->real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[path_image; FORALL_IN_IMAGE; SUBSET] THEN RULE_ASSUM_TAC (REWRITE_RULE[SUBSET; path_image; FORALL_IN_IMAGE;IN_BALL; dist]) THEN ASM_MESON_TAC[NORM_SUB]]);; (* ------------------------------------------------------------------------- *) (* Lipschitz property for real and vector polynomials. *) (* ------------------------------------------------------------------------- *) let LIPSCHITZ_REAL_POLYNOMIAL_FUNCTION = prove (`!f:real^N->real s. real_polynomial_function f /\ bounded s ==> ?B. &0 < B /\ !x y. x IN s /\ y IN s ==> abs(f x - f y) <= B * norm(x - y)`, ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN ASM_CASES_TAC `bounded(s:real^N->bool)` THEN ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL [ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN MESON_TAC[REAL_LT_01]; ALL_TAC] THEN MATCH_MP_TAC real_polynomial_function_INDUCT THEN REPEAT CONJ_TAC THENL [REPEAT STRIP_TAC THEN EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01] THEN ASM_SIMP_TAC[REAL_MUL_LID; GSYM VECTOR_SUB_COMPONENT; COMPONENT_LE_NORM]; GEN_TAC THEN EXISTS_TAC `&1` THEN SIMP_TAC[REAL_LT_01; REAL_SUB_REFL; REAL_ABS_NUM; REAL_MUL_LID; NORM_POS_LE]; ALL_TAC; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`f:real^N->real`; `g:real^N->real`] THEN DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `B1:real` STRIP_ASSUME_TAC) (X_CHOOSE_THEN `B2:real` STRIP_ASSUME_TAC)) THENL [EXISTS_TAC `B1 + B2:real` THEN ASM_SIMP_TAC[REAL_LT_ADD] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `abs(f - f') <= B1 * n /\ abs(g - g') <= B2 * n ==> abs((f + g) - (f' + g')) <= (B1 + B2) * n`) THEN ASM_SIMP_TAC[]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `B1 * (abs(g(a:real^N)) + B2 * &2 * B) + B2 * (abs(f a) + B1 * &2 * B)` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_LT_ADD THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `&0 < x ==> &0 < abs a + x`) THEN MATCH_MP_TAC REAL_LT_MUL THEN ASM_REAL_ARITH_TAC; REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `abs((f - f') * g) <= a * n /\ abs((g - g') * f') <= b * n ==> abs(f * g - f' * g') <= (a + b) * n`) THEN ONCE_REWRITE_TAC[REAL_ARITH `(a * b) * c:real = (a * c) * b`] THEN REWRITE_TAC[REAL_ABS_MUL] THEN CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_SIMP_TAC[REAL_ABS_POS] THEN MATCH_MP_TAC(REAL_ARITH `abs(g x - g a) <= C * norm(x - a) /\ C * norm(x - a:real^N) <= C * B ==> abs(g x) <= abs(g a) + C * B`) THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN MATCH_MP_TAC(NORM_ARITH `norm x <= B /\ norm a <= B ==> norm(x - a:real^N) <= &2 * B`) THEN ASM_SIMP_TAC[]]]);; let LIPSCHITZ_VECTOR_POLYNOMIAL_FUNCTION = prove (`!f:real^M->real^N s. vector_polynomial_function f /\ bounded s ==> ?B. &0 < B /\ !x y. x IN s /\ y IN s ==> norm(f x - f y) <= B * norm(x - y)`, REWRITE_TAC[vector_polynomial_function] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `?b. !i. 1 <= i /\ i <= dimindex(:N) ==> &0 < (b:real^N)$i /\ !x y. x IN s /\ y IN s ==> abs((f:real^M->real^N) x$i - f y$i) <= b$i * norm(x - y)` STRIP_ASSUME_TAC THENL [REWRITE_TAC[GSYM LAMBDA_SKOLEM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LIPSCHITZ_REAL_POLYNOMIAL_FUNCTION THEN ASM_SIMP_TAC[LIPSCHITZ_REAL_POLYNOMIAL_FUNCTION]; EXISTS_TAC `&1 + sum(1..dimindex(:N)) (\i. (b:real^N)$i)` THEN CONJ_TAC THENL [MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> &0 < &1 + x`) THEN MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN ASM_SIMP_TAC[REAL_LT_IMP_LE]; REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN REWRITE_TAC[REAL_ADD_RDISTRIB; GSYM SUM_RMUL; REAL_MUL_LID] THEN MATCH_MP_TAC(NORM_ARITH `x <= y ==> x <= norm(a:real^N) + y`) THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN ASM_SIMP_TAC[VECTOR_SUB_COMPONENT]]]);; (* ------------------------------------------------------------------------- *) (* Differentiability of real and vector polynomial functions. *) (* ------------------------------------------------------------------------- *) let DIFFERENTIABLE_REAL_POLYNOMIAL_FUNCTION_AT = prove (`!f:real^N->real a. real_polynomial_function f ==> (lift o f) differentiable (at a)`, ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN MATCH_MP_TAC real_polynomial_function_INDUCT THEN REWRITE_TAC[o_DEF; LIFT_ADD; LIFT_CMUL] THEN REWRITE_TAC[DIFFERENTIABLE_LIFT_COMPONENT; DIFFERENTIABLE_CONST] THEN SIMP_TAC[DIFFERENTIABLE_ADD] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC DIFFERENTIABLE_MUL_AT THEN ASM_REWRITE_TAC[o_DEF]);; let DIFFERENTIABLE_ON_REAL_POLYNOMIAL_FUNCTION = prove (`!f:real^N->real s. real_polynomial_function f ==> (lift o f) differentiable_on s`, SIMP_TAC[DIFFERENTIABLE_AT_IMP_DIFFERENTIABLE_ON; DIFFERENTIABLE_REAL_POLYNOMIAL_FUNCTION_AT]);; let DIFFERENTIABLE_VECTOR_POLYNOMIAL_FUNCTION = prove (`!f:real^M->real^N a. vector_polynomial_function f ==> f differentiable (at a)`, REWRITE_TAC[vector_polynomial_function] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[DIFFERENTIABLE_COMPONENTWISE_AT] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM o_DEF] THEN MATCH_MP_TAC DIFFERENTIABLE_REAL_POLYNOMIAL_FUNCTION_AT THEN ASM_SIMP_TAC[]);; let DIFFERENTIABLE_ON_VECTOR_POLYNOMIAL_FUNCTION = prove (`!f:real^M->real^N s. vector_polynomial_function f ==> f differentiable_on s`, SIMP_TAC[DIFFERENTIABLE_AT_IMP_DIFFERENTIABLE_ON; DIFFERENTIABLE_VECTOR_POLYNOMIAL_FUNCTION]);; (* ------------------------------------------------------------------------- *) (* Some basic properties of affine real algebraic varieties. *) (* ------------------------------------------------------------------------- *) let CLOSED_ALGEBRAIC_VARIETY = prove (`!f c. real_polynomial_function f ==> closed {x | f x = c}`, REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM LIFT_EQ] THEN ONCE_REWRITE_TAC[GSYM IN_SING] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE_UNIV THEN REWRITE_TAC[CLOSED_SING] THEN GEN_TAC THEN MATCH_MP_TAC CONTINUOUS_VECTOR_POLYNOMIAL_FUNCTION THEN REWRITE_TAC[GSYM REAL_POLYNOMIAL_FUNCTION_DROP; o_DEF; LIFT_DROP] THEN ASM_REWRITE_TAC[ETA_AX]);; let NEGLIGIBLE_ALGEBRAIC_VARIETY = prove (`!f c. real_polynomial_function f /\ ~(!x. f x = c) ==> negligible {x | f x = c}`, let lemma0 = prove (`negligible {x | INFINITE {a | P a x}} ==> negligible {x | ~negligible {lift a | P a x}}`, MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] NEGLIGIBLE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_ELIM_THM; INFINITE; CONTRAPOS_THM] THEN REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN ASM_SIMP_TAC[NEGLIGIBLE_FINITE; FINITE_IMAGE]) in let lemma1 = prove (`!n s a. n <= dimindex(:N) /\ FINITE s /\ ~(!x:real^N. sum s (\k. a(k) * product(1..n) (\i. x$i pow (k i))) = &0) ==> negligible {x:real^N | sum s (\k. a(k) * product(1..n) (\i. x$i pow (k i))) = &0}`, INDUCT_TAC THENL [REWRITE_TAC[PRODUCT_CLAUSES_NUMSEG; ARITH] THEN SIMP_TAC[SET_RULE `{x | P} = if P then UNIV else {}`; NEGLIGIBLE_EMPTY]; MAP_EVERY X_GEN_TAC [`s:(num->num)->bool`; `a:(num->num)->real`] THEN REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC))] THEN SUBGOAL_THEN `closed {x:real^N | sum s (\k. a(k) * product (1..SUC n) (\i. x$i pow (k i))) = &0}` MP_TAC THENL [MATCH_MP_TAC CLOSED_ALGEBRAIC_VARIETY THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_SUM THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_MUL THEN REWRITE_TAC[real_polynomial_function_RULES] THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_PRODUCT THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_POW THEN MATCH_MP_TAC(CONJUNCT1 real_polynomial_function_RULES) THEN ASM_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[PRODUCT_CLAUSES_NUMSEG; ARITH_RULE `1 <= SUC n`] THEN MP_TAC(ISPECL [`\k. (k: num->num) (SUC n)`; `s:(num->num)->bool`] UPPER_BOUND_FINITE_SET) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `m:num`) THEN MP_TAC(GEN `g:(num->num)->real` (ISPECL [`\k. (k: num->num) (SUC n)`; `g:(num->num)->real`; `s:(num->num)->bool`; `0..m`] SUM_GROUP)) THEN ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_NUMSEG; LE_0] THEN DISCH_THEN(fun th -> ONCE_REWRITE_TAC[GSYM th]) THEN SIMP_TAC[IN_ELIM_THM] THEN REWRITE_TAC[REAL_MUL_ASSOC; SUM_RMUL] THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_MEASURABLE_CLOSED) THEN DISCH_THEN(MP_TAC o SPEC `SUC n` o MATCH_MP FUBINI_NEGLIGIBLE_REPLACEMENTS_ALT) THEN DISCH_THEN SUBST1_TAC THEN SUBGOAL_THEN `SUC n <= dimindex(:N) /\ !i. i <= n ==> i <= dimindex(:N)` MP_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN SIMP_TAC[IN_ELIM_THM; LAMBDA_BETA; ARITH_RULE `1 <= SUC n`] THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC lemma0 THEN SIMP_TAC[ARITH_RULE `i <= n ==> ~(i = SUC n)`] THEN REWRITE_TAC[SUM_RMUL; REAL_MUL_ASSOC] THEN REWRITE_TAC[INFINITE; REAL_POLYFUN_FINITE_ROOTS] THEN REWRITE_TAC[MESON[] `~(?y. y IN s /\ ~P y) <=> !i. i IN s ==> P i`] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_FORALL_THM]) THEN DISCH_THEN(X_CHOOSE_THEN `x:real^N` MP_TAC) THEN DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE[GSYM CONTRAPOS_THM] SUM_EQ_0)) THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP; IN_NUMSEG; LE_0] THEN DISCH_THEN(X_CHOOSE_THEN `j:num` MP_TAC) THEN SIMP_TAC[IN_ELIM_THM] THEN REWRITE_TAC[REAL_MUL_ASSOC; SUM_RMUL] THEN REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[NEGLIGIBLE_SUBSET] `!k:num. {x | !i:num. i <= m ==> P i x} SUBSET {x | P k x} /\ negligible {x | P k x} ==> negligible {x:real^N | !i:num. i <= m ==> P i x}`) THEN EXISTS_TAC `j:num` THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN CONJ_TAC THENL [ASM_ARITH_TAC; ASM_MESON_TAC[]]) in let lemma2 = prove (`!f:real^N->real. real_polynomial_function f /\ ~(!x. f x = &0) ==> negligible {x | f x = &0}`, GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[REAL_POLYNOMIAL_FUNCTION_EXPLICIT; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`s:num^N->bool`; `a:num^N->real`] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST1_TAC) THEN MP_TAC(ISPECL [`dimindex(:N)`; `IMAGE (\x:num^N i. x$i) s`; `(a:num^N->real) o (\k. lambda i. k i)`] lemma1) THEN ASM_SIMP_TAC[FINITE_IMAGE; LE_REFL] THEN SIMP_TAC[SUM_IMAGE; FUN_EQ_THM; CART_EQ] THEN REWRITE_TAC[o_DEF; LAMBDA_ETA]) in ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC lemma2 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_POLYNOMIAL_FUNCTION_SUB THEN ASM_REWRITE_TAC[real_polynomial_function_RULES]);; let EMPTY_INTERIOR_ALGEBRAIC_VARIETY = prove (`!f c. real_polynomial_function f /\ ~(!x. f x = c) ==> interior {x:real^N | f(x) = c} = {}`, SIMP_TAC[NEGLIGIBLE_ALGEBRAIC_VARIETY; NEGLIGIBLE_EMPTY_INTERIOR]);; let NOWHERE_DENSE_ALGEBRAIC_VARIETY = prove (`!f c. real_polynomial_function f /\ ~(!x. f x = c) ==> interior(closure {x:real^N | f(x) = c}) = {}`, MESON_TAC[EMPTY_INTERIOR_ALGEBRAIC_VARIETY; CLOSURE_EQ; CLOSED_ALGEBRAIC_VARIETY]);; (* ------------------------------------------------------------------------- *) (* Bernoulli polynomials, defined recursively. We don't explicitly introduce *) (* a definition for Bernoulli numbers, but use "bernoulli n (&0)" for that. *) (* ------------------------------------------------------------------------- *) let bernoulli = define `(!x. bernoulli 0 x = &1) /\ (!n x. bernoulli (n + 1) x = x pow (n + 1) - sum(0..n) (\k. &(binom(n+2,k)) * bernoulli k x) / (&n + &2))`;; let BERNOULLI_CONV = let btm = `bernoulli` in let rec bernoullis n = if n < 0 then [] else if n = 0 then [CONJUNCT1 bernoulli] else let ths = bernoullis (n - 1) in let th1 = SPEC(mk_small_numeral (n - 1)) (CONJUNCT2 bernoulli) in let th2 = CONV_RULE(BINDER_CONV (COMB2_CONV (RAND_CONV(LAND_CONV NUM_ADD_CONV)) (RAND_CONV(LAND_CONV EXPAND_SUM_CONV) THENC NUM_REDUCE_CONV THENC ONCE_DEPTH_CONV NUM_BINOM_CONV THENC REWRITE_CONV ths THENC REAL_POLY_CONV))) th1 in th2::ths in fun tm -> match tm with Comb(Comb(b,n),x) when b = btm -> let th = hd(bernoullis(dest_small_numeral n)) in (REWR_CONV th THENC REAL_POLY_CONV) tm | _ -> failwith "BERNOULLI_CONV";; let BERNOULLI,BERNOULLI_EXPANSION = (CONJ_PAIR o prove) (`(!n x. sum(0..n) (\k. &(binom(n,k)) * bernoulli k x) - bernoulli n x = &n * x pow (n - 1)) /\ (!n x. bernoulli n x = sum(0..n) (\k. &(binom(n,k)) * bernoulli k (&0) * x pow (n - k)))`, let lemma = prove (`(!n x. sum (0..n) (\k. &(binom(n,k)) * B k x) - B n x = &n * x pow (n - 1)) <=> (!x. B 0 x = &1) /\ (!n x. B (n + 1) x = x pow (n + 1) - sum(0..n) (\k. &(binom(n+2,k)) * B k x) / (&n + &2))`, let cth = MESON[num_CASES] `(!n. P n) <=> P 0 /\ (!n. P(SUC n))` in GEN_REWRITE_TAC LAND_CONV [cth] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [cth] THEN SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0; BINOM_REFL; BINOM_PENULT; SUC_SUB1] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[REAL_MUL_LID; REAL_MUL_LZERO; REAL_SUB_REFL] THEN SIMP_TAC[ADD1; ARITH_RULE `(n + 1) + 1 = n + 2`; GSYM REAL_OF_NUM_ADD] THEN BINOP_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN CONV_TAC REAL_FIELD) in REWRITE_TAC[lemma; bernoulli] THEN SUBGOAL_THEN `!n x. sum(0..n) (\k. &(binom(n,k)) * sum (0..k) (\l. &(binom(k,l)) * bernoulli l (&0) * x pow (k - l))) - sum(0..n) (\k. &(binom(n,k)) * bernoulli k (&0) * x pow (n - k)) = &n * x pow (n - 1)` MP_TAC THENL [REPEAT GEN_TAC THEN MP_TAC(ISPECL [`\n. bernoulli n (&0)`; `n:num`; `x:real`; `&1`] APPELL_SEQUENCE) THEN REWRITE_TAC[REAL_POW_ONE; REAL_MUL_RID] THEN DISCH_THEN SUBST1_TAC THEN ONCE_REWRITE_TAC[REAL_ARITH `x + &1 = &1 + x`] THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [GSYM APPELL_SEQUENCE] THEN REWRITE_TAC[REAL_POW_ONE; REAL_MUL_RID; GSYM SUM_SUB_NUMSEG] THEN REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; GSYM REAL_SUB_RDISTRIB] THEN REWRITE_TAC[REWRITE_RULE[GSYM lemma] bernoulli] THEN REWRITE_TAC[REAL_POW_ZERO; COND_RAND; COND_RATOR] THEN REWRITE_TAC[ARITH_RULE `i - 1 = 0 <=> i = 0 \/ i = 1`] THEN REWRITE_TAC[MESON[] `(if p \/ q then x else y) = if q then x else if p then x else y`] THEN SIMP_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; COND_ID; SUM_DELTA] THEN REWRITE_TAC[IN_NUMSEG; LE_0; BINOM_1] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO] THEN ASM_SIMP_TAC[LE_1] THEN REAL_ARITH_TAC; REWRITE_TAC[lemma] THEN STRIP_TAC THEN MATCH_MP_TAC num_WF THEN MATCH_MP_TAC num_INDUCTION THEN ASM_SIMP_TAC[ADD1; bernoulli; ARITH_RULE `m < n + 1 <=> m <= n`]]);; let BERNOULLI_ALT = prove (`!n x. sum(0..n) (\k. &(binom(n+1,k)) * bernoulli k x) = (&n + &1) * x pow n`, REPEAT GEN_TAC THEN MP_TAC(SPECL [`SUC n`; `x:real`] BERNOULLI) THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0; SUC_SUB1; BINOM_REFL] THEN REWRITE_TAC[ADD1; GSYM REAL_OF_NUM_ADD] THEN REAL_ARITH_TAC);; let BERNOULLI_ADD = prove (`!n x y. bernoulli n (x + y) = sum(0..n) (\k. &(binom(n,k)) * bernoulli k x * y pow (n - k))`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[BERNOULLI_EXPANSION] THEN REWRITE_TAC[APPELL_SEQUENCE]);; let bernoulli_number = prove (`bernoulli 0 (&0) = &1 /\ (!n. bernoulli (n + 1) (&0) = --sum(0..n) (\k. &(binom(n+2,k)) * bernoulli k (&0)) / (&n + &2))`, REWRITE_TAC[bernoulli; REAL_POW_ADD] THEN REAL_ARITH_TAC);; let BERNOULLI_NUMBER = prove (`!n. sum (0..n) (\k. &(binom (n,k)) * bernoulli k (&0)) - bernoulli n (&0) = if n = 1 then &1 else &0`, REWRITE_TAC[BERNOULLI] THEN MATCH_MP_TAC num_INDUCTION THEN REWRITE_TAC[ARITH; REAL_MUL_LZERO] THEN MATCH_MP_TAC num_INDUCTION THEN REWRITE_TAC[SUC_SUB1] THEN REWRITE_TAC[ARITH_RULE `SUC n = 1 <=> n = 0`] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[real_pow; REAL_MUL_LID] THEN REWRITE_TAC[NOT_SUC; REAL_MUL_LZERO; REAL_MUL_RZERO]);; let BERNOULLI_NUMBER_ALT = prove (`!n. sum(0..n) (\k. &(binom(n+1,k)) * bernoulli k (&0)) = if n = 0 then &1 else &0`, REWRITE_TAC[BERNOULLI_ALT] THEN INDUCT_TAC THEN REWRITE_TAC[real_pow; REAL_MUL_LZERO; REAL_MUL_RZERO; NOT_SUC] THEN REWRITE_TAC[REAL_ADD_LID; REAL_MUL_RID]);; let BERNOULLI_SUB_ADD1 = prove (`!n x. bernoulli n (x + &1) - bernoulli n x = &n * x pow (n - 1)`, REWRITE_TAC[BERNOULLI_ADD; REAL_POW_ONE; REAL_MUL_RID] THEN REWRITE_TAC[BERNOULLI]);; let BERNOULLI_1 = prove (`!n. bernoulli n (&1) = if n = 1 then bernoulli n (&0) + &1 else bernoulli n (&0)`, GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_ADD_LID] THEN COND_CASES_TAC THENL [REWRITE_TAC[REAL_ARITH `x = y + &1 <=> x - y = &1`]; ONCE_REWRITE_TAC[GSYM REAL_SUB_0]] THEN REWRITE_TAC[BERNOULLI_SUB_ADD1; REAL_POW_ZERO] THEN ASM_REWRITE_TAC[SUB_REFL; REAL_MUL_RID] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO] THEN COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_ARITH_TAC);; let SUM_OF_POWERS = prove (`!m n. sum(0..n) (\k. &k pow m) = (bernoulli (m + 1) (&n + &1) - bernoulli (m + 1) (&0)) / (&m + &1)`, REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o BINDER_CONV o RAND_CONV) [GSYM SUC_SUB1] THEN REWRITE_TAC[REAL_FIELD `x = y / (&m + &1) <=> (&m + &1) * x = y`] THEN REWRITE_TAC[GSYM SUM_LMUL; REAL_OF_NUM_SUC; GSYM BERNOULLI_SUB_ADD1] THEN REWRITE_TAC[ADD1; SUM_DIFFS_ALT; LE_0]);; let HAS_REAL_DERIVATIVE_BERNOULLI = prove (`!n x. ((bernoulli n) has_real_derivative (&n * bernoulli (n - 1) x)) (atreal x)`, INDUCT_TAC THEN GEN_TAC THEN GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV) [GSYM