(* Author: Andreas Lochbihler, ETH Zurich Author: Joshua Schneider, ETH Zurich *) section \Least and greatest fixpoints\ theory Fixpoints imports Axiomatised_BNF_CC begin subsection \Least fixpoint\ subsubsection \\BNFCC{} structure\ context notes [[typedef_overloaded, bnf_internals]] begin datatype (set_T: 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T = C_T (D_T: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T, 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) G") for map: mapl_T rel: rell_T end inductive rel_T :: "('l1 \ 'l1' \ bool) \ ('co1 \ 'co1' \ bool) \ ('co2 \ 'co2' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \ ('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) T \ bool" for L1 Co1 Co2 Contra1 Contra2 where "rel_T L1 Co1 Co2 Contra1 Contra2 (C_T x) (C_T y)" if "rel_G (rel_T L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 x y" primrec map_T :: "('l1 \ 'l1') \ ('co1 \ 'co1') \ ('co2 \ 'co2') \ ('contra1' \ 'contra1) \ ('contra2' \ 'contra2) \ ('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \ ('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) T" where "map_T l1 co1 co2 contra1 contra2 (C_T x) = C_T (map_G id id co1 co2 contra1 contra2 (mapl_G (map_T l1 co1 co2 contra1 contra2) l1 x))" text \ The mapper and relator generated by the datatype package coincide with our generalised definitions restricted to live arguments. \ lemma rell_T_alt_def: "rell_T L1 = rel_T L1 (=) (=) (=) (=)" apply (intro ext iffI) apply (erule T.rel_induct) apply (unfold rell_G_def) apply (erule rel_T.intros) apply (erule rel_T.induct) apply (rule T.rel_intros) apply (unfold rell_G_def) apply (erule rel_G_mono') apply (auto) done lemma mapl_T_alt_def: "mapl_T l1 = map_T l1 id id id id" supply id_apply[simp del] apply (rule ext) subgoal for x apply (induction x) apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified]) apply (fold mapl_G_def) apply (erule mapl_G_cong) apply (rule refl) done done lemma rel_T_mono [mono]: "\ L1 \ L1'; Co1 \ Co1'; Co2 \ Co2'; Contra1' \ Contra1; Contra2' \ Contra2 \ \ rel_T L1 Co1 Co2 Contra1 Contra2 \ rel_T L1' Co1' Co2' Contra1' Contra2'" apply (rule predicate2I) apply (erule rel_T.induct) apply (rule rel_T.intros) apply (erule rel_G_mono') apply (auto) done lemma rel_T_eq: "rel_T (=) (=) (=) (=) (=) = (=)" unfolding rell_T_alt_def[symmetric] T.rel_eq .. lemma rel_T_conversep: "rel_T L1\\ Co1\\ Co2\\ Contra1\\ Contra2\\ = (rel_T L1 Co1 Co2 Contra1 Contra2)\\" apply (intro ext iffI) apply (simp) apply (erule rel_T.induct) apply (rule rel_T.intros) apply (rewrite conversep_iff[symmetric]) apply (fold rel_G_conversep) apply (erule rel_G_mono'; blast) apply (simp) apply (erule rel_T.induct) apply (rule rel_T.intros) apply (rewrite conversep_iff[symmetric]) apply (unfold rel_G_conversep[symmetric] conversep_conversep) apply (erule rel_G_mono'; blast) done lemma map_T_id0: "map_T id id id id id = id" unfolding mapl_T_alt_def[symmetric] T.map_id0 .. lemma map_T_id: "map_T id id id id id x = x" by (simp add: map_T_id0) lemma map_T_comp: "map_T l1 co1 co2 contra1 contra2 \ map_T l1' co1' co2' contra1' contra2' = map_T (l1 \ l1') (co1 \ co1') (co2 \ co2') (contra1' \ contra1) (contra2' \ contra2)" apply (rule ext) subgoal for x apply (induction x) apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified]) apply (fold comp_def) apply (subst (1 2) map_G_mapl_G) apply (rule arg_cong[where f="map_G _ _ _ _ _ _"]) apply (rule mapl_G_cong) apply (simp_all) done done lemma map_T_parametric: "rel_fun (rel_fun L1 L1') (rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') (rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) (rel_fun (rel_T L1 Co1 Co2 Contra1 Contra2) (rel_T L1' Co1' Co2' Contra1' Contra2')))))) map_T map_T" apply (intro rel_funI) apply (erule rel_T.induct) apply (simp) apply (rule rel_T.intros) apply (fold map_G_mapl_G) apply (erule map_G_rel_cong) apply (blast elim: rel_funE)+ done definition rel_T_pos_distr_cond :: "('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('l1 \ 'l1' \ 'l1'' \ 'f) itself \ bool" where "rel_T_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \ (\(L1 :: 'l1 \ 'l1' \ bool) (L1' :: 'l1' \ 'l1'' \ bool). (rel_T L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) T \ _) OO rel_T L1' Co1' Co2' Contra1' Contra2' \ rel_T (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2'))" definition rel_T_neg_distr_cond :: "('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('l1 \ 'l1' \ 'l1'' \ 'f) itself \ bool" where "rel_T_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \ (\(L1 :: 'l1 \ 'l1' \ bool) (L1' :: 'l1' \ 'l1'' \ bool). rel_T (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') \ (rel_T L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) T \ _) OO rel_T L1' Co1' Co2' Contra1' Contra2')" text \ We inherit the conditions for subdistributivity over relation composition via a composition witness, which is derived from a witness for the underlying functor @{type G}. \ primrec rel_T_witness :: "('l1 \ 'l1'' \ bool) \ ('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \ ('l1 \ 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T" where "rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (C_T x) Cy = C_T (mapl_G (\((x, f), y). f y) id (rel_G_witness (\(x, f) y. rel_T (\x (x', y). x' = x \ L1 x y) Co1 Co2 Contra1 Contra2 x (f y) \ rel_T (\(x, y') y. y' = y \ L1 x y) Co1' Co2' Contra1' Contra2' (f y) y) L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (mapl_G (\x. (x, rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x)) id x, D_T Cy)))" lemma rel_T_pos_distr_imp: fixes Co1 :: "'co1 \ 'co1' \ bool" and Co1' :: "'co1' \ 'co1'' \ bool" and Co2 :: "'co2 \ 'co2' \ bool" and Co2' :: "'co2' \ 'co2'' \ bool" and Contra1 :: "'contra1 \ 'contra1' \ bool" and Contra1' :: "'contra1' \ 'contra1'' \ bool" and Contra2 :: "'contra2 \ 'contra2' \ bool" and Contra2' :: "'contra2' \ 'contra2'' \ bool" and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \ ('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) T \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \ 'l1 \ 'l1' \ 'l1'' \ 'f) itself" and tytok_T :: "('l1 \ 'l1' \ 'l1'' \ 'f) itself" assumes "rel_G_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" shows "rel_T_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T" unfolding rel_T_pos_distr_cond_def apply (intro allI predicate2I) apply (erule relcomppE) subgoal premises prems for L1 L1' x z y using prems apply (induction arbitrary: z) apply (erule rel_T.cases) apply (simp) apply (rule rel_T.intros) apply (drule (1) rel_G_pos_distr[THEN predicate2D, OF assms relcomppI]) apply (erule rel_G_mono'; blast) done done lemma fixes L1 :: "'l1 \ 'l1'' \ bool" and Co1 :: "'co1 \ 'co1' \ bool" and Co1' :: "'co1' \ 'co1'' \ bool" and Co2 :: "'co2 \ 'co2' \ bool" and Co2' :: "'co2' \ 'co2'' \ bool" and Contra1 :: "'contra1 \ 'contra1' \ bool" and Contra1' :: "'contra1' \ 'contra1'' \ bool" and Contra2 :: "'contra2 \ 'contra2' \ bool" and Contra2' :: "'contra2' \ 'contra2'' \ bool" and tytok_G :: "((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \ (('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \ ('l1 \ 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \ ((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \ (('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \ ('l1 \ 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T) \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \ 'l1 \ ('l1 \ 'l1'') \ 'l1'' \ 'f) itself" and x :: "(_, _, _, _, _, 'f) T" assumes cond: "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" and rel_OO: "rel_T L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y" shows rel_T_witness1: "rel_T (\x (x', y). x' = x \ L1 x y) Co1 Co2 Contra1 Contra2 x (rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y)" and rel_T_witness2: "rel_T (\(x, y') y. y' = y \ L1 x y) Co1' Co2' Contra1' Contra2' (rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y) y" using rel_OO apply (induction) subgoal premises prems for x y proof- have x_expansion: "x = mapl_G fst id (mapl_G (\x. (x, rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x)) id x)" by (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified] map_G_id[unfolded id_def] comp_def) show ?thesis apply (simp) apply (rule rel_T.intros) apply (rewrite in "rel_G _ _ _ _ _ _ \ _" x_expansion) apply (rewrite in "rel_G _ _ _ _ _ _ _ \" mapl_G_def) apply (subst mapl_G_def) apply