ETA_AX] THEN ONCE_REWRITE_TAC[BERNOULLI_EXPANSION] THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH; SUB_REFL; CONJUNCT1 real_pow] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_CONST; REAL_MUL_LZERO; LE_0] THEN GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV) [GSYM REAL_ADD_RID] THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_ADD THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_CONST; SUC_SUB1; GSYM SUM_LMUL] THEN MATCH_MP_TAC HAS_REAL_DERIVATIVE_SUM THEN REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN REAL_DIFF_TAC THEN REWRITE_TAC[ADD1; BINOM_TOP_STEP_REAL] THEN ASM_SIMP_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_SUB; ARITH_RULE `k <= n ==> ~(k = n + 1) /\ (n + 1) - k - 1 = n - k /\ k <= n + 1`] THEN UNDISCH_TAC `k:num <= n` THEN REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN CONV_TAC REAL_FIELD);; add_real_differentiation_theorems (CONJUNCTS(REWRITE_RULE[FORALL_AND_THM] (MATCH_MP HAS_REAL_DERIVATIVE_CHAIN_UNIV (SPEC `n:num` HAS_REAL_DERIVATIVE_BERNOULLI))));; let REAL_DIFFERENTIABLE_ON_BERNOULLI = prove (`!n s. (bernoulli n) real_differentiable_on s`, REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; real_differentiable] THEN MESON_TAC[HAS_REAL_DERIVATIVE_BERNOULLI; HAS_REAL_DERIVATIVE_ATREAL_WITHIN]);; let REAL_CONTINUOUS_ON_BERNOULLI = prove (`!n s. (bernoulli n) real_continuous_on s`, MESON_TAC[REAL_DIFFERENTIABLE_ON_BERNOULLI; REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON]);; let HAS_REAL_INTEGRAL_BERNOULLI = prove (`!n. ((bernoulli n) has_real_integral (if n = 0 then &1 else &0)) (real_interval[&0,&1])`, REPEAT STRIP_TAC THEN MP_TAC(SPECL [`\x. bernoulli (n + 1) x / (&n + &1)`; `bernoulli n`; `&0`; `&1`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN REWRITE_TAC[REAL_POS] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN REWRITE_TAC[ADD_SUB; GSYM REAL_OF_NUM_ADD] THEN CONV_TAC REAL_FIELD; REWRITE_TAC[BERNOULLI_1; ARITH_RULE `n + 1 = 1 <=> n = 0`] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[REAL_SUB_REFL] THEN REWRITE_TAC[REAL_ADD_LID; ADD_CLAUSES; REAL_DIV_1; REAL_ADD_SUB]]);; let POLYNOMIAL_FUNCTION_BERNOULLI = prove (`!n. polynomial_function(bernoulli n)`, GEN_TAC THEN GEN_REWRITE_TAC RAND_CONV [GSYM ETA_AX] THEN ONCE_REWRITE_TAC[BERNOULLI_EXPANSION] THEN MATCH_MP_TAC POLYNOMIAL_FUNCTION_SUM THEN SIMP_TAC[FINITE_NUMSEG; POLYNOMIAL_FUNCTION_MUL; POLYNOMIAL_FUNCTION_POW; POLYNOMIAL_FUNCTION_ID; POLYNOMIAL_FUNCTION_CONST]);; let BERNOULLI_UNIQUE = prove (`!p n. polynomial_function p /\ (!x. p(x + &1) - p(x) = &n * x pow (n - 1)) /\ (real_integral (real_interval[&0,&1]) p = if n = 0 then &1 else &0) ==> p = bernoulli n`, REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN MP_TAC(SPECL [`\x. p x - bernoulli n x`; `p(&0) - bernoulli n (&0)`] POLYNOMIAL_FUNCTION_FINITE_ROOTS) THEN ASM_SIMP_TAC[POLYNOMIAL_FUNCTION_SUB; POLYNOMIAL_FUNCTION_BERNOULLI; ETA_AX] THEN MATCH_MP_TAC(TAUT `~p /\ (q ==> r) ==> (p <=> ~q) ==> r`) THEN CONJ_TAC THENL [REWRITE_TAC[GSYM INFINITE] THEN MATCH_MP_TAC INFINITE_SUPERSET THEN EXISTS_TAC `IMAGE (&) (:num)` THEN SIMP_TAC[INFINITE_IMAGE_INJ; REAL_OF_NUM_EQ; num_INFINITE; SUBSET; FORALL_IN_IMAGE; IN_UNIV; IN_ELIM_THM] THEN CONV_TAC(BINDER_CONV SYM_CONV) THEN INDUCT_TAC THEN ASM_REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN ASM_MESON_TAC[BERNOULLI_SUB_ADD1; REAL_ARITH `p - b:real = p' - b' <=> p' - p = b' - b`]; DISCH_TAC THEN X_GEN_TAC `x:real` THEN ONCE_ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_UNIQUE THEN EXISTS_TAC `\x. p x - bernoulli n x` THEN EXISTS_TAC `real_interval[&0,&1]` THEN CONJ_TAC THENL [GEN_REWRITE_TAC LAND_CONV [REAL_ARITH `x = x * (&1 - &0)`] THEN ONCE_ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_CONST THEN REWRITE_TAC[REAL_POS]; GEN_REWRITE_TAC LAND_CONV [GSYM(SPEC `if n = 0 then &1 else &0` REAL_SUB_REFL)] THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_SUB THEN REWRITE_TAC[ETA_AX; HAS_REAL_INTEGRAL_BERNOULLI] THEN ASM_REWRITE_TAC[HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL] THEN MATCH_MP_TAC REAL_INTEGRABLE_CONTINUOUS THEN ASM_SIMP_TAC[REAL_CONTINUOUS_ON_POLYNOMIAL_FUNCTION]]]);; let BERNOULLI_RAABE_2 = prove (`!n x. bernoulli n ((x + &1) / &2) + bernoulli n (x / &2) = &2 / &2 pow n * bernoulli n x`, GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[bernoulli] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN SIMP_TAC[REAL_LT_POW2; REAL_FIELD `&0 < p ==> (x = &2 / p * y <=> p / &2 * x = y)`] THEN GEN_REWRITE_TAC I [GSYM FUN_EQ_THM] THEN REWRITE_TAC[ETA_AX] THEN MATCH_MP_TAC BERNOULLI_UNIQUE THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC POLYNOMIAL_FUNCTION_LMUL THEN MATCH_MP_TAC POLYNOMIAL_FUNCTION_ADD THEN CONJ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[o_DEF] POLYNOMIAL_FUNCTION_o) THEN REWRITE_TAC[POLYNOMIAL_FUNCTION_BERNOULLI; real_div] THEN SIMP_TAC[POLYNOMIAL_FUNCTION_ADD; POLYNOMIAL_FUNCTION_CONST; POLYNOMIAL_FUNCTION_ID; POLYNOMIAL_FUNCTION_RMUL]; REWRITE_TAC[REAL_ARITH `((x + &1) + &1) / &2 = x / &2 + &1`] THEN REWRITE_TAC[REAL_ARITH `a * (x + y) - a * (y + z):real = a * (x - z)`] THEN REWRITE_TAC[BERNOULLI_SUB_ADD1; REAL_POW_DIV] THEN GEN_TAC THEN REWRITE_TAC[REAL_ARITH `a / b * c * d / e:real = c * (a / b / e) * d`] THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[REAL_MUL_LZERO] THEN MATCH_MP_TAC(REAL_RING `b = &1 ==> a * b * c = a * c`) THEN REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC; GSYM REAL_INV_MUL] THEN REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> SUC(n - 1) = n`] THEN REWRITE_TAC[GSYM real_div] THEN MATCH_MP_TAC REAL_DIV_REFL THEN REWRITE_TAC[REAL_POW_EQ_0] THEN REAL_ARITH_TAC; SUBGOAL_THEN `(bernoulli n) real_integrable_on real_interval[&0,&1 / &2] /\ (bernoulli n) real_integrable_on real_interval[&1 / &2,&1]` MP_TAC THENL [CONJ_TAC THEN MATCH_MP_TAC REAL_INTEGRABLE_CONTINUOUS THEN SIMP_TAC[REAL_CONTINUOUS_ON_POLYNOMIAL_FUNCTION; POLYNOMIAL_FUNCTION_BERNOULLI]; DISCH_THEN(CONJUNCTS_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] HAS_REAL_INTEGRAL_AFFINITY) o MATCH_MP REAL_INTEGRABLE_INTEGRAL))] THEN REWRITE_TAC[REAL_ARITH `m * (x - c):real = m * x + m * --c`] THEN REWRITE_TAC[IMAGE_AFFINITY_REAL_INTERVAL; IMP_IMP] THEN DISCH_THEN(CONJUNCTS_THEN2 (MP_TAC o SPECL [`inv(&2)`; `inv(&2)`]) (MP_TAC o SPECL [`inv(&2)`; `&0`])) THEN REWRITE_TAC[REAL_INTERVAL_EQ_EMPTY] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[GSYM IMP_CONJ_ALT] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_REAL_INTEGRAL_ADD) THEN DISCH_THEN(MP_TAC o SPEC `&2 pow n / &2` o MATCH_MP HAS_REAL_INTEGRAL_LMUL) THEN REWRITE_TAC[REAL_ARITH `&1 / &2 * x + &1 / &2 = (x + &1) / &2`; REAL_ARITH `&1 / &2 * x + &0 = x / &2`] THEN DISCH_THEN(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN ASM_REWRITE_TAC[REAL_ENTIRE] THEN DISJ2_TAC THEN REWRITE_TAC[REAL_ARITH `&2 * x + &2 * y = &0 <=> y + x = &0`] THEN IMP_REWRITE_TAC[REAL_INTEGRAL_COMBINE] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[GSYM HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL] THEN ASM_MESON_TAC[HAS_REAL_INTEGRAL_BERNOULLI]]);; let BERNOULLI_HALF = prove (`!n. bernoulli n (&1 / &2) = (&2 / &2 pow n - &1) * bernoulli n (&0)`, GEN_TAC THEN MP_TAC(ISPECL [`n:num`; `&1`] BERNOULLI_RAABE_2) THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_ARITH `a + b:real = c * a <=> b = (c - &1) * a`] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[BERNOULLI_1] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; let BERNOULLI_REFLECT = prove (`!n x. bernoulli n (&1 - x) = --(&1) pow n * bernoulli n x`, ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN SUBGOAL_THEN `!n. sum(0..n) (\k. &(binom(n + 1,k)) * (bernoulli k (&1 - x) - --(&1) pow k * bernoulli k x)) = &0` ASSUME_TAC THENL [REWRITE_TAC[SUM_SUB_NUMSEG; REAL_SUB_LDISTRIB] THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[REAL_SUB_0; BERNOULLI_ALT] THEN TRANS_TAC EQ_TRANS `--(&1) pow n * (bernoulli (n + 1) x - bernoulli (n + 1) (x - &1))` THEN CONJ_TAC THENL [MP_TAC(ISPECL [`n + 1`; `x - &1`] BERNOULLI_SUB_ADD1) THEN REWRITE_TAC[REAL_ARITH `x - a + a:real = x`] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[ADD_SUB; REAL_ARITH `&1 - x = --(&1) * (x - &1)`] THEN REWRITE_TAC[REAL_POW_MUL; REAL_MUL_AC; GSYM REAL_OF_NUM_ADD]; MATCH_MP_TAC(REAL_FIELD `z pow 2 = &1 /\ z * x = y ==> z * y = x`) THEN REWRITE_TAC[REAL_POW_POW] THEN CONJ_TAC THENL [REWRITE_TAC[REAL_POW_NEG; EVEN_MULT; ARITH; REAL_POW_ONE]; REWRITE_TAC[GSYM SUM_LMUL]] THEN MP_TAC(ISPECL [`SUC n`; `x:real`; `--(&1)`] BERNOULLI_ADD) THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0; BINOM_REFL; SUB_REFL] THEN REWRITE_TAC[GSYM real_sub; ADD1; REAL_MUL_LID; CONJUNCT1 real_pow] THEN DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC(REAL_ARITH `--s' = s ==> s = b - (s' + b * &1)`) THEN REWRITE_TAC[GSYM SUM_NEG] THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_RING `--(&1) pow 1 * p = q * r ==> --(b * k * p) = q * b * r * k`) THEN REWRITE_TAC[GSYM REAL_POW_ADD] THEN REWRITE_TAC[REAL_POW_NEG] THEN REWRITE_TAC[EVEN_ADD; EVEN_SUB; REAL_POW_ONE; ARITH] THEN ASM_SIMP_TAC[ARITH_RULE `k <= n ==> ~(n + 1 <= k)`] THEN REWRITE_TAC[TAUT `~(~p <=> q) <=> (p <=> q)`]]; MATCH_MP_TAC num_WF THEN MATCH_MP_TAC num_INDUCTION THEN REWRITE_TAC[bernoulli; CONJUNCT1 real_pow; REAL_MUL_LID] THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[LT_SUC_LE] THEN DISCH_THEN (fun th -> FIRST_X_ASSUM(MP_TAC o SPEC `SUC n`) THEN ASSUME_TAC th) THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG; LE_0] THEN ASM_SIMP_TAC[REAL_SUB_REFL; REAL_MUL_RZERO; SUM_0; REAL_ADD_LID] THEN REWRITE_TAC[GSYM ADD1; BINOM_PENULT; GSYM REAL_OF_NUM_SUC] THEN REWRITE_TAC[REAL_ENTIRE; REAL_SUB_0] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]);; let BERNOULLI_1_0 = prove (`!n. bernoulli n (&1) = --(&1) pow n * bernoulli n (&0)`, GEN_TAC THEN SUBST1_TAC(REAL_ARITH `&0 = &1 - &1`) THEN REWRITE_TAC[BERNOULLI_REFLECT; REAL_MUL_ASSOC; GSYM REAL_POW_MUL] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[REAL_POW_ONE; REAL_MUL_LID]);; let BERNOULLI_NUMBER_ZERO = prove (`!n. ODD n /\ ~(n = 1) ==> bernoulli n (&0) = &0`, REPEAT STRIP_TAC THEN MP_TAC(SPEC `n:num` BERNOULLI_1) THEN MP_TAC(SPEC `n:num` BERNOULLI_1_0) THEN ASM_REWRITE_TAC[REAL_POW_NEG; REAL_POW_ONE; GSYM NOT_ODD] THEN REAL_ARITH_TAC);; let BERNOULLI_EVEN_BOUND = prove (`!n x. EVEN n /\ x IN real_interval[&0,&1] ==> abs(bernoulli n x) <= abs(bernoulli n (&0))`, let lemma = prove (`(!n x. x IN real_interval(&0,&1 / &2) ==> ~(bernoulli (2 * n + 1) x = &0)) /\ (!n x y. x IN real_interval(&0,&1 / &2) /\ y IN real_interval(&0,&1 / &2) /\ bernoulli (2 * n) x = &0 /\ bernoulli (2 * n) y = &0 ==> x = y)`, REWRITE_TAC[AND_FORALL_THM; IN_REAL_INTERVAL] THEN INDUCT_TAC THENL [CONV_TAC NUM_REDUCE_CONV THEN CONV_TAC(ONCE_DEPTH_CONV BERNOULLI_CONV) THEN REAL_ARITH_TAC; POP_ASSUM MP_TAC THEN REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC] THEN MATCH_MP_TAC(TAUT `q /\ (q ==> p) ==> p /\ q`) THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_WLOG_LT THEN REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[CONJ_ACI; EQ_SYM_EQ]; ALL_TAC] THEN MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x. bernoulli (2 * SUC n) x / (&2 * &n + &2)`; `bernoulli (2 * n + 1)`; `x:real`; `y:real`] REAL_ROLLE_SIMPLE) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN REWRITE_TAC[GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_SUC; ARITH_RULE `2 * SUC n - 1 = 2 * n + 1`] THEN CONV_TAC REAL_FIELD; REWRITE_TAC[IN_REAL_INTERVAL; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `z:real` THEN DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_REAL_INTERVAL] THEN ASM_REAL_ARITH_TAC]; POP_ASSUM_LIST(K ALL_TAC) THEN DISCH_TAC THEN X_GEN_TAC `x:real` THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`\x. bernoulli (2 * SUC n + 1) x / (&2 * &n + &3)`; `bernoulli (2 * SUC n)`; `&0`; `x:real`] REAL_ROLLE_SIMPLE) THEN ASM_REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_ENTIRE] THEN DISJ1_TAC THEN MATCH_MP_TAC BERNOULLI_NUMBER_ZERO THEN REWRITE_TAC[ODD_ADD; ODD_MULT; ADD1; ARITH] THEN ARITH_TAC; REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN SIMP_TAC[ADD_SUB; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD; ADD1] THEN CONV_TAC REAL_FIELD; REWRITE_TAC[IN_REAL_INTERVAL; NOT_EXISTS_THM] THEN X_GEN_TAC `u:real` THEN STRIP_TAC] THEN MP_TAC(ISPECL [`\x. bernoulli (2 * SUC n + 1) x / (&2 * &n + &3)`; `bernoulli (2 * SUC n)`; `x:real`; `&1 / &2`] REAL_ROLLE_SIMPLE) THEN ASM_REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[real_div; REAL_MUL_LZERO] THEN CONV_TAC SYM_CONV THEN REWRITE_TAC[REAL_ENTIRE] THEN DISJ1_TAC THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[BERNOULLI_HALF] THEN REWRITE_TAC[REAL_ENTIRE] THEN DISJ2_TAC THEN MATCH_MP_TAC BERNOULLI_NUMBER_ZERO THEN REWRITE_TAC[ODD_ADD; ODD_MULT; ADD1; ARITH] THEN ARITH_TAC; REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN SIMP_TAC[ADD_SUB; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD; ADD1] THEN CONV_TAC REAL_FIELD; REWRITE_TAC[IN_REAL_INTERVAL; NOT_EXISTS_THM] THEN X_GEN_TAC `v:real` THEN STRIP_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPECL [`u:real`; `v:real`]) THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC]) in REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[bernoulli; REAL_LE_REFL] THEN MP_TAC(ISPECL [`\x. abs(bernoulli n x)`; `real_interval[&0,&1]`] REAL_CONTINUOUS_ATTAINS_SUP) THEN REWRITE_TAC[REAL_COMPACT_INTERVAL; REAL_INTERVAL_NE_EMPTY; REAL_POS] THEN ANTS_TAC THENL [MATCH_MP_TAC REAL_CONTINUOUS_ON_ABS THEN MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE] THEN REPEAT STRIP_TAC THEN REAL_DIFFERENTIABLE_TAC; REWRITE_TAC[IN_REAL_INTERVAL] THEN DISCH_THEN(X_CHOOSE_THEN `z:real` MP_TAC)] THEN ASM_CASES_TAC `z = &0` THEN ASM_SIMP_TAC[] THEN ASM_CASES_TAC `z = &1` THEN ASM_REWRITE_TAC[BERNOULLI_1_0] THEN ASM_SIMP_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NEG; REAL_POW_ONE; REAL_ABS_NUM; REAL_MUL_LID] THEN STRIP_TAC THEN MP_TAC(ISPECL [`bernoulli n`; `&n * bernoulli (n - 1) z`; `z:real`; `real_interval(&0,&1)`] REAL_DERIVATIVE_ZERO_MAXMIN) THEN REWRITE_TAC[REAL_OPEN_REAL_INTERVAL; IN_REAL_INTERVAL] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[HAS_REAL_DERIVATIVE_BERNOULLI] THEN ASM_CASES_TAC `&0 <= bernoulli n z` THENL [DISJ1_TAC; DISJ2_TAC] THEN X_GEN_TAC `y:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `y:real`) THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_REWRITE_TAC[REAL_ENTIRE; REAL_OF_NUM_EQ] THEN DISCH_TAC THEN ASM_CASES_TAC `z = &1 / &2` THENL [MATCH_MP_TAC(REAL_ARITH `!z. x <= z /\ z <= &1 * y ==> x <= y`) THEN EXISTS_TAC `abs(bernoulli n (&1 / &2))` THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN REWRITE_TAC[BERNOULLI_HALF; REAL_ABS_MUL] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= &1 ==> abs(x - &1) <= &1`) THEN SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ; REAL_LT_POW2] THEN REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID; REAL_POS] THEN MATCH_MP_TAC(REAL_ARITH `&2 pow 1 <= x ==> &2 <= x`) THEN MATCH_MP_TAC REAL_POW_MONO THEN REWRITE_TAC[REAL_OF_NUM_LE] THEN ASM_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `&0 < z /\ z < &1 / &2 \/ &1 / &2 < z /\ z < &1` STRIP_ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; MP_TAC(ISPECL [`(n - 2) DIV 2`; `z:real`] (CONJUNCT1 lemma)) THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL]; MP_TAC(ISPECL [`(n - 2) DIV 2`; `&1 - z`] (CONJUNCT1 lemma)) THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL] THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[BERNOULLI_REFLECT]] THEN REWRITE_TAC[REAL_ENTIRE; REAL_POW_EQ_0] THEN CONV_TAC REAL_RAT_REDUCE_CONV] THEN SUBGOAL_THEN `2 * (n - 2) DIV 2 + 1 = n - 1` (fun th -> ASM_REWRITE_TAC[th]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]) THEN DISCH_THEN(CHOOSE_THEN SUBST_ALL_TAC) THEN UNDISCH_TAC `~(2 * m = 0)` THEN SPEC_TAC(`m:num`,`m:num`) THEN INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; ADD_SUB2] THEN SIMP_TAC[DIV_MULT; ARITH_EQ] THEN ARITH_TAC);; let BERNOULLI_NUMBER_EQ_0 = prove (`!n. bernoulli n (&0) = &0 <=> ODD n /\ ~(n = 1)`, GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[BERNOULLI_NUMBER_ZERO] THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[BERNOULLI_CONV `bernoulli 1 (&0)`] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN DISCH_TAC THEN DISJ_CASES_TAC(SPEC `n:num` EVEN_OR_ODD) THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`n:num`; `\k. &(binom(n,n - k)) * bernoulli (n - k) (&0)`] REAL_POLYFUN_FINITE_ROOTS) THEN MATCH_MP_TAC(TAUT `q /\ ~p ==> (p <=> q) ==> r`) THEN CONJ_TAC THENL [EXISTS_TAC `n:num` THEN SIMP_TAC[IN_NUMSEG; LE_0; LE_REFL; SUB_REFL] THEN REWRITE_TAC[binom; REAL_MUL_RID; bernoulli] THEN REAL_ARITH_TAC; REWRITE_TAC[GSYM INFINITE] THEN MATCH_MP_TAC INFINITE_SUPERSET THEN EXISTS_TAC `real_interval[&0,&1]` THEN REWRITE_TAC[real_interval; INFINITE; FINITE_REAL_INTERVAL] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN MP_TAC(ISPECL [`n:num`; `x:real`] BERNOULLI_EVEN_BOUND) THEN ASM_REWRITE_TAC[IN_REAL_INTERVAL; REAL_ARITH `abs x <= abs(&0) <=> x = &0`] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EQ_TRANS) THEN GEN_REWRITE_TAC RAND_CONV [BERNOULLI_EXPANSION] THEN MATCH_MP_TAC SUM_EQ_GENERAL_INVERSES THEN REPEAT(EXISTS_TAC `\k:num. n - k`) THEN SIMP_TAC[IN_NUMSEG; ARITH_RULE `k:num <= n ==> n - (n - k) = k`] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN ARITH_TAC]);; (* ------------------------------------------------------------------------- *) (* This is a simple though sub-optimal bound (we can actually get *) (* |B_{2n+1}(x)| <= (2n + 1) / (2 pi) * |B_{2n}(0)| with more work). *) (* ------------------------------------------------------------------------- *) let BERNOULLI_BOUND = prove (`!n x. x IN real_interval[&0,&1] ==> abs(bernoulli n x) <= max (&n / &2) (&1) * abs(bernoulli (2 * n DIV 2) (&0))`, REPEAT STRIP_TAC THEN DISJ_CASES_TAC(SPEC `n:num` EVEN_OR_ODD) THENL [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EVEN_EXISTS]); FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [ODD_EXISTS])] THEN DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THENL [REWRITE_TAC[ARITH_RULE `(2 * m) DIV 2 = m`] THEN MATCH_MP_TAC(REAL_ARITH `&1 * y <= max x (&1) * y /\ a <= y ==> a <= max x (&1) * y`) THEN SIMP_TAC[REAL_LE_RMUL; REAL_ABS_POS; REAL_ARITH `y <= max x y`] THEN MATCH_MP_TAC BERNOULLI_EVEN_BOUND THEN ASM_REWRITE_TAC[EVEN_MULT; ARITH]; POP_ASSUM MP_TAC THEN SPEC_TAC(`x:real`,`x:real`) THEN MATCH_MP_TAC(MESON[] `!Q. ((!x. P x /\ Q x ==> R x) ==> (!x. P x ==> R x)) /\ (!x. P x /\ Q x ==> R x) ==> !x. P x ==> R x`) THEN EXISTS_TAC `\x. x IN real_interval[&0,&1 / &2]` THEN CONJ_TAC THENL [REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `x <= &1 / &2` THEN ASM_SIMP_TAC[] THEN FIRST_ASSUM(MP_TAC o SPEC `&1 - x`) THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[BERNOULLI_REFLECT; REAL_ABS_MUL; REAL_ABS_POW] THEN REWRITE_TAC[REAL_ABS_NEG; REAL_ABS_NUM; REAL_MUL_LID; REAL_POW_ONE]; REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[ARITH_RULE `SUC(2 * m) DIV 2 = m`] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_MUL] THEN REWRITE_TAC[ADD1; REAL_ARITH `(x + &1) + &1 = x + &2`] THEN ASM_CASES_TAC `m = 0` THENL [ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN CONV_TAC(ONCE_DEPTH_CONV BERNOULLI_CONV) THEN ASM_REAL_ARITH_TAC; MP_TAC(ISPECL [`\x. bernoulli (2 * m + 1) x / &(2 * m + 1)`; `bernoulli (2 * m)`; `&0`; `x:real`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN ASM_SIMP_TAC[BERNOULLI_NUMBER_ZERO; ODD_ADD; ODD_MULT; ARITH; ARITH_RULE `2 * m + 1 = 1 <=> m = 0`] THEN ANTS_TAC THENL [REPEAT STRIP_TAC THEN REAL_DIFF_TAC THEN REWRITE_TAC[ADD_SUB] THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN CONV_TAC REAL_FIELD; DISCH_THEN(MP_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN REWRITE_TAC[REAL_FIELD `i = b / (&2 * &m + &1) - &0 / (&2 * &m + &1) <=> b = (&2 * &m + &1) * i`] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[real_max; REAL_ARITH `(x + &1) / &2 <= &1 <=> x <= &1`; REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN ASM_REWRITE_TAC[ARITH_RULE `2 * m <= 1 <=> m = 0`] THEN REWRITE_TAC[GSYM REAL_OF_NUM_MUL; real_div; GSYM REAL_MUL_ASSOC] THEN REWRITE_TAC[REAL_ABS_MUL; REAL_ARITH `abs(&2 * &n + &1) = &2 * &n + &1`] THEN MATCH_MP_TAC REAL_LE_LMUL THEN CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN TRANS_TAC REAL_LE_TRANS `real_integral (real_interval [&0,x]) (\x. abs(bernoulli (2 * m) (&0)))` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_INTEGRAL_ABS_BOUND_INTEGRAL THEN SIMP_TAC[REAL_INTEGRABLE_CONST; REAL_INTEGRABLE_CONTINUOUS; REAL_CONTINUOUS_ON_BERNOULLI] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC BERNOULLI_EVEN_BOUND THEN REWRITE_TAC[EVEN_MULT; ARITH; IN_REAL_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL]) THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[REAL_INTEGRAL_CONST] THEN REWRITE_TAC[REAL_ARITH `a * (x - &0) = x * a`] THEN MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[REAL_ABS_POS] THEN ASM_REAL_ARITH_TAC]]]]]);; (* ------------------------------------------------------------------------- *) (* Absolutely integrable functions remain so modified by Bernolli sawtooth. *) (* ------------------------------------------------------------------------- *) let ABSOLUTELY_INTEGRABLE_ON_MUL_BERNOULLI_FRAC = prove (`!f:real^1->real^N s n. f absolutely_integrable_on s ==> (\x. bernoulli n (frac(drop x)) % f x) absolutely_integrable_on s`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM ABSOLUTELY_INTEGRABLE_RESTRICT_UNIV] THEN DISCH_TAC THEN MP_TAC(ISPECL [`\x y:real^N. drop(x) % y`; `\x:real^1. lift(bernoulli n (frac (drop x)))`; `\x. if x IN s then (f:real^1->real^N) x else vec 0`; `(:real^1)`] ABSOLUTELY_INTEGRABLE_BOUNDED_MEASURABLE_PRODUCT) THEN ASM_REWRITE_TAC[LIFT_DROP; BILINEAR_DROP_MUL] THEN ONCE_REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[VECTOR_MUL_RZERO] THEN DISCH_THEN MATCH_MP_TAC THEN CONJ_TAC THENL [SUBGOAL_THEN `(\x. lift(bernoulli n (frac (drop x)))) = (lift o bernoulli n o drop) o (lift o frac o drop)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF; LIFT_DROP]; ALL_TAC] THEN MATCH_MP_TAC MEASURABLE_ON_COMPOSE_CONTINUOUS THEN CONJ_TAC THENL [MATCH_MP_TAC CONTINUOUS_AE_IMP_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET THEN EXISTS_TAC `IMAGE lift integer` THEN SIMP_TAC[LEBESGUE_MEASURABLE_UNIV; NEGLIGIBLE_COUNTABLE; COUNTABLE_IMAGE; COUNTABLE_INTEGER] THEN MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REWRITE_TAC[FORALL_LIFT; IN_DIFF; IN_UNIV; LIFT_IN_IMAGE_LIFT] THEN REWRITE_TAC[IN] THEN REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN REWRITE_TAC[REAL_CONTINUOUS_FRAC]; MP_TAC(SPECL [`n:num`; `(:real)`] REAL_CONTINUOUS_ON_BERNOULLI) THEN REWRITE_TAC[REAL_CONTINUOUS_ON; IMAGE_LIFT_UNIV]]; REWRITE_TAC[bounded; FORALL_IN_IMAGE; IN_UNIV; NORM_LIFT] THEN SUBGOAL_THEN `real_compact (IMAGE (bernoulli n) (real_interval[&0,&1]))` MP_TAC THENL [MATCH_MP_TAC REAL_COMPACT_CONTINUOUS_IMAGE THEN REWRITE_TAC[REAL_CONTINUOUS_ON_BERNOULLI; REAL_COMPACT_INTERVAL]; DISCH_THEN(MP_TAC o MATCH_MP REAL_COMPACT_IMP_BOUNDED) THEN REWRITE_TAC[real_bounded; FORALL_IN_IMAGE; IN_REAL_INTERVAL] THEN MESON_TAC[FLOOR_FRAC; REAL_LT_IMP_LE]]]);; (* ------------------------------------------------------------------------- *) (* The Euler-Maclaurin summation formula for real and complex functions. *) (* ------------------------------------------------------------------------- *) let REAL_EULER_MACLAURIN = prove (`!f m n p. m <= n /\ (!k x. k <= 2 * p + 1 /\ x IN real_interval[&m,&n] ==> ((f k) has_real_derivative f (k + 1) x) (atreal x within real_interval [&m,&n])) ==> (\x. bernoulli (2 * p + 1) (frac x) * f (2 * p + 1) x) real_integrable_on real_interval[&m,&n] /\ sum(m..n) (\i. f 0 (&i)) = real_integral (real_interval [&m,&n]) (f 0) + (f 0 (&m) + f 0 (&n)) / &2 + sum (1..p) (\k. bernoulli (2 * k) (&0) / &(FACT(2 * k)) * (f (2 * k - 1) (&n) - f (2 * k - 1) (&m))) + real_integral (real_interval [&m,&n]) (\x. bernoulli (2 * p + 1) (frac x) * f (2 * p + 1) x) / &(FACT(2 * p + 1))`, let lemma = prove (`!f k m n. f real_continuous_on real_interval[&m,&n] /\ m < n ==> ((\x. bernoulli k (frac x) * f x) has_real_integral sum(m..n-1) (\j. real_integral (real_interval[&j,&j + &1]) (\x. bernoulli k (x - &j) * f x))) (real_interval[&m,&n])`, REPLICATE_TAC 3 GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 LT] THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC; LT_SUC_LE; SUC_SUB1] THEN STRIP_TAC THEN ASM_CASES_TAC `m:num = n` THENL [ASM_REWRITE_TAC[SUM_SING_NUMSEG]; SUBGOAL_THEN `0 < n` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[SUM_CLAUSES_RIGHT] THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_COMBINE THEN EXISTS_TAC `&n` THEN ASM_REWRITE_TAC[REAL_OF_NUM_LE; REAL_ARITH `x <= x + &1`] THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[LT_LE] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_CONTINUOUS_ON_SUBSET)) THEN REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN ASM_REWRITE_TAC[REAL_OF_NUM_LE; REAL_ARITH `x <= x + &1`; LE_REFL]; ALL_TAC]] THEN MATCH_MP_TAC(MESON[REAL_INTEGRAL_SPIKE; HAS_REAL_INTEGRAL_INTEGRAL; REAL_INTEGRABLE_SPIKE] `!t. g real_integrable_on s /\ real_negligible t /\ (!x. x IN s DIFF t ==> f x = g x) ==> (f has_real_integral (real_integral s g)) s`) THEN EXISTS_TAC `{&n + &1}` THEN REWRITE_TAC[REAL_NEGLIGIBLE_SING] THEN (CONJ_TAC THENL [MATCH_MP_TAC REAL_INTEGRABLE_CONTINUOUS THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_MUL THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE] THEN REPEAT STRIP_TAC THEN REAL_DIFFERENTIABLE_TAC; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_CONTINUOUS_ON_SUBSET)) THEN REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE] THEN ASM_ARITH_TAC]; REWRITE_TAC[IN_DIFF; IN_SING; IN_REAL_INTERVAL] THEN X_GEN_TAC `x:real` THEN STRIP_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM FRAC_UNIQUE] THEN REWRITE_TAC[REAL_ARITH `x - (x - &n) = &n`; INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC])) in let step = prove (`!f f' k m n. m < n /\ (!x. x IN real_interval[&m,&n] ==> (f has_real_derivative f' x) (atreal x within real_interval[&m,&n])) /\ f' real_continuous_on real_interval[&m,&n] ==> real_integral (real_interval[&m,&n]) (\x. bernoulli (k + 1) (frac x) * f' x) = (bernoulli (k + 1) (&0) * (f(&n) - f(&m)) + (if k = 0 then sum(m+1..n) (\i. f(&i)) else &0)) - (&k + &1) * real_integral (real_interval[&m,&n]) (\x. bernoulli k (frac x) * f x)`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `f real_continuous_on real_interval[&m,&n]` ASSUME_TAC THENL [ASM_MESON_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE; real_differentiable; REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON]; ASM_SIMP_TAC[REWRITE_RULE[HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL] lemma]] THEN TRANS_TAC EQ_TRANS `sum(m..n-1) (\j. (bernoulli (k + 1) (&0) * (f (&j + &1) - f (&j)) + (if k = 0 then f (&j + &1) else &0)) - (&k + &1) * real_integral (real_interval[&j,&j + &1]) (\x. bernoulli k (x - &j) * f x))` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_EQ_NUMSEG THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN MATCH_MP_TAC(ONCE_REWRITE_RULE[REAL_MUL_SYM] REAL_INTEGRATION_BY_PARTS_SIMPLE) THEN MAP_EVERY EXISTS_TAC [`f:real->real`; `\x. (&k + &1) * bernoulli k (x - &j)`] THEN REWRITE_TAC[REAL_ADD_SUB; REAL_SUB_REFL; BERNOULLI_1] THEN REPEAT CONJ_TAC THENL [REAL_ARITH_TAC; X_GEN_TAC `x:real` THEN DISCH_TAC THEN CONJ_TAC THENL [FIRST_X_ASSUM(MP_TAC o SPEC `x:real`) THEN ANTS_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE `x IN s ==> s SUBSET t ==> x IN t`)); MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] HAS_REAL_DERIVATIVE_WITHIN_SUBSET)] THEN REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_ADD] THEN ASM_ARITH_TAC; REAL_DIFF_TAC THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD; ADD_SUB] THEN REAL_ARITH_TAC]; REWRITE_TAC[ARITH_RULE `k + 1 = 1 <=> k = 0`] THEN ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[REAL_ARITH `(b + &1) * f1 - b * f0 - ((b * (f1 - f0) + f1) - w):real = w`]; REWRITE_TAC[REAL_ARITH `b * f1 - b * f0 - ((b * (f1 - f0) + &0) - w) = w`]] THEN REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_LMUL THEN MATCH_MP_TAC REAL_INTEGRABLE_INTEGRAL THEN MATCH_MP_TAC REAL_INTEGRABLE_CONTINUOUS THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_MUL THEN (CONJ_TAC THENL [MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE] THEN REPEAT STRIP_TAC THEN REAL_DIFFERENTIABLE_TAC; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_CONTINUOUS_ON_SUBSET)) THEN REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN REWRITE_TAC[REAL_OF_NUM_LE; REAL_OF_NUM_ADD] THEN ASM_ARITH_TAC])]; REWRITE_TAC[SUM_ADD_NUMSEG; SUM_LMUL; SUM_SUB_NUMSEG] THEN AP_THM_TAC THEN AP_TERM_TAC THEN BINOP_TAC THENL [AP_TERM_TAC THEN REWRITE_TAC[GSYM SUM_SUB_NUMSEG] THEN REWRITE_TAC[REAL_OF_NUM_ADD; SUM_DIFFS_ALT] THEN COND_CASES_TAC THENL [ALL_TAC; ASM_ARITH_TAC] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC; ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[SUM_0] THEN REWRITE_TAC[GSYM(SPEC `1` SUM_OFFSET); REAL_OF_NUM_ADD] THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ASM_ARITH_TAC]]) in REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE `m:num <= n ==> m = n \/ m < n`)) THENL [ASM_SIMP_TAC[REAL_INTEGRABLE_ON_NULL; REAL_LE_REFL] THEN ASM_REWRITE_TAC[SUM_SING_NUMSEG; REAL_SUB_REFL; REAL_MUL_LZERO] THEN SIMP_TAC[REAL_INTEGRAL_NULL; REAL_LE_REFL; REAL_ARITH `(x + x) / &2 = x`; REAL_MUL_RZERO; SUM_0; real_div; REAL_MUL_LZERO] THEN REAL_ARITH_TAC; ALL_TAC] THEN CONJ_TAC THENL [REWRITE_TAC[real_integrable_on] THEN MP_TAC(ISPECL [`f (2 * p + 1):real->real`; `2 * p + 1`; `m:num`; `n:num`] lemma) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ALL_TAC; MESON_TAC[]] THEN MATCH_MP_TAC REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON THEN REWRITE_TAC[REAL_DIFFERENTIABLE_ON_DIFFERENTIABLE] THEN REWRITE_TAC[real_differentiable] THEN ASM_MESON_TAC[LE_REFL]; ALL_TAC] THEN ASM_SIMP_TAC[SUM_CLAUSES_LEFT; LT_IMP_LE] THEN SUBGOAL_THEN `!k:num. k <= 2 * p + 1 ==> (f k) real_differentiable_on real_interval[&m,&n]` ASSUME_TAC THENL [ASM_MESON_TAC[real_differentiable_on]; ALL_TAC] THEN MP_TAC(ISPECL [`(f:num->real->real) 0`; `(f:num->real->real) (0 + 1)`; `0`; `m:num`; `n:num`] step) THEN ASM_SIMP_TAC[REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON; ARITH_RULE `0 + 1 <= 2 * p + 1`; LE_0] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[CONJUNCT1 bernoulli] THEN REWRITE_TAC[REAL_ADD_LID; REAL_MUL_LID; ETA_AX] THEN REWRITE_TAC[BERNOULLI_CONV `bernoulli 1 (&0)`] THEN MATCH_MP_TAC(REAL_ARITH `i' = r ==> i' = (-- &1 / &2 * (n - m) + s) - i ==> m + s = i + (m + n) / &2 + r`) THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN SPEC_TAC(`p:num`,`p:num`) THEN INDUCT_TAC THENL [REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN CONV_TAC NUM_REDUCE_CONV THEN REAL_ARITH_TAC; GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [ARITH_RULE `2 * SUC p + 1 = 2 * p + 3`] THEN FIRST_X_ASSUM(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_SIMP_TAC[ARITH_RULE `k <= 2 * p + 1 ==> k <= 2 * p + 3`] THEN DISCH_TAC] THEN ASM_REWRITE_TAC[SUM_CLAUSES_NUMSEG; ARITH_RULE `1 <= SUC n`] THEN REWRITE_TAC[GSYM REAL_ADD_ASSOC] THEN AP_TERM_TAC THEN MP_TAC(ISPECL [`(f:num->real->real) (2 * p + 1)`; `(f:num->real->real) ((2 * p + 1) + 1)`; `2 * p + 1`; `m:num`; `n:num`] step) THEN ASM_SIMP_TAC[REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON; ARITH_RULE `(2 * p + 1) + 1 <= 2 * p + 3`; ARITH_RULE `2 * p + 1 <= 2 * p + 3`] THEN REWRITE_TAC[ADD_EQ_0; ARITH_EQ; REAL_ADD_RID] THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN REWRITE_TAC[REAL_FIELD `x = y - ((&2 * &p + &1) + &1) * z <=> z = (y - x) / (&2 * &p + &2)`] THEN DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[ARITH_RULE `2 * SUC p - 1 = 2 * p + 1`] THEN REWRITE_TAC[ARITH_RULE `(2 * p + 1) + 1 = 2 * SUC p`] THEN REWRITE_TAC[ARITH_RULE `2 * SUC p = SUC(2 * p + 1)`] THEN REWRITE_TAC[ARITH_RULE `SUC(2 * p + 1) + 1 = SUC(SUC(2 * p + 1))`] THEN REWRITE_TAC[FACT; GSYM REAL_OF_NUM_MUL; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_SUC] THEN MATCH_MP_TAC(REAL_FIELD `~(t = &0) /\ i2 = &0 - (&2 * &p + &3) * i1 ==> (b * (fn - fm) - i1) / (&2 * &p + &2) / t = b / (((&2 * &p + &1) + &1) * t) * (fn - fm) + i2 / ((((&2 * &p + &1) + &1) + &1) * ((&2 * &p + &1) + &1) * t)`) THEN REWRITE_TAC[REAL_OF_NUM_EQ; FACT_NZ] THEN MP_TAC(ISPECL [`(f:num->real->real) (SUC(2 * p + 1))`; `(f:num->real->real) (SUC(2 * p + 1) + 1)`; `SUC(2 * p + 1)`; `m:num`; `n:num`] step) THEN ASM_SIMP_TAC[REAL_DIFFERENTIABLE_ON_IMP_REAL_CONTINUOUS_ON; NOT_SUC; ARITH_RULE `SUC(2 * p + 1) + 1 <= 2 * p + 3`; ARITH_RULE `SUC(2 * p + 1) <= 2 * p + 3`] THEN REWRITE_TAC[ADD1; GSYM ADD_ASSOC; REAL_OF_NUM_ADD] THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_ADD_RID; GSYM REAL_OF_NUM_MUL] THEN DISCH_THEN SUBST1_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[REAL_ENTIRE] THEN DISJ1_TAC THEN REWRITE_TAC[BERNOULLI_NUMBER_EQ_0] THEN REWRITE_TAC[ODD_ADD; ODD_MULT; ARITH] THEN ARITH_TAC);; let REAL_EULER_MACLAURIN_ANTIDERIVATIVE = prove (`!f m n p. m <= n /\ (!k x. k <= 2 * p + 2 /\ x IN real_interval[&m,&n] ==> ((f k) has_real_derivative f (k + 1) x) (atreal x within real_interval [&m,&n])) ==> ((\x. bernoulli (2 * p + 1) (frac x) * f (2 * p + 2) x) real_integrable_on real_interval[&m,&n]) /\ sum(m..n) (\i. f 1 (&i)) = (f 0 (&n) - f 0 (&m)) + (f 1 (&m) + f 1 (&n)) / &2 + sum (1..p) (\k. bernoulli (2 * k) (&0) / &(FACT(2 * k)) * (f (2 * k) (&n) - f (2 * k) (&m))) + real_integral (real_interval [&m,&n]) (\x. bernoulli (2 * p + 1) (frac x) * f (2 * p + 2) x) / &(FACT(2 * p + 1))`, REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n. (f:num->real->real)(SUC n)`; `m:num`; `n:num`; `p:num`] REAL_EULER_MACLAURIN) THEN ASM_SIMP_TAC[ARITH_RULE `k <= 2 * p + 1 ==> SUC k <= 2 * p + 2`; ARITH_RULE `SUC(k + 1) = SUC k + 1`; ARITH_RULE `SUC(2 * p) + 1 = 2 * p + 2`] THEN CONV_TAC NUM_REDUCE_CONV THEN DISCH_THEN(SUBST1_TAC o CONJUNCT2) THEN MP_TAC(ISPECL [`f 0:real->real`; `f (0 + 1):real->real`; `&m`; `&n`] REAL_FUNDAMENTAL_THEOREM_OF_CALCULUS) THEN ASM_SIMP_TAC[REAL_OF_NUM_LE; LE_0] THEN CONV_TAC NUM_REDUCE_CONV THEN DISCH_THEN(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN AP_TERM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[ARITH_RULE `SUC(2 * p) + 1 = 2 * p + 2`] THEN AP_THM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SUM_EQ_NUMSEG THEN SIMP_TAC[ARITH_RULE `1 <= k ==> SUC(2 * k - 1) = 2 * k`]);; let COMPLEX_EULER_MACLAURIN_ANTIDERIVATIVE = prove (`!f m n p. m <= n /\ (!k x. k <= 2 * p + 2 /\ &m <= x /\ x <= &n ==> ((f k) has_complex_derivative f (k + 1) (Cx x)) (at(Cx x))) ==> (\x. Cx(bernoulli (2 * p + 1) (frac(drop x))) * f (2 * p + 2) (Cx(drop x))) integrable_on interval[lift(&m),lift(&n)] /\ vsum(m..n) (\i. f 1 (Cx(&i))) = (f 0 (Cx(&n)) - f 0 (Cx(&m))) + (f 1 (Cx(&m)) + f 1 (Cx(&n))) / Cx(&2) + vsum (1..p) (\k. Cx(bernoulli (2 * k) (&0) / &(FACT(2 * k))) * (f (2 * k) (Cx(&n)) - f (2 * k) (Cx(&m)))) + integral (interval[lift(&m),lift(&n)]) (\x. Cx(bernoulli (2 * p + 1) (frac(drop x))) * f (2 * p + 2) (Cx(drop x))) / Cx(&(FACT(2 * p + 1)))`, let lemma_re,lemma_im = (CONJ_PAIR o prove) (`((f has_complex_derivative f') (at (Cx x)) ==> ((Re o f o Cx) has_real_derivative (Re f')) (atreal x)) /\ ((f has_complex_derivative f') (at (Cx x)) ==> ((Im o f o Cx) has_real_derivative (Im f')) (atreal x))`, REPEAT GEN_TAC THEN CONJ_TAC THEN REWRITE_TAC[HAS_COMPLEX_DERIVATIVE_AT; HAS_REAL_DERIVATIVE_ATREAL] THEN REWRITE_TAC[LIM_AT; REALLIM_ATREAL; o_THM] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `e:real` THEN ASM_CASES_TAC `&0 < e` THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:real` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `y:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `Cx y`) THEN ASM_REWRITE_TAC[DIST_CX; dist] THEN REWRITE_TAC[GSYM RE_SUB; GSYM IM_SUB; CX_SUB; GSYM RE_DIV_CX; GSYM IM_SUB; GSYM IM_DIV_CX] THEN MESON_TAC[COMPLEX_NORM_GE_RE_IM; REAL_LET_TRANS]) and ilemma = prove (`f integrable_on interval[lift a,lift b] ==> Re(integral (interval[lift a,lift b]) f) = real_integral (real_interval[a,b]) (\x. Re(f(lift x))) /\ Im(integral (interval[lift a,lift b]) f) = real_integral (real_interval[a,b]) (\x. Im(f(lift x)))`, REPEAT STRIP_TAC THEN REWRITE_TAC[RE_DEF; IM_DEF] THEN ASM_SIMP_TAC[INTEGRAL_COMPONENT] THEN IMP_REWRITE_TAC[REAL_INTEGRAL] THEN REWRITE_TAC[o_DEF; IMAGE_LIFT_REAL_INTERVAL; LIFT_DROP] THEN REWRITE_TAC[REAL_INTEGRABLE_ON] THEN REWRITE_TAC[o_DEF; IMAGE_LIFT_REAL_INTERVAL; LIFT_DROP] THEN RULE_ASSUM_TAC(ONCE_REWRITE_RULE[INTEGRABLE_COMPONENTWISE]) THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[DIMINDEX_2; ARITH]) in REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[COMPLEX_EQ] THEN MAP_EVERY (MP_TAC o C SPEC REAL_EULER_MACLAURIN_ANTIDERIVATIVE) [`\n:num. (Im o f n o Cx)`; `\n:num. (Re o f n o Cx)`] THEN REWRITE_TAC[IMP_IMP; AND_FORALL_THM] THEN DISCH_THEN(MP_TAC o SPECL [`m:num`; `n:num`; `p:num`]) THEN ASM_SIMP_TAC[lemma_re; lemma_im; HAS_REAL_DERIVATIVE_ATREAL_WITHIN; o_THM; IN_REAL_INTERVAL] THEN SIMP_TAC[RE_VSUM; IM_VSUM; FINITE_NUMSEG] THEN DISCH_THEN(CONJUNCTS_THEN(ASSUME_TAC o CONJUNCT1)) THEN SIMP_TAC[RE_DIV_CX; IM_DIV_CX; RE_VSUM; IM_VSUM; FINITE_NUMSEG; RE_ADD; RE_SUB;IM_ADD; IM_SUB; RE_MUL_CX; IM_MUL_CX; RE_CX; IM_CX] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [ONCE_REWRITE_TAC[INTEGRABLE_COMPONENTWISE] THEN REWRITE_TAC[DIMINDEX_2; FORALL_2; GSYM RE_DEF; GSYM IM_DEF] THEN REWRITE_TAC[RE_MUL_CX; IM_MUL_CX] THEN ASM_REWRITE_TAC[REWRITE_RULE[o_DEF] (GSYM REAL_INTEGRABLE_ON); GSYM IMAGE_LIFT_REAL_INTERVAL]; SIMP_TAC[ilemma] THEN REWRITE_TAC[RE_MUL_CX; IM_MUL_CX; LIFT_DROP]]);; (* ------------------------------------------------------------------------- *) (* Specific properties of complex measurable functions. *) (* ------------------------------------------------------------------------- *) let MEASURABLE_ON_COMPLEX_MUL = prove (`!f g:real^N->complex s. f measurable_on s /\ g measurable_on s ==> (\x. f x * g x) measurable_on s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURABLE_ON_COMBINE THEN ASM_REWRITE_TAC[COMPLEX_VEC_0; COMPLEX_MUL_LZERO] THEN MATCH_MP_TAC CONTINUOUS_ON_COMPLEX_MUL THEN CONJ_TAC THEN MATCH_MP_TAC LINEAR_CONTINUOUS_ON THEN REWRITE_TAC[LINEAR_FSTCART; LINEAR_SNDCART]);; let MEASURABLE_ON_COMPLEX_INV = prove (`!f:real^N->real^2. f measurable_on (:real^N) /\ negligible {x | f x = Cx(&0)} ==> (\x. inv(f x)) measurable_on (:real^N)`, GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN REWRITE_TAC[measurable_on; IN_UNIV; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`k:real^N->bool`; `g:num->real^N->complex`] THEN STRIP_TAC THEN EXISTS_TAC `k UNION {x:real^N | f x = Cx(&0)}` THEN ASM_SIMP_TAC[NEGLIGIBLE_UNION] THEN SUBGOAL_THEN `!n. ?h. h continuous_on (:real^N) /\ !x. x IN {x | g n x IN (:complex) DIFF ball(Cx(&0),inv(&n + &1))} ==> (h:real^N->complex) x = inv(g n x)` MP_TAC THENL [X_GEN_TAC `n:num` THEN MATCH_MP_TAC TIETZE_UNBOUNDED THEN CONJ_TAC THENL [REWRITE_TAC[SUBTOPOLOGY_UNIV; GSYM CLOSED_IN] THEN MATCH_MP_TAC CONTINUOUS_CLOSED_PREIMAGE_UNIV THEN REWRITE_TAC[GSYM OPEN_CLOSED; OPEN_BALL; ETA_AX] THEN ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT; OPEN_UNIV; IN_UNIV]; REWRITE_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_WITHIN] THEN GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_WITHIN THEN MATCH_MP_TAC CONTINUOUS_COMPLEX_INV_AT THEN CONJ_TAC THENL [REWRITE_TAC[ETA_AX] THEN ASM_MESON_TAC[CONTINUOUS_ON_EQ_CONTINUOUS_AT; OPEN_UNIV; IN_UNIV]; RULE_ASSUM_TAC(REWRITE_RULE[IN_ELIM_THM; IN_UNIV; IN_DIFF]) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [IN_BALL]) THEN SIMP_TAC[CONTRAPOS_THM; DIST_REFL; REAL_LT_INV_EQ] THEN REAL_ARITH_TAC]]; REWRITE_TAC[SKOLEM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:num->real^N->complex` THEN REWRITE_TAC[FORALL_AND_THM; IN_ELIM_THM; IN_DIFF; IN_UNION; IN_UNIV] THEN REWRITE_TAC[IN_BALL; DE_MORGAN_THM; REAL_NOT_LT] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:real^N` THEN STRIP_TAC THEN MATCH_MP_TAC LIM_TRANSFORM THEN EXISTS_TAC `\n. inv((g:num->real^N->complex) n x)` THEN ASM_SIMP_TAC[o_DEF; LIM_COMPLEX_INV] THEN MATCH_MP_TAC LIM_EVENTUALLY THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN SUBGOAL_THEN `&0 < norm((f:real^N->complex) x)` ASSUME_TAC THENL [ASM_REWRITE_TAC[COMPLEX_NORM_NZ]; ALL_TAC] THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^N`) THEN ASM_REWRITE_TAC[LIM_SEQUENTIALLY] THEN DISCH_THEN(MP_TAC o SPEC `norm((f:real^N->complex) x) / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `N1:num` (LABEL_TAC "*")) THEN MP_TAC(SPEC `norm((f:real^N->complex) x) / &2` REAL_ARCH_INV) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `N2:num` STRIP_ASSUME_TAC) THEN EXISTS_TAC `N1 + N2 + 1` THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN REWRITE_TAC[VECTOR_SUB_EQ] THEN CONV_TAC SYM_CONV THEN FIRST_X_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[GSYM COMPLEX_VEC_0; DIST_0] THEN REMOVE_THEN "*" (MP_TAC o SPEC `n:num`) THEN ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP (NORM_ARITH `dist(g,f) < norm(f) / &2 ==> norm(f) / &2 <= norm g`)) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] REAL_LE_TRANS) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `x < y ==> z <= x ==> z <= y`)) THEN MATCH_MP_TAC REAL_LE_INV2 THEN ASM_REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE; REAL_OF_NUM_LT] THEN ASM_ARITH_TAC]);; let MEASURABLE_ON_COMPLEX_DIV = prove (`!f g:real^N->complex s. f measurable_on s /\ g measurable_on (:real^N) /\ negligible {x | g(x) = Cx(&0)} ==> (\x. f(x) / g(x)) measurable_on s`, let lemma = prove (`!f g:real^N->complex. f measurable_on (:real^N) /\ g measurable_on (:real^N) /\ negligible {x | g(x) = Cx(&0)} ==> (\x. f(x) / g(x)) measurable_on (:real^N)`, REPEAT STRIP_TAC THEN REWRITE_TAC[complex_div] THEN ASM_SIMP_TAC[MEASURABLE_ON_COMPLEX_MUL; MEASURABLE_ON_COMPLEX_INV]) in REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM MEASURABLE_ON_UNIV] THEN REWRITE_TAC[IN_UNIV; ETA_AX] THEN DISCH_THEN(MP_TAC o MATCH_MP lemma) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; complex_div; COMPLEX_VEC_0] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[COMPLEX_MUL_LZERO]);; let MEASURABLE_ON_CPRODUCT = prove (`!f:A->real^N->complex s t. FINITE t /\ (t = {} ==> lebesgue_measurable s) /\ (!i. i IN t ==> f i measurable_on s) ==> (\x. cproduct t (\i. f i x)) measurable_on s`, GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[CPRODUCT_CLAUSES; MEASURABLE_ON_CONST_EQ] THEN REWRITE_TAC[FORALL_IN_INSERT; NOT_INSERT_EMPTY] THEN MAP_EVERY X_GEN_TAC [`a:A`; `k:A->bool`] THEN REWRITE_TAC[IMP_IMP] THEN STRIP_TAC THEN ASM_CASES_TAC `k:A->bool = {}` THEN ASM_SIMP_TAC[CPRODUCT_CLAUSES; COMPLEX_MUL_RID; ETA_AX] THEN MATCH_MP_TAC MEASURABLE_ON_COMPLEX_MUL THEN ASM_REWRITE_TAC[ETA_AX] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* Measurable real->real functions. *) (* ------------------------------------------------------------------------- *) parse_as_infix("real_measurable_on",(12,"right"));; let real_measurable_on = new_definition `f real_measurable_on s <=> (lift o f o drop) measurable_on (IMAGE lift s)`;; let real_lebesgue_measurable = new_definition `real_lebesgue_measurable s <=> (\x. if x IN s then &1 else &0) real_measurable_on (:real)`;; let REAL_MEASURABLE_ON_UNIV = prove (`(\x. if x IN s then f(x) else &0) real_measurable_on (:real) <=> f real_measurable_on s`, REWRITE_TAC[real_measurable_on; o_DEF; IMAGE_LIFT_UNIV] THEN SIMP_TAC[COND_RAND; LIFT_NUM; MEASURABLE_ON_UNIV; GSYM IN_IMAGE_LIFT_DROP]);; let REAL_LEBESGUE_MEASURABLE = prove (`!s. real_lebesgue_measurable s <=> lebesgue_measurable (IMAGE lift s)`, REWRITE_TAC[real_lebesgue_measurable; lebesgue_measurable; COND_RAND; COND_RAND; real_measurable_on; indicator; IMAGE_LIFT_UNIV; o_DEF] THEN REWRITE_TAC[LIFT_NUM; IN_IMAGE_LIFT_DROP]);; let REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE = prove (`!f g s. f real_measurable_on s /\ g real_integrable_on s /\ (!x. x IN s ==> abs(f x) <= g x) ==> f real_integrable_on s`, REWRITE_TAC[real_measurable_on; REAL_INTEGRABLE_ON] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN EXISTS_TAC `lift o g o drop` THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; NORM_LIFT]);; let REAL_MEASURABLE_BOUNDED_AE_BY_INTEGRABLE_IMP_INTEGRABLE = prove (`!f g s k. f real_measurable_on s /\ g real_integrable_on s /\ real_negligible k /\ (!x. x IN s DIFF k ==> abs(f x) <= g x) ==> f real_integrable_on s`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN EXISTS_TAC `\x. if x IN k then abs(f x) else (g:real->real) x` THEN ASM_SIMP_TAC[COND_RAND; IN_DIFF; LIFT_DROP; REAL_LE_REFL; COND_ID] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] REAL_INTEGRABLE_SPIKE) THEN MAP_EVERY EXISTS_TAC [`g:real->real`; `k:real->bool`] THEN ASM_SIMP_TAC[IN_DIFF]);; let REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_ABSOLUTELY_INTEGRABLE = prove (`!f g s. f real_measurable_on s /\ g real_integrable_on s /\ (!x. x IN s ==> abs(f x) <= g x) ==> f absolutely_real_integrable_on s`, REWRITE_TAC[real_measurable_on; REAL_INTEGRABLE_ON; ABSOLUTELY_REAL_INTEGRABLE_ON] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_ABSOLUTELY_INTEGRABLE THEN EXISTS_TAC `lift o g o drop` THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; NORM_LIFT]);; let INTEGRABLE_SUBINTERVALS_IMP_REAL_MEASURABLE = prove (`!f. (!a b. f real_integrable_on real_interval[a,b]) ==> f real_measurable_on (:real)`, REWRITE_TAC[real_measurable_on; REAL_INTEGRABLE_ON; IMAGE_LIFT_UNIV] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC INTEGRABLE_SUBINTERVALS_IMP_MEASURABLE THEN ASM_REWRITE_TAC[FORALL_LIFT]);; let INTEGRABLE_IMP_REAL_MEASURABLE = prove (`!f:real->real s. f real_integrable_on s ==> f real_measurable_on s`, REWRITE_TAC[real_measurable_on; REAL_INTEGRABLE_ON] THEN REWRITE_TAC[INTEGRABLE_IMP_MEASURABLE]);; let ABSOLUTELY_REAL_INTEGRABLE_REAL_MEASURABLE = prove (`!f s. f absolutely_real_integrable_on s <=> f real_measurable_on s /\ (\x. abs(f x)) real_integrable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[absolutely_real_integrable_on] THEN MATCH_MP_TAC(TAUT `(a ==> b) /\ (b /\ c ==> a) ==> (a /\ c <=> b /\ c)`) THEN REWRITE_TAC[INTEGRABLE_IMP_REAL_MEASURABLE] THEN STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN EXISTS_TAC `\x. abs((f:real->real) x)` THEN ASM_REWRITE_TAC[REAL_LE_REFL]);; let REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS = prove (`!f g. f real_measurable_on (:real) /\ g real_continuous_on (:real) ==> (g o f) real_measurable_on (:real)`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_ON; real_measurable_on] THEN REWRITE_TAC[IMAGE_LIFT_UNIV] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_COMPOSE_CONTINUOUS) THEN REWRITE_TAC[o_DEF; LIFT_DROP]);; let REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS_0 = prove (`!f:real->real g:real->real s. f real_measurable_on s /\ g real_continuous_on (:real) /\ g(&0) = &0 ==> (g o f) real_measurable_on s`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`] THEN DISCH_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_DEF] THEN ASM_MESON_TAC[]);; let REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS_OPEN_INTERVAL = prove (`!f:real->real g:real->real a b. f real_measurable_on (:real) /\ (!x. f(x) IN real_interval(a,b)) /\ g real_continuous_on real_interval(a,b) ==> (g o f) real_measurable_on (:real)`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift o g o drop`; `lift a`; `lift b`] MEASURABLE_ON_COMPOSE_CONTINUOUS_OPEN_INTERVAL) THEN REWRITE_TAC[real_measurable_on; REAL_CONTINUOUS_ON] THEN REWRITE_TAC[o_DEF; LIFT_DROP; IMAGE_LIFT_UNIV; IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[GSYM FORALL_DROP] THEN REPEAT GEN_TAC THEN REWRITE_TAC[INTERVAL_REAL_INTERVAL; LIFT_DROP] THEN ASM SET_TAC[]);; let REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS_CLOSED_SET = prove (`!f:real->real g:real->real s. real_closed s /\ f real_measurable_on (:real) /\ (!x. f(x) IN s) /\ g real_continuous_on s ==> (g o f) real_measurable_on (:real)`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift o g o drop`; `IMAGE lift s`] MEASURABLE_ON_COMPOSE_CONTINUOUS_CLOSED_SET) THEN REWRITE_TAC[real_measurable_on; REAL_CONTINUOUS_ON; REAL_CLOSED] THEN REWRITE_TAC[o_DEF; LIFT_DROP; IMAGE_LIFT_UNIV; IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[GSYM FORALL_DROP] THEN REPEAT GEN_TAC THEN REWRITE_TAC[INTERVAL_REAL_INTERVAL; LIFT_DROP] THEN ASM SET_TAC[]);; let REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS_CLOSED_SET_0 = prove (`!f:real->real g:real->real s t. real_closed s /\ f real_measurable_on t /\ (!x. f(x) IN s) /\ g real_continuous_on s /\ &0 IN s /\ g(&0) = &0 ==> (g o f) real_measurable_on t`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift o g o drop`; `IMAGE lift s`; `IMAGE lift t`] MEASURABLE_ON_COMPOSE_CONTINUOUS_CLOSED_SET_0) THEN REWRITE_TAC[real_measurable_on; REAL_CONTINUOUS_ON; REAL_CLOSED] THEN REWRITE_TAC[o_DEF; LIFT_DROP; IMAGE_LIFT_UNIV; IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[GSYM FORALL_DROP] THEN ASM_SIMP_TAC[FUN_IN_IMAGE; LIFT_DROP; GSYM LIFT_NUM]);; let CONTINUOUS_IMP_REAL_MEASURABLE_ON = prove (`!f. f real_continuous_on (:real) ==> f real_measurable_on (:real)`, REWRITE_TAC[REAL_CONTINUOUS_ON; real_measurable_on] THEN REWRITE_TAC[CONTINUOUS_IMP_MEASURABLE_ON; IMAGE_LIFT_UNIV]);; let REAL_MEASURABLE_ON_CONST = prove (`!k:real. (\x. k) real_measurable_on (:real)`, SIMP_TAC[real_measurable_on; o_DEF; MEASURABLE_ON_CONST; IMAGE_LIFT_UNIV]);; let REAL_MEASURABLE_ON_0 = prove (`!s. (\x. &0) real_measurable_on s`, GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN REWRITE_TAC[REAL_MEASURABLE_ON_CONST; COND_ID]);; let REAL_MEASURABLE_ON_LMUL = prove (`!c f s. f real_measurable_on s ==> (\x. c * f x) real_measurable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN DISCH_THEN(MP_TAC o SPEC `c:real` o MATCH_MP MEASURABLE_ON_CMUL) THEN REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_DROP]);; let REAL_MEASURABLE_ON_RMUL = prove (`!c f s. f real_measurable_on s ==> (\x. f x * c) real_measurable_on s`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[REAL_MEASURABLE_ON_LMUL]);; let REAL_MEASURABLE_ON_NEG = prove (`!f s. f real_measurable_on s ==> (\x. --(f x)) real_measurable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_NEG) THEN REWRITE_TAC[o_DEF; LIFT_NEG; LIFT_DROP]);; let REAL_MEASURABLE_ON_NEG_EQ = prove (`!f s. (\x. --(f x)) real_measurable_on s <=> f real_measurable_on s`, REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_MEASURABLE_ON_NEG) THEN REWRITE_TAC[REAL_NEG_NEG; ETA_AX]);; let REAL_MEASURABLE_ON_ABS = prove (`!f s. f real_measurable_on s ==> (\x. abs(f x)) real_measurable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_NORM) THEN REWRITE_TAC[o_DEF; NORM_LIFT]);; let REAL_MEASURABLE_ON_ADD = prove (`!f g s. f real_measurable_on s /\ g real_measurable_on s ==> (\x. f x + g x) real_measurable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_ADD) THEN REWRITE_TAC[o_DEF; LIFT_ADD; LIFT_DROP]);; let REAL_MEASURABLE_ON_SUB = prove (`!f g s. f real_measurable_on s /\ g real_measurable_on s ==> (\x. f x - g x) real_measurable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_SUB) THEN REWRITE_TAC[o_DEF; LIFT_SUB; LIFT_DROP]);; let REAL_MEASURABLE_ON_MAX = prove (`!f g s. f real_measurable_on s /\ g real_measurable_on s ==> (\x. max (f x) (g x)) real_measurable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_MAX) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN SIMP_TAC[FUN_EQ_THM; o_THM; CART_EQ; LAMBDA_BETA; DIMINDEX_1; FORALL_1] THEN REWRITE_TAC[GSYM drop; LIFT_DROP]);; let REAL_MEASURABLE_ON_MIN = prove (`!f g s. f real_measurable_on s /\ g real_measurable_on s ==> (\x. min (f x) (g x)) real_measurable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_MIN) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN SIMP_TAC[FUN_EQ_THM; o_THM; CART_EQ; LAMBDA_BETA; DIMINDEX_1; FORALL_1] THEN REWRITE_TAC[GSYM drop; LIFT_DROP]);; let REAL_MEASURABLE_ON_MUL = prove (`!f g s. f real_measurable_on s /\ g real_measurable_on s ==> (\x. f x * g x) real_measurable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_DROP_MUL) THEN REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_DROP]);; let REAL_MEASURABLE_ON_SPIKE_SET = prove (`!f:real->real s t. real_negligible (s DIFF t UNION t DIFF s) ==> f real_measurable_on s ==> f real_measurable_on t`, REWRITE_TAC[real_measurable_on; real_negligible] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC MEASURABLE_ON_SPIKE_SET THEN POP_ASSUM MP_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] NEGLIGIBLE_SUBSET) THEN SET_TAC[]);; let REAL_MEASURABLE_ON_RESTRICT = prove (`!f s. f real_measurable_on (:real) /\ real_lebesgue_measurable s ==> (\x. if x IN s then f(x) else &0) real_measurable_on (:real)`, REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV] THEN REWRITE_TAC[o_DEF; COND_RAND; LIFT_NUM; GSYM IN_IMAGE_LIFT_DROP] THEN DISCH_THEN(MP_TAC o MATCH_MP MEASURABLE_ON_RESTRICT) THEN REWRITE_TAC[]);; let REAL_MEASURABLE_ON_LIMIT = prove (`!f g s k. (!n. (f n) real_measurable_on s) /\ real_negligible k /\ (!x. x IN s DIFF k ==> ((\n. f n x) ---> g x) sequentially) ==> g real_measurable_on s`, REWRITE_TAC[real_measurable_on; real_negligible; TENDSTO_REAL] THEN REWRITE_TAC[o_DEF] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURABLE_ON_LIMIT THEN MAP_EVERY EXISTS_TAC [`\n:num. lift o f n o drop`; `IMAGE lift k`] THEN ASM_REWRITE_TAC[] THEN SIMP_TAC[LIFT_DROP; SET_RULE `(!x. drop(lift x) = x) ==> IMAGE lift s DIFF IMAGE lift t = IMAGE lift (s DIFF t)`] THEN ASM_REWRITE_TAC[FORALL_IN_IMAGE; o_DEF; LIFT_DROP]);; let ABSOLUTELY_REAL_INTEGRABLE_BOUNDED_MEASURABLE_PRODUCT = prove (`!f g s. f real_measurable_on s /\ real_bounded (IMAGE f s) /\ g absolutely_real_integrable_on s ==> (\x. f x * g x) absolutely_real_integrable_on s`, REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_BOUNDED_POS]) THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_IN_IMAGE] THEN X_GEN_TAC `B:real` THEN STRIP_TAC THEN MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_ABSOLUTELY_INTEGRABLE THEN EXISTS_TAC `\x. B * abs((g:real->real) x)` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_MUL; INTEGRABLE_IMP_REAL_MEASURABLE; ABSOLUTELY_REAL_INTEGRABLE_IMP_INTEGRABLE; REAL_INTEGRABLE_LMUL; ABSOLUTELY_REAL_INTEGRABLE_ABS] THEN ASM_SIMP_TAC[REAL_ABS_MUL; REAL_LE_RMUL; REAL_ABS_POS]);; let REAL_COMPLEX_MEASURABLE_ON = prove (`!f s. f real_measurable_on s <=> (Cx o f o drop) measurable_on (IMAGE lift s)`, ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV; GSYM MEASURABLE_ON_UNIV] THEN ONCE_REWRITE_TAC[MEASURABLE_ON_COMPONENTWISE] THEN REWRITE_TAC[FORALL_2; DIMINDEX_2; GSYM RE_DEF; GSYM IM_DEF] THEN REPEAT GEN_TAC THEN REWRITE_TAC[real_measurable_on; IMAGE_LIFT_UNIV] THEN REWRITE_TAC[o_DEF; IN_IMAGE_LIFT_DROP] THEN REWRITE_TAC[COND_RAND; COND_RATOR; LIFT_NUM; COMPLEX_VEC_0] THEN REWRITE_TAC[RE_CX; IM_CX; COND_ID; MEASURABLE_ON_CONST; LIFT_NUM]);; let REAL_MEASURABLE_ON_INV = prove (`!f. f real_measurable_on (:real) /\ real_negligible {x | f x = &0} ==> (\x. inv(f x)) real_measurable_on (:real)`, GEN_TAC THEN REWRITE_TAC[REAL_COMPLEX_MEASURABLE_ON] THEN REWRITE_TAC[o_DEF; CX_INV; IMAGE_LIFT_UNIV] THEN STRIP_TAC THEN MATCH_MP_TAC MEASURABLE_ON_COMPLEX_INV THEN ASM_REWRITE_TAC[CX_INJ] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_negligible]) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_ELIM_THM; LIFT_DROP] THEN MESON_TAC[LIFT_DROP]);; let REAL_MEASURABLE_ON_DIV = prove (`!f g. f real_measurable_on s /\ g real_measurable_on (:real) /\ real_negligible {x | g(x) = &0} ==> (\x. f(x) / g(x)) real_measurable_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_COMPLEX_MEASURABLE_ON] THEN REWRITE_TAC[o_DEF; CX_DIV; IMAGE_LIFT_UNIV] THEN STRIP_TAC THEN MATCH_MP_TAC MEASURABLE_ON_COMPLEX_DIV THEN ASM_REWRITE_TAC[CX_INJ] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_negligible]) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_ELIM_THM; LIFT_DROP] THEN MESON_TAC[LIFT_DROP]);; let REAL_MEASURABLE_ON_RPOW = prove (`!f r s. f real_measurable_on s /\ &0 < r ==> (\x. f x rpow r) real_measurable_on s`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x. f x rpow r) = (\x. x rpow r) o (f:real->real)` SUBST1_TAC THENL [REWRITE_TAC[o_DEF]; ALL_TAC] THEN MATCH_MP_TAC REAL_MEASURABLE_ON_COMPOSE_CONTINUOUS_0 THEN ASM_SIMP_TAC[REAL_CONTINUOUS_ON_RPOW; RPOW_ZERO; REAL_LT_IMP_LE; REAL_LT_IMP_NZ]);; let MEASURABLE_ON_LIFT_RPOW = prove (`!f:real^N->real s y. (\x. lift(f x)) measurable_on s /\ &0 < y ==> (\x. lift(f x rpow y)) measurable_on s`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `(\x:real^N. lift(f x rpow y)) = (lift o (\w. w rpow y) o drop) o (\x. lift(f x))` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM; LIFT_DROP]; ALL_TAC] THEN MATCH_MP_TAC MEASURABLE_ON_COMPOSE_CONTINUOUS_0 THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[]; ONCE_REWRITE_TAC[GSYM IMAGE_LIFT_UNIV] THEN REWRITE_TAC[GSYM REAL_CONTINUOUS_ON] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_RPOW THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[o_DEF; DROP_VEC; RPOW_ZERO; LIFT_NUM; REAL_LT_IMP_NZ]]);; (* ------------------------------------------------------------------------- *) (* Properties of real Lebesgue measurable sets. *) (* ------------------------------------------------------------------------- *) let REAL_MEASURABLE_IMP_REAL_LEBESGUE_MEASURABLE = prove (`!s. real_measurable s ==> real_lebesgue_measurable s`, REWRITE_TAC[REAL_LEBESGUE_MEASURABLE; REAL_MEASURABLE_MEASURABLE; MEASURABLE_IMP_LEBESGUE_MEASURABLE]);; let REAL_LEBESGUE_MEASURABLE_EMPTY = prove (`real_lebesgue_measurable {}`, REWRITE_TAC[REAL_LEBESGUE_MEASURABLE; IMAGE_CLAUSES; LEBESGUE_MEASURABLE_EMPTY]);; let REAL_LEBESGUE_MEASURABLE_UNIV = prove (`real_lebesgue_measurable (:real)`, REWRITE_TAC[REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV; LEBESGUE_MEASURABLE_UNIV]);; let REAL_LEBESGUE_MEASURABLE_COMPACT = prove (`!s. real_compact s ==> real_lebesgue_measurable s`, SIMP_TAC[REAL_MEASURABLE_IMP_REAL_LEBESGUE_MEASURABLE; REAL_MEASURABLE_COMPACT]);; let REAL_LEBESGUE_MEASURABLE_INTERVAL = prove (`(!a b. real_lebesgue_measurable(real_interval[a,b])) /\ (!a b. real_lebesgue_measurable(real_interval(a,b)))`, SIMP_TAC[REAL_MEASURABLE_IMP_REAL_LEBESGUE_MEASURABLE; REAL_MEASURABLE_REAL_INTERVAL]);; let REAL_LEBESGUE_MEASURABLE_INTER = prove (`!s t. real_lebesgue_measurable s /\ real_lebesgue_measurable t ==> real_lebesgue_measurable(s INTER t)`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LEBESGUE_MEASURABLE] THEN DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_MEASURABLE_INTER) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN MP_TAC LIFT_DROP THEN SET_TAC[]);; let REAL_LEBESGUE_MEASURABLE_UNION = prove (`!s t:real->bool. real_lebesgue_measurable s /\ real_lebesgue_measurable t ==> real_lebesgue_measurable(s UNION t)`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LEBESGUE_MEASURABLE] THEN DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_MEASURABLE_UNION) THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN MP_TAC LIFT_DROP THEN SET_TAC[]);; let REAL_LEBESGUE_MEASURABLE_COMPL = prove (`!s. real_lebesgue_measurable((:real) DIFF s) <=> real_lebesgue_measurable s`, GEN_TAC THEN REWRITE_TAC[REAL_LEBESGUE_MEASURABLE] THEN GEN_REWRITE_TAC (RAND_CONV) [GSYM LEBESGUE_MEASURABLE_COMPL] THEN AP_TERM_TAC THEN MP_TAC LIFT_DROP THEN SET_TAC[]);; let REAL_LEBESGUE_MEASURABLE_DIFF = prove (`!s t:real->bool. real_lebesgue_measurable s /\ real_lebesgue_measurable t ==> real_lebesgue_measurable(s DIFF t)`, ONCE_REWRITE_TAC[SET_RULE `s DIFF t = s INTER (UNIV DIFF t)`] THEN SIMP_TAC[REAL_LEBESGUE_MEASURABLE_COMPL; REAL_LEBESGUE_MEASURABLE_INTER]);; let REAL_LEBESGUE_MEASURABLE_ON_SUBINTERVALS = prove (`!s. real_lebesgue_measurable s <=> !a b. real_lebesgue_measurable(s INTER real_interval[a,b])`, GEN_TAC THEN REWRITE_TAC[REAL_LEBESGUE_MEASURABLE] THEN GEN_REWRITE_TAC LAND_CONV [LEBESGUE_MEASURABLE_ON_SUBINTERVALS] THEN REWRITE_TAC[FORALL_DROP; GSYM IMAGE_DROP_INTERVAL] THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN AP_TERM_TAC THEN MP_TAC LIFT_DROP THEN SET_TAC[]);; let REAL_LEBESGUE_MEASURABLE_CLOSED = prove (`!s. real_closed s ==> real_lebesgue_measurable s`, REWRITE_TAC[REAL_LEBESGUE_MEASURABLE; REAL_CLOSED; LEBESGUE_MEASURABLE_CLOSED]);; let REAL_LEBESGUE_MEASURABLE_OPEN = prove (`!s. real_open s ==> real_lebesgue_measurable s`, REWRITE_TAC[REAL_LEBESGUE_MEASURABLE; REAL_OPEN; LEBESGUE_MEASURABLE_OPEN]);; let REAL_LEBESGUE_MEASURABLE_UNIONS = prove (`!f. FINITE f /\ (!s. s IN f ==> real_lebesgue_measurable s) ==> real_lebesgue_measurable (UNIONS f)`, REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN SIMP_TAC[UNIONS_0; UNIONS_INSERT; REAL_LEBESGUE_MEASURABLE_EMPTY] THEN REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LEBESGUE_MEASURABLE_UNION THEN ASM_SIMP_TAC[]);; let REAL_LEBESGUE_MEASURABLE_COUNTABLE_UNIONS_EXPLICIT = prove (`!s:num->real->bool. (!n. real_lebesgue_measurable(s n)) ==> real_lebesgue_measurable(UNIONS {s n | n IN (:num)})`, GEN_TAC THEN REWRITE_TAC[REAL_LEBESGUE_MEASURABLE] THEN DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_MEASURABLE_COUNTABLE_UNIONS_EXPLICIT) THEN REWRITE_TAC[IMAGE_UNIONS; SIMPLE_IMAGE] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[]);; let REAL_LEBESGUE_MEASURABLE_COUNTABLE_UNIONS = prove (`!f:(real->bool)->bool. COUNTABLE f /\ (!s. s IN f ==> real_lebesgue_measurable s) ==> real_lebesgue_measurable (UNIONS f)`, GEN_TAC THEN ASM_CASES_TAC `f:(real->bool)->bool = {}` THEN ASM_REWRITE_TAC[UNIONS_0; REAL_LEBESGUE_MEASURABLE_EMPTY] THEN STRIP_TAC THEN MP_TAC(ISPEC `f:(real->bool)->bool` COUNTABLE_AS_IMAGE) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[GSYM SIMPLE_IMAGE] THEN MATCH_MP_TAC REAL_LEBESGUE_MEASURABLE_COUNTABLE_UNIONS_EXPLICIT THEN GEN_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN_IMAGE; IN_UNIV] THEN MESON_TAC[]);; let REAL_LEBESGUE_MEASURABLE_COUNTABLE_INTERS = prove (`!f:(real->bool)->bool. COUNTABLE f /\ (!s. s IN f ==> real_lebesgue_measurable s) ==> real_lebesgue_measurable (INTERS f)`, REPEAT STRIP_TAC THEN REWRITE_TAC[INTERS_UNIONS; REAL_LEBESGUE_MEASURABLE_COMPL] THEN MATCH_MP_TAC REAL_LEBESGUE_MEASURABLE_COUNTABLE_UNIONS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; COUNTABLE_IMAGE; REAL_LEBESGUE_MEASURABLE_COMPL]);; let REAL_LEBESGUE_MEASURABLE_COUNTABLE_INTERS_EXPLICIT = prove (`!s:num->real->bool. (!n. real_lebesgue_measurable(s n)) ==> real_lebesgue_measurable(INTERS {s n | n IN (:num)})`, REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LEBESGUE_MEASURABLE_COUNTABLE_INTERS THEN ASM_SIMP_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; COUNTABLE_IMAGE; NUM_COUNTABLE]);; let REAL_LEBESGUE_MEASURABLE_INTERS = prove (`!f:(real->bool)->bool. FINITE f /\ (!s. s IN f ==> real_lebesgue_measurable s) ==> real_lebesgue_measurable (INTERS f)`, SIMP_TAC[REAL_LEBESGUE_MEASURABLE_COUNTABLE_INTERS; FINITE_IMP_COUNTABLE]);; let REAL_LEBESGUE_MEASURABLE_IFF_MEASURABLE = prove (`!s. real_bounded s ==> (real_lebesgue_measurable s <=> real_measurable s)`, REWRITE_TAC[REAL_BOUNDED; REAL_LEBESGUE_MEASURABLE; REAL_MEASURABLE_MEASURABLE] THEN REWRITE_TAC[LEBESGUE_MEASURABLE_IFF_MEASURABLE]);; let REAL_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET = prove (`!f s t. s SUBSET t /\ f real_measurable_on t /\ real_lebesgue_measurable s ==> f real_measurable_on s`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN REWRITE_TAC[IN_UNIV] THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_MEASURABLE_ON_RESTRICT) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN ASM SET_TAC[]);; let REAL_MEASURABLE_ON_MEASURABLE_SUBSET = prove (`!f s t. s SUBSET t /\ f real_measurable_on t /\ real_measurable s ==> f real_measurable_on s`, MESON_TAC[REAL_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET; REAL_MEASURABLE_IMP_REAL_LEBESGUE_MEASURABLE]);; let REAL_CONTINUOUS_IMP_REAL_MEASURABLE_ON_CLOSED_SUBSET = prove (`!f s. f real_continuous_on s /\ real_closed s ==> f real_measurable_on s`, REWRITE_TAC[REAL_CONTINUOUS_ON; REAL_CLOSED; real_measurable_on] THEN REWRITE_TAC[CONTINUOUS_IMP_MEASURABLE_ON_CLOSED_SUBSET]);; let REAL_CONTINUOUS_AE_IMP_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET = prove (`!f s m. f real_continuous_on s DIFF m /\ real_lebesgue_measurable s /\ real_negligible m ==> f real_measurable_on s`, REWRITE_TAC[real_measurable_on; real_negligible; REAL_LEBESGUE_MEASURABLE; REAL_CONTINUOUS_ON] THEN SIMP_TAC[IMAGE_DIFF_INJ; LIFT_EQ] THEN REWRITE_TAC[CONTINUOUS_AE_IMP_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET]);; let REAL_MEASURABLE_ON_CASES = prove (`!P f g s. real_lebesgue_measurable {x | P x} /\ f real_measurable_on s /\ g real_measurable_on s ==> (\x. if P x then f x else g x) real_measurable_on s`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN REPEAT STRIP_TAC THEN SUBGOAL_THEN `!x. (if x IN s then if P x then f x else g x else &0) = (if x IN {x | P x} then if x IN s then f x else &0 else &0) + (if x IN (:real) DIFF {x | P x} then if x IN s then g x else &0 else &0)` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN REWRITE_TAC[IN_UNIV; IN_ELIM_THM; IN_DIFF] THEN MESON_TAC[REAL_ADD_LID; REAL_ADD_RID]; MATCH_MP_TAC REAL_MEASURABLE_ON_ADD THEN CONJ_TAC THEN MATCH_MP_TAC REAL_MEASURABLE_ON_RESTRICT THEN ASM_REWRITE_TAC[REAL_LEBESGUE_MEASURABLE_COMPL]]);; (* ------------------------------------------------------------------------- *) (* Various common equivalent forms of function measurability. *) (* ------------------------------------------------------------------------- *) let REAL_MEASURABLE_ON_PREIMAGE_HALFSPACE_LT = prove (`!f. f real_measurable_on (:real) <=> !a. real_lebesgue_measurable {x | f(x) < a}`, REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV; MEASURABLE_ON_PREIMAGE_HALFSPACE_COMPONENT_LT] THEN REWRITE_TAC[DIMINDEX_1; FORALL_1; GSYM drop; o_DEF; LIFT_DROP] THEN GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);; let REAL_MEASURABLE_ON_PREIMAGE_HALFSPACE_LE = prove (`!f. f real_measurable_on (:real) <=> !a. real_lebesgue_measurable {x | f(x) <= a}`, REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV; MEASURABLE_ON_PREIMAGE_HALFSPACE_COMPONENT_LE] THEN REWRITE_TAC[DIMINDEX_1; FORALL_1; GSYM drop; o_DEF; LIFT_DROP] THEN GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);; let REAL_MEASURABLE_ON_PREIMAGE_HALFSPACE_GT = prove (`!f. f real_measurable_on (:real) <=> !a. real_lebesgue_measurable {x | f(x) > a}`, REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV; MEASURABLE_ON_PREIMAGE_HALFSPACE_COMPONENT_GT] THEN REWRITE_TAC[DIMINDEX_1; FORALL_1; GSYM drop; o_DEF; LIFT_DROP] THEN GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);; let REAL_MEASURABLE_ON_PREIMAGE_HALFSPACE_GE = prove (`!f. f real_measurable_on (:real) <=> !a. real_lebesgue_measurable {x | f(x) >= a}`, REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV; MEASURABLE_ON_PREIMAGE_HALFSPACE_COMPONENT_GE] THEN REWRITE_TAC[DIMINDEX_1; FORALL_1; GSYM drop; o_DEF; LIFT_DROP] THEN GEN_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);; let REAL_MEASURABLE_ON_PREIMAGE_OPEN_INTERVAL = prove (`!f. f real_measurable_on (:real) <=> !a b. real_lebesgue_measurable {x | f(x) IN real_interval(a,b)}`, REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV; MEASURABLE_ON_PREIMAGE_OPEN_INTERVAL; FORALL_DROP] THEN GEN_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_ELIM_THM; o_DEF; GSYM IMAGE_DROP_INTERVAL; LIFT_DROP; FORALL_DROP; IN_IMAGE] THEN MESON_TAC[LIFT_DROP]);; let REAL_MEASURABLE_ON_PREIMAGE_CLOSED_INTERVAL = prove (`!f. f real_measurable_on (:real) <=> !a b. real_lebesgue_measurable {x | f(x) IN real_interval[a,b]}`, REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV; MEASURABLE_ON_PREIMAGE_CLOSED_INTERVAL; FORALL_DROP] THEN GEN_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_ELIM_THM; o_DEF; GSYM IMAGE_DROP_INTERVAL; LIFT_DROP; FORALL_DROP; IN_IMAGE] THEN MESON_TAC[LIFT_DROP]);; let REAL_MEASURABLE_ON_PREIMAGE_OPEN = prove (`!f. f real_measurable_on (:real) <=> !t. real_open t ==> real_lebesgue_measurable {x | f(x) IN t}`, REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV; MEASURABLE_ON_PREIMAGE_OPEN; REAL_OPEN] THEN GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `t:real->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE lift t`) THEN ASM_REWRITE_TAC[]; X_GEN_TAC `t:real^1->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE drop t`) THEN ASM_REWRITE_TAC[IMAGE_LIFT_DROP; GSYM IMAGE_o]] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THENL [CONV_TAC SYM_CONV; ALL_TAC] THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_IMAGE; o_DEF; IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);; let REAL_MEASURABLE_ON_PREIMAGE_CLOSED = prove (`!f. f real_measurable_on (:real) <=> !t. real_closed t ==> real_lebesgue_measurable {x | f(x) IN t}`, REWRITE_TAC[real_measurable_on; REAL_LEBESGUE_MEASURABLE; IMAGE_LIFT_UNIV; MEASURABLE_ON_PREIMAGE_CLOSED; REAL_CLOSED] THEN GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL [X_GEN_TAC `t:real->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE lift t`) THEN ASM_REWRITE_TAC[]; X_GEN_TAC `t:real^1->bool` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `IMAGE drop t`) THEN ASM_REWRITE_TAC[IMAGE_LIFT_DROP; GSYM IMAGE_o]] THEN MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THENL [CONV_TAC SYM_CONV; ALL_TAC] THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN REWRITE_TAC[IN_IMAGE; o_DEF; IN_ELIM_THM] THEN MESON_TAC[LIFT_DROP]);; let REAL_MEASURABLE_ON_SIMPLE_FUNCTION_LIMIT = prove (`!f. f real_measurable_on (:real) <=> ?g. (!n. (g n) real_measurable_on (:real)) /\ (!n. FINITE(IMAGE (g n) (:real))) /\ (!x. ((\n. g n x) ---> f x) sequentially)`, GEN_TAC THEN REWRITE_TAC[real_measurable_on; IMAGE_LIFT_UNIV] THEN GEN_REWRITE_TAC LAND_CONV [MEASURABLE_ON_SIMPLE_FUNCTION_LIMIT] THEN EQ_TAC THENL [DISCH_THEN(X_CHOOSE_THEN `g:num->real^1->real^1` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\n:num. drop o g n o lift` THEN REWRITE_TAC[TENDSTO_REAL] THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[o_DEF; LIFT_DROP; ETA_AX]; GEN_TAC THEN REWRITE_TAC[IMAGE_o; IMAGE_LIFT_UNIV] THEN MATCH_MP_TAC FINITE_IMAGE THEN ASM_REWRITE_TAC[]; X_GEN_TAC `x:real` THEN REWRITE_TAC[TENDSTO_REAL] THEN FIRST_X_ASSUM(MP_TAC o SPEC `lift x`) THEN REWRITE_TAC[o_DEF; LIFT_DROP]]; DISCH_THEN(X_CHOOSE_THEN `g:num->real->real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `\n:num. lift o g n o drop` THEN REPEAT CONJ_TAC THENL [ASM_REWRITE_TAC[]; GEN_TAC THEN REWRITE_TAC[IMAGE_o; IMAGE_DROP_UNIV] THEN MATCH_MP_TAC FINITE_IMAGE THEN ASM_REWRITE_TAC[]; X_GEN_TAC `x:real^1` THEN FIRST_X_ASSUM(MP_TAC o SPEC `drop x`) THEN REWRITE_TAC[TENDSTO_REAL; o_DEF; LIFT_DROP]]]);; let REAL_LEBESGUE_MEASURABLE_PREIMAGE_OPEN = prove (`!f t. f real_measurable_on (:real) /\ real_open t ==> real_lebesgue_measurable {x | f(x) IN t}`, SIMP_TAC[REAL_MEASURABLE_ON_PREIMAGE_OPEN]);; let REAL_LEBESGUE_MEASURABLE_PREIMAGE_CLOSED = prove (`!f t. f real_measurable_on (:real) /\ real_closed t ==> real_lebesgue_measurable {x | f(x) IN t}`, SIMP_TAC[REAL_MEASURABLE_ON_PREIMAGE_CLOSED]);; (* ------------------------------------------------------------------------- *) (* Continuity of measure within a halfspace w.r.t. to the boundary. *) (* ------------------------------------------------------------------------- *) let REAL_CONTINUOUS_MEASURE_IN_HALFSPACE_LE = prove (`!(s:real^N->bool) a i. measurable s /\ 1 <= i /\ i <= dimindex(:N) ==> (\a. measure(s INTER {x | x$i <= a})) real_continuous atreal a`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS1] THEN REWRITE_TAC[continuous_atreal; o_THM] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN SUBGOAL_THEN `?u v:real^N. abs(measure(s INTER interval[u,v]) - measure s) < e / &2 /\ ~(interval(u,v) = {}) /\ u$i < a /\ a < v$i` STRIP_ASSUME_TAC THENL [MP_TAC(ISPECL [`s:real^N->bool`; `e / &2`] MEASURE_LIMIT) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN MP_TAC(ISPEC `ball(vec 0:real^N,B)` BOUNDED_SUBSET_CLOSED_INTERVAL) THEN REWRITE_TAC[BOUNDED_BALL; LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN DISCH_TAC THEN EXISTS_TAC `(lambda j. min (a - &1) ((u:real^N)$j)):real^N` THEN EXISTS_TAC `(lambda j. max (a + &1) ((v:real^N)$j)):real^N` THEN CONJ_TAC THENL [FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM (MATCH_MP_TAC o MATCH_MP(REWRITE_RULE[IMP_CONJ] SUBSET_TRANS)) THEN SIMP_TAC[SUBSET_INTERVAL; LAMBDA_BETA] THEN REAL_ARITH_TAC; ASM_SIMP_TAC[INTERVAL_NE_EMPTY; LAMBDA_BETA] THEN REAL_ARITH_TAC]; ALL_TAC] THEN MP_TAC(ISPECL [`indicator(s:real^N->bool)`; `u:real^N`; `v:real^N`; `u:real^N`; `(lambda j. if j = i then min ((v:real^N)$i) a else v$j):real^N`; `e / &2`] INDEFINITE_INTEGRAL_CONTINUOUS) THEN ASM_REWRITE_TAC[REAL_HALF] THEN ANTS_TAC THENL [ONCE_REWRITE_TAC[GSYM INTEGRABLE_RESTRICT_UNIV] THEN REWRITE_TAC[indicator; MESON[] `(if P then if Q then x else y else y) = (if P /\ Q then x else y)`] THEN REWRITE_TAC[GSYM IN_INTER; GSYM MEASURABLE_INTEGRABLE] THEN ASM_SIMP_TAC[MEASURABLE_INTER; MEASURABLE_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[INTERVAL_NE_EMPTY]) THEN ASM_SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; REAL_LE_REFL; REAL_LT_IMP_LE] THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `j:num`) THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN EXISTS_TAC `min d (min (a - (u:real^N)$i) ((v:real^N)$i - a))` THEN ASM_REWRITE_TAC[REAL_LT_MIN; REAL_SUB_LT] THEN X_GEN_TAC `b:real` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL [`u:real^N`; `(lambda j. if j = i then min ((v:real^N)$i) b else v$j):real^N`]) THEN REWRITE_TAC[dist] THEN ANTS_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[INTERVAL_NE_EMPTY]) THEN ASM_SIMP_TAC[IN_INTERVAL; LAMBDA_BETA; REAL_LE_REFL; REAL_LT_IMP_LE] THEN ASM_SIMP_TAC[VECTOR_SUB_REFL; NORM_0; REAL_LT_IMP_LE] THEN CONJ_TAC THENL [X_GEN_TAC `j:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `j:num`) THEN ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[NORM_LE_SQUARE; dot; REAL_LT_IMP_LE] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `sum(1..dimindex(:N)) (\j. if j = i then d pow 2 else &0)` THEN CONJ_TAC THENL [MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `j:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[LAMBDA_BETA; VECTOR_SUB_COMPONENT] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM REAL_POW_2; GSYM REAL_LE_SQUARE_ABS] THEN ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[SUM_DELTA; IN_NUMSEG; REAL_LE_REFL]]]; SUBGOAL_THEN `!b. integral (interval[u:real^N, (lambda j. if j = i then min (v$i) b else (v:real^N)$j)]) (indicator s) = lift(measure(s INTER interval[u,v] INTER {x | x$i <= b}))` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN ASM_SIMP_TAC[MEASURE_INTEGRAL; MEASURABLE_INTER_HALFSPACE_LE; MEASURABLE_INTER; MEASURABLE_INTERVAL; LIFT_DROP] THEN ONCE_REWRITE_TAC[GSYM INTEGRAL_RESTRICT_UNIV] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN ASM_SIMP_TAC[INTERVAL_SPLIT; indicator] THEN REWRITE_TAC[IN_INTER] THEN MESON_TAC[]; REWRITE_TAC[GSYM LIFT_SUB; NORM_LIFT] THEN SUBGOAL_THEN `!b. measure(s INTER {x:real^N | x$i <= b}) = measure((s INTER interval[u,v]) INTER {x | x$i <= b}) + measure((s DIFF interval[u,v]) INTER {x | x$i <= b})` (fun th -> REWRITE_TAC[th]) THENL [GEN_TAC THEN CONV_TAC SYM_CONV THEN MATCH_MP_TAC MEASURE_NEGLIGIBLE_UNION_EQ THEN ASM_SIMP_TAC[MEASURABLE_INTER; MEASURABLE_INTER_HALFSPACE_LE; MEASURABLE_INTERVAL; MEASURABLE_DIFF] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(MESON[NEGLIGIBLE_EMPTY] `s = {} ==> negligible s`) THEN SET_TAC[]; REWRITE_TAC[GSYM INTER_ASSOC] THEN MATCH_MP_TAC(REAL_ARITH `abs(nub - nua) < e / &2 ==> abs(mub - mua) < e / &2 ==> abs((mub + nub) - (mua + nua)) < e`) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `y < e ==> x <= y ==> x < e`)) THEN SUBGOAL_THEN `abs(measure(s INTER interval [u,v]) - measure s) = measure(s DIFF interval[u:real^N,v])` SUBST1_TAC THENL [MATCH_MP_TAC(REAL_ARITH `x + z = y /\ &0 <= z ==> abs(x - y) = z`) THEN ASM_SIMP_TAC[MEASURE_POS_LE; MEASURABLE_DIFF; MEASURABLE_INTERVAL] THEN MATCH_MP_TAC MEASURE_NEGLIGIBLE_UNION_EQ THEN ASM_SIMP_TAC[MEASURABLE_INTER; MEASURABLE_DIFF; MEASURABLE_INTERVAL] THEN CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN MATCH_MP_TAC(MESON[NEGLIGIBLE_EMPTY] `s = {} ==> negligible s`) THEN SET_TAC[]; MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= a /\ &0 <= y /\ y <= a ==> abs(x - y) <= a`) THEN ASM_SIMP_TAC[MEASURABLE_INTER; MEASURABLE_INTER_HALFSPACE_LE; MEASURABLE_INTERVAL; MEASURABLE_DIFF; MEASURE_POS_LE] THEN CONJ_TAC THEN MATCH_MP_TAC MEASURE_SUBSET THEN ASM_SIMP_TAC[MEASURABLE_INTER; MEASURABLE_INTER_HALFSPACE_LE; MEASURABLE_INTERVAL; MEASURABLE_DIFF; MEASURE_POS_LE] THEN SET_TAC[]]]]]);; (* ------------------------------------------------------------------------- *) (* Second mean value theorem and monotone integrability. *) (* ------------------------------------------------------------------------- *) let REAL_SECOND_MEAN_VALUE_THEOREM_FULL = prove (`!f g a b. ~(real_interval[a,b] = {}) /\ f real_integrable_on real_interval[a,b] /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> g x <= g y) ==> ?c. c IN real_interval[a,b] /\ ((\x. g x * f x) has_real_integral (g(a) * real_integral (real_interval[a,c]) f + g(b) * real_integral (real_interval[c,b]) f)) (real_interval[a,b])`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`; `lift a`; `lift b`] SECOND_MEAN_VALUE_THEOREM_FULL) THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY] THEN ASM_REWRITE_TAC[GSYM REAL_INTEGRABLE_ON] THEN REWRITE_TAC[EXISTS_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[HAS_REAL_INTEGRAL; IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_ADD] THEN AP_TERM_TAC THEN BINOP_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN REWRITE_TAC[LIFT_DROP] THEN W(MP_TAC o PART_MATCH (lhs o rand) REAL_INTEGRAL o rand o snd) THEN REWRITE_TAC[o_DEF] THEN ANTS_TAC THEN SIMP_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_INTEGRABLE_ON_SUBINTERVAL)) THEN REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY]) THEN ASM_REAL_ARITH_TAC);; let REAL_SECOND_MEAN_VALUE_THEOREM = prove (`!f g a b. ~(real_interval[a,b] = {}) /\ f real_integrable_on real_interval[a,b] /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> g x <= g y) ==> ?c. c IN real_interval[a,b] /\ real_integral (real_interval[a,b]) (\x. g x * f x) = g(a) * real_integral (real_interval[a,c]) f + g(b) * real_integral (real_interval[c,b]) f`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_SECOND_MEAN_VALUE_THEOREM_FULL) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN REWRITE_TAC[]);; let REAL_SECOND_MEAN_VALUE_THEOREM_GEN_FULL = prove (`!f g a b u v. ~(real_interval[a,b] = {}) /\ f real_integrable_on real_interval[a,b] /\ (!x. x IN real_interval(a,b) ==> u <= g x /\ g x <= v) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> g x <= g y) ==> ?c. c IN real_interval[a,b] /\ ((\x. g x * f x) has_real_integral (u * real_integral (real_interval[a,c]) f + v * real_integral (real_interval[c,b]) f)) (real_interval[a,b])`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`; `lift a`; `lift b`; `u:real`; `v:real`] SECOND_MEAN_VALUE_THEOREM_GEN_FULL) THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY] THEN ASM_REWRITE_TAC[GSYM REAL_INTEGRABLE_ON] THEN REWRITE_TAC[EXISTS_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[HAS_REAL_INTEGRAL; IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_ADD] THEN AP_TERM_TAC THEN BINOP_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN REWRITE_TAC[LIFT_DROP] THEN W(MP_TAC o PART_MATCH (lhs o rand) REAL_INTEGRAL o rand o snd) THEN REWRITE_TAC[o_DEF] THEN ANTS_TAC THEN SIMP_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_INTEGRABLE_ON_SUBINTERVAL)) THEN REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY]) THEN ASM_REAL_ARITH_TAC);; let REAL_SECOND_MEAN_VALUE_THEOREM_GEN = prove (`!f g a b u v. ~(real_interval[a,b] = {}) /\ f real_integrable_on real_interval[a,b] /\ (!x. x IN real_interval(a,b) ==> u <= g x /\ g x <= v) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> g x <= g y) ==> ?c. c IN real_interval[a,b] /\ real_integral (real_interval[a,b]) (\x. g x * f x) = u * real_integral (real_interval[a,c]) f + v * real_integral (real_interval[c,b]) f`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_SECOND_MEAN_VALUE_THEOREM_GEN_FULL) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN REWRITE_TAC[]);; let REAL_SECOND_MEAN_VALUE_THEOREM_BONNET_FULL = prove (`!f g a b. ~(real_interval[a,b] = {}) /\ f real_integrable_on real_interval[a,b] /\ (!x. x IN real_interval[a,b] ==> &0 <= g x) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> g x <= g y) ==> ?c. c IN real_interval[a,b] /\ ((\x. g x * f x) has_real_integral (g(b) * real_integral (real_interval[c,b]) f)) (real_interval[a,b])`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`; `lift a`; `lift b`] SECOND_MEAN_VALUE_THEOREM_BONNET_FULL) THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY] THEN ASM_REWRITE_TAC[GSYM REAL_INTEGRABLE_ON] THEN REWRITE_TAC[EXISTS_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[HAS_REAL_INTEGRAL; IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_ADD] THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ONCE_REWRITE_TAC[GSYM DROP_EQ] THEN REWRITE_TAC[LIFT_DROP] THEN W(MP_TAC o PART_MATCH (lhs o rand) REAL_INTEGRAL o rand o snd) THEN REWRITE_TAC[o_DEF] THEN ANTS_TAC THEN SIMP_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] REAL_INTEGRABLE_ON_SUBINTERVAL)) THEN REWRITE_TAC[SUBSET_REAL_INTERVAL] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY]) THEN ASM_REAL_ARITH_TAC);; let REAL_SECOND_MEAN_VALUE_THEOREM_BONNET = prove (`!f g a b. ~(real_interval[a,b] = {}) /\ f real_integrable_on real_interval[a,b] /\ (!x. x IN real_interval[a,b] ==> &0 <= g x) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> g x <= g y) ==> ?c. c IN real_interval[a,b] /\ real_integral (real_interval[a,b]) (\x. g x * f x) = g(b) * real_integral (real_interval[c,b]) f`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_SECOND_MEAN_VALUE_THEOREM_BONNET_FULL) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `c:real` THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP REAL_INTEGRAL_UNIQUE) THEN REWRITE_TAC[]);; let REAL_INTEGRABLE_INCREASING_PRODUCT = prove (`!f g a b. f real_integrable_on real_interval[a,b] /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> g(x) <= g(y)) ==> (\x. g(x) * f(x)) real_integrable_on real_interval[a,b]`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`; `lift a`; `lift b`] INTEGRABLE_INCREASING_PRODUCT) THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; GSYM REAL_INTEGRABLE_ON] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);; let REAL_INTEGRABLE_INCREASING_PRODUCT_UNIV = prove (`!f g B. f real_integrable_on (:real) /\ (!x y. x <= y ==> g x <= g y) /\ (!x. abs(g x) <= B) ==> (\x. g x * f x) real_integrable_on (:real)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`; `B:real`] INTEGRABLE_INCREASING_PRODUCT_UNIV) THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_UNIV; GSYM REAL_INTEGRABLE_ON] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);; let REAL_INTEGRABLE_INCREASING = prove (`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f(x) <= f(y)) ==> f real_integrable_on real_interval[a,b]`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`] INTEGRABLE_INCREASING_1) THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; GSYM REAL_INTEGRABLE_ON] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);; let REAL_INTEGRABLE_DECREASING_PRODUCT = prove (`!f g a b. f real_integrable_on real_interval[a,b] /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> g(y) <= g(x)) ==> (\x. g(x) * f(x)) real_integrable_on real_interval[a,b]`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`; `lift a`; `lift b`] INTEGRABLE_DECREASING_PRODUCT) THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; GSYM REAL_INTEGRABLE_ON] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);; let REAL_INTEGRABLE_DECREASING_PRODUCT_UNIV = prove (`!f g B. f real_integrable_on (:real) /\ (!x y. x <= y ==> g y <= g x) /\ (!x. abs(g x) <= B) ==> (\x. g x * f x) real_integrable_on (:real)`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `(g:real->real) o drop`; `B:real`] INTEGRABLE_DECREASING_PRODUCT_UNIV) THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_UNIV; GSYM REAL_INTEGRABLE_ON] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);; let REAL_INTEGRABLE_DECREASING = prove (`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f(y) <= f(x)) ==> f real_integrable_on real_interval[a,b]`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`] INTEGRABLE_DECREASING_1) THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; GSYM REAL_INTEGRABLE_ON] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[o_DEF; LIFT_DROP; REAL_INTEGRABLE_ON; LIFT_CMUL]);; (* ------------------------------------------------------------------------- *) (* Measurability and absolute integrability of monotone functions. *) (* ------------------------------------------------------------------------- *) let REAL_MEASURABLE_ON_INCREASING_UNIV = prove (`!f. (!x y. x <= y ==> f x <= f y) ==> f real_measurable_on (:real)`, REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_MEASURABLE_ON_PREIMAGE_HALFSPACE_LE] THEN X_GEN_TAC `y:real` THEN REPEAT_TCL STRIP_THM_THEN ASSUME_TAC (SET_RULE `{x | (f:real->real) x <= y} = {} \/ {x | (f:real->real) x <= y} = UNIV \/ ?a b. f a <= y /\ ~(f b <= y)`) THEN ASM_REWRITE_TAC[REAL_LEBESGUE_MEASURABLE_EMPTY; REAL_LEBESGUE_MEASURABLE_UNIV] THEN MP_TAC(ISPEC `{x | (f:real->real) x <= y}` SUP) THEN REWRITE_TAC[IN_ELIM_THM; EXTENSION; NOT_IN_EMPTY] THEN ANTS_TAC THENL [ASM_MESON_TAC[REAL_LE_TOTAL; REAL_LE_TRANS]; ALL_TAC] THEN ABBREV_TAC `s = sup {x | (f:real->real) x <= y}` THEN STRIP_TAC THEN SUBGOAL_THEN `(!x. (f:real->real) x <= y <=> x < s) \/ (!x. (f:real->real) x <= y <=> x <= s)` STRIP_ASSUME_TAC THENL [ASM_CASES_TAC `(f:real->real) s <= y` THEN ASM_MESON_TAC[REAL_LE_TRANS; REAL_NOT_LE; REAL_LE_ANTISYM; REAL_LE_TOTAL]; ASM_SIMP_TAC[REAL_OPEN_HALFSPACE_LT; REAL_LEBESGUE_MEASURABLE_OPEN]; ASM_SIMP_TAC[REAL_CLOSED_HALFSPACE_LE; REAL_LEBESGUE_MEASURABLE_CLOSED]]);; let REAL_MEASURABLE_ON_INCREASING = prove (`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f x <= f y) ==> f real_measurable_on real_interval[a,b]`, REWRITE_TAC[IN_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN ASM_CASES_TAC `real_interval[a,b] = {}` THENL [ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; REAL_MEASURABLE_ON_0]; RULE_ASSUM_TAC(REWRITE_RULE[REAL_INTERVAL_EQ_EMPTY; REAL_NOT_LT])] THEN ABBREV_TAC `g = \x. if x < a then f(a) else if b < x then f(b) else (f:real->real) x` THEN SUBGOAL_THEN `g real_measurable_on real_interval[a,b]` MP_TAC THENL [ALL_TAC; ONCE_REWRITE_TAC[GSYM REAL_MEASURABLE_ON_UNIV] THEN EXPAND_TAC "g" THEN SIMP_TAC[IN_REAL_INTERVAL; GSYM REAL_NOT_LT]] THEN MATCH_MP_TAC REAL_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET THEN EXISTS_TAC `(:real)` THEN REWRITE_TAC[SUBSET_UNIV; REAL_LEBESGUE_MEASURABLE_INTERVAL] THEN MATCH_MP_TAC REAL_MEASURABLE_ON_INCREASING_UNIV THEN EXPAND_TAC "g" THEN ASM_MESON_TAC[REAL_LT_LE; REAL_LE_TRANS; REAL_LE_TOTAL; REAL_LE_ANTISYM; REAL_NOT_LT; REAL_LT_IMP_LE; REAL_LE_REFL]);; let REAL_MEASURABLE_ON_DECREASING_UNIV = prove (`!f. (!x y. x <= y ==> f y <= f x) ==> f real_measurable_on (:real)`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [GSYM REAL_MEASURABLE_ON_NEG_EQ] THEN MATCH_MP_TAC REAL_MEASURABLE_ON_INCREASING_UNIV THEN ASM_SIMP_TAC[REAL_LE_NEG2]);; let REAL_MEASURABLE_ON_DECREASING = prove (`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f y <= f x) ==> f real_measurable_on real_interval[a,b]`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [GSYM REAL_MEASURABLE_ON_NEG_EQ] THEN MATCH_MP_TAC REAL_MEASURABLE_ON_INCREASING THEN ASM_SIMP_TAC[REAL_LE_NEG2]);; let ABSOLUTELY_REAL_INTEGRABLE_INCREASING_PRODUCT = prove (`!f g a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f x <= f y) /\ g absolutely_real_integrable_on real_interval[a,b] ==> (\x. f x * g x) absolutely_real_integrable_on real_interval[a,b]`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_BOUNDED_MEASURABLE_PRODUCT THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_INCREASING] THEN REWRITE_TAC[real_bounded; FORALL_IN_IMAGE] THEN EXISTS_TAC `abs((f:real->real) a) + abs((f:real->real) b)` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC (REAL_ARITH `a <= x /\ x <= b ==> abs x <= abs a + abs b`) THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[IN_REAL_INTERVAL; REAL_LE_TRANS; REAL_LE_REFL]);; let ABSOLUTELY_REAL_INTEGRABLE_INCREASING = prove (`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f x <= f y) ==> f absolutely_real_integrable_on real_interval[a,b]`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM ETA_AX] THEN GEN_REWRITE_TAC (LAND_CONV o ABS_CONV) [GSYM REAL_MUL_RID] THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_INCREASING_PRODUCT THEN ASM_REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_CONST]);; let ABSOLUTELY_REAL_INTEGRABLE_DECREASING_PRODUCT = prove (`!f g a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f y <= f x) /\ g absolutely_real_integrable_on real_interval[a,b] ==> (\x. f x * g x) absolutely_real_integrable_on real_interval[a,b]`, REPEAT STRIP_TAC THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_BOUNDED_MEASURABLE_PRODUCT THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_DECREASING] THEN REWRITE_TAC[real_bounded; FORALL_IN_IMAGE] THEN EXISTS_TAC `abs((f:real->real) a) + abs((f:real->real) b)` THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC (REAL_ARITH `b <= x /\ x <= a ==> abs x <= abs a + abs b`) THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[IN_REAL_INTERVAL; REAL_LE_TRANS; REAL_LE_REFL]);; let ABSOLUTELY_REAL_INTEGRABLE_DECREASING = prove (`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f y <= f x) ==> f absolutely_real_integrable_on real_interval[a,b]`, REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM ETA_AX] THEN GEN_REWRITE_TAC (LAND_CONV o ABS_CONV) [GSYM REAL_MUL_RID] THEN MATCH_MP_TAC ABSOLUTELY_REAL_INTEGRABLE_DECREASING_PRODUCT THEN ASM_REWRITE_TAC[ABSOLUTELY_REAL_INTEGRABLE_CONST]);; (* ------------------------------------------------------------------------- *) (* Real functions of bounded variation. *) (* ------------------------------------------------------------------------- *) parse_as_infix("has_bounded_real_variation_on",(12,"right"));; let has_bounded_real_variation_on = new_definition `f has_bounded_real_variation_on s <=> (lift o f o drop) has_bounded_variation_on (IMAGE lift s)`;; let real_variation = new_definition `real_variation s f = vector_variation (IMAGE lift s) (lift o f o drop)`;; let HAS_BOUNDED_REAL_VARIATION_ON_EQ = prove (`!f g s. (!x. x IN s ==> f x = g x) /\ f has_bounded_real_variation_on s ==> g has_bounded_real_variation_on s`, REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[IMP_CONJ; has_bounded_real_variation_on] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] HAS_BOUNDED_VARIATION_ON_EQ) THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP]);; let HAS_BOUNDED_REAL_VARIATION_ON_SUBSET = prove (`!f s t. f has_bounded_real_variation_on s /\ t SUBSET s ==> f has_bounded_real_variation_on t`, REWRITE_TAC[has_bounded_real_variation_on] THEN MESON_TAC[HAS_BOUNDED_VARIATION_ON_SUBSET; IMAGE_SUBSET]);; let HAS_BOUNDED_REAL_VARIATION_ON_LMUL = prove (`!f c s. f has_bounded_real_variation_on s ==> (\x. c * f x) has_bounded_real_variation_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN REWRITE_TAC[o_DEF; LIFT_CMUL; HAS_BOUNDED_VARIATION_ON_CMUL]);; let HAS_BOUNDED_REAL_VARIATION_ON_RMUL = prove (`!f c s. f has_bounded_real_variation_on s ==> (\x. f x * c) has_bounded_real_variation_on s`, ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN REWRITE_TAC[HAS_BOUNDED_REAL_VARIATION_ON_LMUL]);; let HAS_BOUNDED_REAL_VARIATION_ON_NEG = prove (`!f s. f has_bounded_real_variation_on s ==> (\x. --f x) has_bounded_real_variation_on s`, REWRITE_TAC[has_bounded_real_variation_on; o_DEF; LIFT_NEG] THEN REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_NEG]);; let HAS_BOUNDED_REAL_VARIATION_ON_ADD = prove (`!f g s. f has_bounded_real_variation_on s /\ g has_bounded_real_variation_on s ==> (\x. f x + g x) has_bounded_real_variation_on s`, REWRITE_TAC[has_bounded_real_variation_on; o_DEF; LIFT_ADD] THEN REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_ADD]);; let HAS_BOUNDED_REAL_VARIATION_ON_SUB = prove (`!f g s. f has_bounded_real_variation_on s /\ g has_bounded_real_variation_on s ==> (\x. f x - g x) has_bounded_real_variation_on s`, REWRITE_TAC[has_bounded_real_variation_on; o_DEF; LIFT_SUB] THEN REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_SUB]);; let HAS_BOUNDED_REAL_VARIATION_ON_NULL = prove (`!f a b. b <= a ==> f has_bounded_real_variation_on real_interval[a,b]`, REPEAT STRIP_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC HAS_BOUNDED_VARIATION_ON_NULL THEN ASM_REWRITE_TAC[BOUNDED_INTERVAL; CONTENT_EQ_0_1; LIFT_DROP]);; let HAS_BOUNDED_REAL_VARIATION_ON_EMPTY = prove (`!f. f has_bounded_real_variation_on {}`, REWRITE_TAC[IMAGE_CLAUSES; has_bounded_real_variation_on] THEN REWRITE_TAC[HAS_BOUNDED_VARIATION_ON_EMPTY]);; let HAS_BOUNDED_REAL_VARIATION_ON_ABS = prove (`!f s. f has_bounded_real_variation_on s ==> (\x. abs(f x)) has_bounded_real_variation_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_BOUNDED_VARIATION_ON_NORM) THEN REWRITE_TAC[o_DEF; NORM_REAL; GSYM drop; LIFT_DROP]);; let HAS_BOUNDED_REAL_VARIATION_ON_MAX = prove (`!f g s. f has_bounded_real_variation_on s /\ g has_bounded_real_variation_on s ==> (\x. max (f x) (g x)) has_bounded_real_variation_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_BOUNDED_VARIATION_ON_MAX) THEN REWRITE_TAC[o_DEF; LIFT_DROP]);; let HAS_BOUNDED_REAL_VARIATION_ON_MIN = prove (`!f g s. f has_bounded_real_variation_on s /\ g has_bounded_real_variation_on s ==> (\x. min (f x) (g x)) has_bounded_real_variation_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_BOUNDED_VARIATION_ON_MIN) THEN REWRITE_TAC[o_DEF; LIFT_DROP]);; let HAS_BOUNDED_REAL_VARIATION_ON_IMP_BOUNDED_ON_INTERVAL = prove (`!f a b. f has_bounded_real_variation_on real_interval[a,b] ==> real_bounded(IMAGE f (real_interval[a,b]))`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on; REAL_BOUNDED] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_BOUNDED_VARIATION_ON_IMP_BOUNDED_ON_INTERVAL) THEN REWRITE_TAC[IMAGE_o; IMAGE_DROP_INTERVAL; LIFT_DROP]);; let HAS_BOUNDED_REAL_VARIATION_ON_MUL = prove (`!f g s. f has_bounded_real_variation_on s /\ g has_bounded_real_variation_on s /\ is_realinterval s ==> (\x. f x * g x) has_bounded_real_variation_on s`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; IS_REALINTERVAL_IS_INTERVAL] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_BOUNDED_VARIATION_ON_MUL) THEN REWRITE_TAC[o_DEF; LIFT_CMUL; LIFT_DROP]);; let REAL_VARIATION_POS_LE = prove (`!f s. f has_bounded_real_variation_on s ==> &0 <= real_variation s f`, REWRITE_TAC[real_variation; has_bounded_real_variation_on] THEN REWRITE_TAC[VECTOR_VARIATION_POS_LE]);; let REAL_VARIATION_GE_ABS_FUNCTION = prove (`!f s a b. f has_bounded_real_variation_on s /\ real_segment[a,b] SUBSET s ==> abs(f b - f a) <= real_variation s f`, REWRITE_TAC[has_bounded_real_variation_on] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`; `lift a`; `lift b`] VECTOR_VARIATION_GE_NORM_FUNCTION) THEN ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_SEGMENT; IMAGE_EQ_EMPTY; IMAGE_SUBSET] THEN REWRITE_TAC[real_variation; o_THM; LIFT_DROP; GSYM LIFT_SUB; NORM_LIFT]);; let REAL_VARIATION_GE_FUNCTION = prove (`!f s a b. f has_bounded_real_variation_on s /\ real_segment[a,b] SUBSET s ==> f b - f a <= real_variation s f`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `abs x <= a ==> x <= a`) THEN ASM_MESON_TAC[REAL_VARIATION_GE_ABS_FUNCTION]);; let REAL_VARIATION_MONOTONE = prove (`!f s t. f has_bounded_real_variation_on s /\ t SUBSET s ==> real_variation t f <= real_variation s f`, REWRITE_TAC[has_bounded_real_variation_on; real_variation] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC VECTOR_VARIATION_MONOTONE THEN ASM_SIMP_TAC[IMAGE_SUBSET]);; let REAL_VARIATION_NEG = prove (`!f s. real_variation s (\x. --(f x)) = real_variation s f`, SIMP_TAC[real_variation; o_DEF; LIFT_NEG; VECTOR_VARIATION_NEG]);; let REAL_VARIATION_TRIANGLE = prove (`!f g s. f has_bounded_real_variation_on s /\ g has_bounded_real_variation_on s ==> real_variation s (\x. f x + g x) <= real_variation s f + real_variation s g`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on; real_variation] THEN DISCH_THEN(MP_TAC o MATCH_MP VECTOR_VARIATION_TRIANGLE) THEN REWRITE_TAC[o_DEF; LIFT_ADD]);; let HAS_BOUNDED_REAL_VARIATION_ON_COMBINE = prove (`!f a b c. a <= c /\ c <= b ==> (f has_bounded_real_variation_on real_interval[a,b] <=> f has_bounded_real_variation_on real_interval[a,c] /\ f has_bounded_real_variation_on real_interval[c,b])`, REWRITE_TAC[has_bounded_real_variation_on; IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`; `lift c`] HAS_BOUNDED_VARIATION_ON_COMBINE) THEN ASM_REWRITE_TAC[LIFT_DROP; has_bounded_real_variation_on; IMAGE_LIFT_REAL_INTERVAL]);; let REAL_VARIATION_COMBINE = prove (`!f a b c. a <= c /\ c <= b /\ f has_bounded_real_variation_on real_interval[a,b] ==> real_variation (real_interval[a,c]) f + real_variation (real_interval[c,b]) f = real_variation (real_interval[a,b]) f`, REWRITE_TAC[has_bounded_real_variation_on; IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`; `lift c`] VECTOR_VARIATION_COMBINE) THEN ASM_REWRITE_TAC[LIFT_DROP; real_variation; IMAGE_LIFT_REAL_INTERVAL]);; let REAL_VARIATION_MINUS_FUNCTION_MONOTONE = prove (`!f a b c d. f has_bounded_real_variation_on real_interval[a,b] /\ real_interval[c,d] SUBSET real_interval[a,b] /\ ~(real_interval[c,d] = {}) ==> real_variation (real_interval[c,d]) f - (f d - f c) <= real_variation (real_interval[a,b]) f - (f b - f a)`, REWRITE_TAC[has_bounded_real_variation_on; IMAGE_LIFT_REAL_INTERVAL] THEN REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`; `lift c`; `lift d`] VECTOR_VARIATION_MINUS_FUNCTION_MONOTONE) THEN ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; real_variation; IMAGE_EQ_EMPTY; IMAGE_SUBSET] THEN REWRITE_TAC[o_THM; LIFT_DROP; DROP_SUB]);; let INCREASING_BOUNDED_REAL_VARIATION = prove (`!f a b. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f x <= f y) ==> f has_bounded_real_variation_on real_interval[a,b]`, REPEAT STRIP_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC INCREASING_BOUNDED_VARIATION THEN REWRITE_TAC[IN_INTERVAL_1; GSYM FORALL_DROP; o_THM; LIFT_DROP] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL]) THEN ASM_MESON_TAC[]);; let INCREASING_REAL_VARIATION = prove (`!f a b. ~(real_interval[a,b] = {}) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f x <= f y) ==> real_variation (real_interval[a,b]) f = f b - f a`, REPEAT STRIP_TAC THEN REWRITE_TAC[real_variation; IMAGE_LIFT_REAL_INTERVAL] THEN MP_TAC(ISPECL [`lift o f o drop`; `lift a`; `lift b`] INCREASING_VECTOR_VARIATION) THEN REWRITE_TAC[o_THM; LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMAGE_EQ_EMPTY] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN REWRITE_TAC[LIFT_DROP] THEN ASM_MESON_TAC[]);; let HAS_BOUNDED_REAL_VARIATION_AFFINITY2_EQ = prove (`!m c f s. (\x. f (m * x + c)) has_bounded_real_variation_on IMAGE (\x. inv m * x + --(inv m * c)) s <=> m = &0 \/ f has_bounded_real_variation_on s`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`m:real`; `lift c`; `lift o f o drop`; `IMAGE lift s`] HAS_BOUNDED_VARIATION_AFFINITY2_EQ) THEN REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o; DROP_ADD; DROP_CMUL; LIFT_ADD; LIFT_CMUL; LIFT_NEG; LIFT_DROP]);; let REAL_VARIATION_AFFINITY2 = prove (`!m c f s. real_variation (IMAGE (\x. inv m * x + --(inv m * c)) s) (\x. f (m * x + c)) = if m = &0 then &0 else real_variation s f`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`m:real`; `lift c`; `lift o f o drop`; `IMAGE lift s`] VECTOR_VARIATION_AFFINITY2) THEN REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o; DROP_ADD; DROP_CMUL; LIFT_ADD; LIFT_CMUL; LIFT_NEG; LIFT_DROP]);; let HAS_BOUNDED_REAL_VARIATION_AFFINITY_EQ = prove (`!m c f s. (\x. f (m * x + c)) has_bounded_real_variation_on s <=> m = &0 \/ f has_bounded_real_variation_on IMAGE (\x. m * x + c) s`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`m:real`; `lift c`; `lift o f o drop`; `IMAGE lift s`] HAS_BOUNDED_VARIATION_AFFINITY_EQ) THEN REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o; DROP_ADD; DROP_CMUL; LIFT_ADD; LIFT_CMUL; LIFT_NEG; LIFT_DROP]);; let REAL_VARIATION_AFFINITY = prove (`!m c f s. real_variation s (\x. f (m * x + c)) = if m = &0 then &0 else real_variation (IMAGE (\x. m * x + c) s) f`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`m:real`; `lift c`; `lift o f o drop`; `IMAGE lift s`] VECTOR_VARIATION_AFFINITY) THEN REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o; DROP_ADD; DROP_CMUL; LIFT_ADD; LIFT_CMUL; LIFT_NEG; LIFT_DROP]);; let HAS_BOUNDED_REAL_VARIATION_TRANSLATION2_EQ = prove (`!a f s. (\x. f(a + x)) has_bounded_real_variation_on (IMAGE (\x. --a + x) s) <=> f has_bounded_real_variation_on s`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift a`; `lift o f o drop`; `IMAGE lift s`] HAS_BOUNDED_VARIATION_TRANSLATION2_EQ) THEN REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o; DROP_ADD; LIFT_DROP; LIFT_ADD; LIFT_NEG]);; let REAL_VARIATION_TRANSLATION2 = prove (`!a f s. real_variation (IMAGE (\x. --a + x) s) (\x. f(a + x)) = real_variation s f`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift a`; `lift o f o drop`; `IMAGE lift s`] VECTOR_VARIATION_TRANSLATION2) THEN REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o; DROP_ADD; LIFT_DROP; LIFT_ADD; LIFT_NEG]);; let HAS_BOUNDED_REAL_VARIATION_TRANSLATION_EQ = prove (`!a f s. (\x. f(a + x)) has_bounded_real_variation_on s <=> f has_bounded_real_variation_on (IMAGE (\x. a + x) s)`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift a`; `lift o f o drop`; `IMAGE lift s`] HAS_BOUNDED_VARIATION_TRANSLATION_EQ) THEN REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o; DROP_ADD; LIFT_DROP; LIFT_ADD; LIFT_NEG]);; let REAL_VARIATION_TRANSLATION = prove (`!a f s. real_variation s (\x. f(a + x)) = real_variation (IMAGE (\x. a + x) s) f`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift a`; `lift o f o drop`; `IMAGE lift s`] VECTOR_VARIATION_TRANSLATION_ALT) THEN REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o; DROP_ADD; LIFT_DROP; LIFT_ADD; LIFT_NEG]);; let HAS_BOUNDED_REAL_VARIATION_TRANSLATION_EQ_INTERVAL = prove (`!a f u v. (\x. f(a + x)) has_bounded_real_variation_on real_interval[u,v] <=> f has_bounded_real_variation_on real_interval[a+u,a+v]`, REWRITE_TAC[REAL_INTERVAL_TRANSLATION; HAS_BOUNDED_REAL_VARIATION_TRANSLATION_EQ]);; let REAL_VARIATION_TRANSLATION_INTERVAL = prove (`!a f u v. real_variation (real_interval[u,v]) (\x. f(a + x)) = real_variation (real_interval[a+u,a+v]) f`, REWRITE_TAC[REAL_INTERVAL_TRANSLATION; REAL_VARIATION_TRANSLATION]);; let HAS_BOUNDED_REAL_VARIATION_TRANSLATION = prove (`!f s a. f has_bounded_real_variation_on s ==> (\x. f(a + x)) has_bounded_real_variation_on (IMAGE (\x. --a + x) s)`, REWRITE_TAC[HAS_BOUNDED_REAL_VARIATION_TRANSLATION2_EQ]);; let HAS_BOUNDED_REAL_VARIATION_REFLECT2_EQ = prove (`!f s. (\x. f(--x)) has_bounded_real_variation_on (IMAGE (--) s) <=> f has_bounded_real_variation_on s`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`] HAS_BOUNDED_VARIATION_REFLECT2_EQ) THEN REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o; DROP_NEG; LIFT_DROP; LIFT_NEG]);; let REAL_VARIATION_REFLECT2 = prove (`!f s. real_variation (IMAGE (--) s) (\x. f(--x)) = real_variation s f`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`] VECTOR_VARIATION_REFLECT2) THEN REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o; DROP_NEG; LIFT_DROP; LIFT_NEG]);; let HAS_BOUNDED_REAL_VARIATION_REFLECT_EQ = prove (`!f s. (\x. f(--x)) has_bounded_real_variation_on s <=> f has_bounded_real_variation_on (IMAGE (--) s)`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`] HAS_BOUNDED_VARIATION_REFLECT_EQ) THEN REWRITE_TAC[o_DEF; has_bounded_real_variation_on; GSYM IMAGE_o; DROP_NEG; LIFT_DROP; LIFT_NEG]);; let REAL_VARIATION_REFLECT = prove (`!f s. real_variation s (\x. f(--x)) = real_variation (IMAGE (--) s) f`, REPEAT GEN_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`] VECTOR_VARIATION_REFLECT) THEN REWRITE_TAC[o_DEF; real_variation; GSYM IMAGE_o; DROP_NEG; LIFT_DROP; LIFT_NEG]);; let HAS_BOUNDED_REAL_VARIATION_REFLECT_EQ_INTERVAL = prove (`!f u v. (\x. f(--x)) has_bounded_real_variation_on real_interval[u,v] <=> f has_bounded_real_variation_on real_interval[--v,--u]`, REWRITE_TAC[GSYM REFLECT_REAL_INTERVAL; HAS_BOUNDED_REAL_VARIATION_REFLECT_EQ]);; let REAL_VARIATION_REFLECT_INTERVAL = prove (`!f u v. real_variation (real_interval[u,v]) (\x. f(--x)) = real_variation (real_interval[--v,--u]) f`, REWRITE_TAC[GSYM REFLECT_REAL_INTERVAL; REAL_VARIATION_REFLECT]);; let HAS_BOUNDED_REAL_VARIATION_DARBOUX = prove (`!f a b. f has_bounded_real_variation_on real_interval[a,b] <=> ?g h. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> g x <= g y) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> h x <= h y) /\ (!x. f x = g x - h x)`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN REWRITE_TAC[HAS_BOUNDED_VARIATION_DARBOUX; IMAGE_LIFT_REAL_INTERVAL] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE; GSYM IMAGE_LIFT_REAL_INTERVAL; LIFT_DROP] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; o_THM] THENL [MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `h:real^1->real^1`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`drop o g o lift`; `drop o h o lift`] THEN ASM_REWRITE_TAC[o_THM] THEN REWRITE_TAC[GSYM LIFT_EQ; FORALL_DROP] THEN ASM_REWRITE_TAC[LIFT_DROP; LIFT_SUB]; MAP_EVERY X_GEN_TAC [`g:real->real`; `h:real->real`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`lift o g o drop`; `lift o h o drop`] THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP] THEN REWRITE_TAC[LIFT_SUB]]);; let HAS_BOUNDED_REAL_VARIATION_DARBOUX_STRICT = prove (`!f a b. f has_bounded_real_variation_on real_interval[a,b] <=> ?g h. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x < y ==> g x < g y) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x < y ==> h x < h y) /\ (!x. f x = g x - h x)`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN REWRITE_TAC[HAS_BOUNDED_VARIATION_DARBOUX_STRICT; IMAGE_LIFT_REAL_INTERVAL] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE; GSYM IMAGE_LIFT_REAL_INTERVAL; LIFT_DROP] THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM; o_THM] THENL [MAP_EVERY X_GEN_TAC [`g:real^1->real^1`; `h:real^1->real^1`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`drop o g o lift`; `drop o h o lift`] THEN ASM_REWRITE_TAC[o_THM] THEN REWRITE_TAC[GSYM LIFT_EQ; FORALL_DROP] THEN ASM_REWRITE_TAC[LIFT_DROP; LIFT_SUB]; MAP_EVERY X_GEN_TAC [`g:real->real`; `h:real->real`] THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`lift o g o drop`; `lift o h o drop`] THEN ASM_REWRITE_TAC[o_THM; LIFT_DROP] THEN REWRITE_TAC[LIFT_SUB]]);; let INCREASING_LEFT_LIMIT = prove (`!f a b c. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f x <= f y) /\ c IN real_interval[a,b] ==> ?l. (f ---> l) (atreal c within real_interval[a,c])`, REPEAT STRIP_TAC THEN REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC INCREASING_LEFT_LIMIT_1 THEN EXISTS_TAC `lift b` THEN SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; FUN_IN_IMAGE]);; let DECREASING_LEFT_LIMIT = prove (`!f a b c. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f y <= f x) /\ c IN real_interval[a,b] ==> ?l. (f ---> l) (atreal c within real_interval[a,c])`, REPEAT STRIP_TAC THEN REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC DECREASING_LEFT_LIMIT_1 THEN EXISTS_TAC `lift b` THEN SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; FUN_IN_IMAGE]);; let INCREASING_RIGHT_LIMIT = prove (`!f a b c. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f x <= f y) /\ c IN real_interval[a,b] ==> ?l. (f ---> l) (atreal c within real_interval[c,b])`, REPEAT STRIP_TAC THEN REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC INCREASING_RIGHT_LIMIT_1 THEN EXISTS_TAC `lift a` THEN SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; FUN_IN_IMAGE]);; let DECREASING_RIGHT_LIMIT = prove (`!f a b c. (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> f y <= f x) /\ c IN real_interval[a,b] ==> ?l. (f ---> l) (atreal c within real_interval[c,b])`, REPEAT STRIP_TAC THEN REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC DECREASING_RIGHT_LIMIT_1 THEN EXISTS_TAC `lift a` THEN SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN ASM_SIMP_TAC[FORALL_IN_IMAGE; o_THM; LIFT_DROP; FUN_IN_IMAGE]);; let HAS_BOUNDED_REAL_VARIATION_LEFT_LIMIT = prove (`!f a b c. f has_bounded_real_variation_on real_interval[a,b] /\ c IN real_interval[a,b] ==> ?l. (f ---> l) (atreal c within real_interval[a,c])`, REWRITE_TAC[has_bounded_real_variation_on] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC HAS_BOUNDED_VECTOR_VARIATION_LEFT_LIMIT THEN EXISTS_TAC `lift b` THEN ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; GSYM o_ASSOC; FUN_IN_IMAGE]);; let HAS_BOUNDED_REAL_VARIATION_RIGHT_LIMIT = prove (`!f a b c. f has_bounded_real_variation_on real_interval[a,b] /\ c IN real_interval[a,b] ==> ?l. (f ---> l) (atreal c within real_interval[c,b])`, REWRITE_TAC[has_bounded_real_variation_on] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[TENDSTO_REAL; GSYM EXISTS_LIFT] THEN REWRITE_TAC[LIM_WITHINREAL_WITHIN; IMAGE_LIFT_REAL_INTERVAL] THEN MATCH_MP_TAC HAS_BOUNDED_VECTOR_VARIATION_RIGHT_LIMIT THEN EXISTS_TAC `lift a` THEN ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; GSYM o_ASSOC; FUN_IN_IMAGE]);; let REAL_VARIATION_CONTINUOUS_LEFT = prove (`!f a b c. f has_bounded_real_variation_on real_interval[a,b] /\ c IN real_interval[a,b] ==> ((\x. real_variation(real_interval[a,x]) f) real_continuous (atreal c within real_interval[a,c]) <=> f real_continuous (atreal c within real_interval[a,c]))`, REWRITE_TAC[has_bounded_real_variation_on; real_variation] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; REAL_CONTINUOUS_CONTINUOUS_WITHINREAL] THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC VECTOR_VARIATION_CONTINUOUS_LEFT THEN EXISTS_TAC `lift b` THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; FUN_IN_IMAGE]);; let REAL_VARIATION_CONTINUOUS_RIGHT = prove (`!f a b c. f has_bounded_real_variation_on real_interval[a,b] /\ c IN real_interval[a,b] ==> ((\x. real_variation(real_interval[a,x]) f) real_continuous (atreal c within real_interval[c,b]) <=> f real_continuous (atreal c within real_interval[c,b]))`, REWRITE_TAC[has_bounded_real_variation_on; real_variation] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; REAL_CONTINUOUS_CONTINUOUS_WITHINREAL] THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC VECTOR_VARIATION_CONTINUOUS_RIGHT THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; FUN_IN_IMAGE]);; let REAL_VARIATION_CONTINUOUS = prove (`!f a b c. f has_bounded_real_variation_on real_interval[a,b] /\ c IN real_interval[a,b] ==> ((\x. real_variation(real_interval[a,x]) f) real_continuous (atreal c within real_interval[a,b]) <=> f real_continuous (atreal c within real_interval[a,b]))`, REWRITE_TAC[has_bounded_real_variation_on; real_variation] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; REAL_CONTINUOUS_CONTINUOUS_WITHINREAL] THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC VECTOR_VARIATION_CONTINUOUS THEN ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; FUN_IN_IMAGE]);; let HAS_BOUNDED_REAL_VARIATION_DARBOUX_STRONG = prove (`!f a b. f has_bounded_real_variation_on real_interval[a,b] ==> ?g h. (!x. f x = g x - h x) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> g x <= g y) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x <= y ==> h x <= h y) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x < y ==> g x < g y) /\ (!x y. x IN real_interval[a,b] /\ y IN real_interval[a,b] /\ x < y ==> h x < h y) /\ (!x. x IN real_interval[a,b] /\ f real_continuous (atreal x within real_interval[a,x]) ==> g real_continuous (atreal x within real_interval[a,x]) /\ h real_continuous (atreal x within real_interval[a,x])) /\ (!x. x IN real_interval[a,b] /\ f real_continuous (atreal x within real_interval[x,b]) ==> g real_continuous (atreal x within real_interval[x,b]) /\ h real_continuous (atreal x within real_interval[x,b])) /\ (!x. x IN real_interval[a,b] /\ f real_continuous (atreal x within real_interval[a,b]) ==> g real_continuous (atreal x within real_interval[a,b]) /\ h real_continuous (atreal x within real_interval[a,b]))`, REPEAT STRIP_TAC THEN MAP_EVERY EXISTS_TAC [`\x. x + real_variation (real_interval[a,x]) f`; `\x. x + real_variation (real_interval[a,x]) f - f x`] THEN REWRITE_TAC[REAL_ARITH `(x + l) - (x + l - f):real = f`] THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_VARIATION_MONOTONE; MATCH_MP_TAC REAL_LE_ADD2 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `!x. a - (b - x) <= c - (d - x) ==> a - b <= c - d`) THEN EXISTS_TAC `(f:real->real) a` THEN MATCH_MP_TAC REAL_VARIATION_MINUS_FUNCTION_MONOTONE; MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_VARIATION_MONOTONE; MATCH_MP_TAC REAL_LTE_ADD2 THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(REAL_ARITH `!x. a - (b - x) <= c - (d - x) ==> a - b <= c - d`) THEN EXISTS_TAC `(f:real->real) a` THEN MATCH_MP_TAC REAL_VARIATION_MINUS_FUNCTION_MONOTONE; MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`] REAL_VARIATION_CONTINUOUS_LEFT) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN MATCH_MP_TAC REAL_CONTINUOUS_SUB THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`] REAL_VARIATION_CONTINUOUS_LEFT) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`] REAL_VARIATION_CONTINUOUS_RIGHT) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN MATCH_MP_TAC REAL_CONTINUOUS_SUB THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`] REAL_VARIATION_CONTINUOUS_RIGHT) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`] REAL_VARIATION_CONTINUOUS) THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC REAL_CONTINUOUS_ADD THEN REWRITE_TAC[REAL_CONTINUOUS_WITHIN_ID] THEN MATCH_MP_TAC REAL_CONTINUOUS_SUB THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`f:real->real`; `a:real`; `b:real`; `x:real`] REAL_VARIATION_CONTINUOUS) THEN ASM_REWRITE_TAC[]] THEN (CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] HAS_BOUNDED_REAL_VARIATION_ON_SUBSET)); ALL_TAC] THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_REAL_INTERVAL]) THEN REWRITE_TAC[SUBSET_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY] THEN ASM_REAL_ARITH_TAC));; let HAS_BOUNDED_REAL_VARIATION_COUNTABLE_DISCONTINUITIES = prove (`!f s. f has_bounded_real_variation_on s /\ is_realinterval s ==> COUNTABLE {x | x IN s /\ ~(f real_continuous atreal x)}`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on] THEN REWRITE_TAC[REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN REWRITE_TAC[IS_REALINTERVAL_IS_INTERVAL] THEN DISCH_THEN(MP_TAC o MATCH_MP HAS_BOUNDED_VARIATION_COUNTABLE_DISCONTINUITIES) THEN DISCH_THEN(MP_TAC o ISPEC `drop` o MATCH_MP COUNTABLE_IMAGE) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COUNTABLE_SUBSET) THEN REWRITE_TAC[SUBSET; IN_IMAGE; EXISTS_LIFT; LIFT_DROP; UNWIND_THM1] THEN REWRITE_TAC[GSYM IMAGE_LIFT_REAL_INTERVAL; IN_ELIM_THM] THEN REWRITE_TAC[EXISTS_IN_IMAGE; GSYM CONJ_ASSOC; EXISTS_DROP; LIFT_DROP] THEN MESON_TAC[LIFT_DROP]);; let REAL_INTEGRABLE_REAL_BOUNDED_VARIATION_PRODUCT = prove (`!f g a b. f real_integrable_on real_interval[a,b] /\ g has_bounded_real_variation_on real_interval[a,b] ==> (\x. g x * f x) real_integrable_on real_interval[a,b]`, REPEAT GEN_TAC THEN REWRITE_TAC[has_bounded_real_variation_on; REAL_INTEGRABLE_ON] THEN REWRITE_TAC[IMAGE_LIFT_REAL_INTERVAL; o_DEF; LIFT_CMUL] THEN DISCH_THEN(MP_TAC o MATCH_MP INTEGRABLE_BOUNDED_VARIATION_PRODUCT) THEN REWRITE_TAC[LIFT_DROP]);; let REAL_LEBESGUE_DIFFERENTIATION_THEOREM = prove (`!f s. is_realinterval s /\ f has_bounded_real_variation_on s ==> real_negligible {x | x IN s /\ ~(f real_differentiable atreal x)}`, REPEAT GEN_TAC THEN REWRITE_TAC[real_negligible] THEN REWRITE_TAC[has_bounded_real_variation_on; IS_REALINTERVAL_IS_INTERVAL] THEN DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_DIFFERENTIATION_THEOREM) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] NEGLIGIBLE_SUBSET) THEN REWRITE_TAC[REAL_DIFFERENTIABLE_AT] THEN SET_TAC[]);; let REAL_LEBESGUE_DIFFERENTIATION_THEOREM_ALT = prove (`!f s. is_realinterval s /\ f has_bounded_real_variation_on s ==> ?t. t SUBSET s /\ real_negligible t /\ !x. x IN s DIFF t ==> f real_differentiable atreal x`, REPEAT STRIP_TAC THEN EXISTS_TAC `{x | x IN s /\ ~(f real_differentiable atreal x)}` THEN ASM_SIMP_TAC[REAL_LEBESGUE_DIFFERENTIATION_THEOREM; SUBSET_RESTRICT] THEN REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN CONV_TAC TAUT);; let REAL_LEBESGUE_DIFFERENTIATION_THEOREM_INCREASING = prove (`!f s. is_realinterval s /\ (!x y. x IN s /\ y IN s /\ x <= y ==> f x <= f y) ==> real_negligible {x | x IN s /\ ~(f real_differentiable atreal x)}`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`] LEBESGUE_DIFFERENTIATION_THEOREM_INCREASING) THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[GSYM IS_REALINTERVAL_IS_INTERVAL; o_THM; LIFT_DROP] THEN REWRITE_TAC[real_negligible] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] NEGLIGIBLE_SUBSET) THEN REWRITE_TAC[REAL_DIFFERENTIABLE_AT] THEN SET_TAC[]);; let REAL_LEBESGUE_DIFFERENTIATION_THEOREM_DECREASING = prove (`!f s. is_realinterval s /\ (!x y. x IN s /\ y IN s /\ x <= y ==> f y <= f x) ==> real_negligible {x | x IN s /\ ~(f real_differentiable atreal x)}`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`lift o f o drop`; `IMAGE lift s`] LEBESGUE_DIFFERENTIATION_THEOREM_DECREASING) THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN ASM_SIMP_TAC[GSYM IS_REALINTERVAL_IS_INTERVAL; o_THM; LIFT_DROP] THEN REWRITE_TAC[real_negligible] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] NEGLIGIBLE_SUBSET) THEN REWRITE_TAC[REAL_DIFFERENTIABLE_AT] THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Lebesgue density theorem. This isn't about R specifically, but it's most *) (* naturally stated as a real limit so it ends up here in this file. *) (* ------------------------------------------------------------------------- *) let LEBESGUE_DENSITY_THEOREM = prove (`!s:real^N->bool. lebesgue_measurable s ==> ?k. negligible k /\ !x. ~(x IN k) ==> ((\e. measure(s INTER cball(x,e)) / measure(cball(x,e))) ---> (if x IN s then &1 else &0)) (atreal(&0) within {e | &0 < e})`, GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP LEBESGUE_DENSITY_THEOREM_LIFT_CBALL) THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN REWRITE_TAC[REALLIM_WITHINREAL; LIM_WITHIN] THEN REWRITE_TAC[FORALL_LIFT; IN_ELIM_THM; LIFT_DROP; DIST_1] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [COND_RAND] THEN REWRITE_TAC[DROP_VEC]);;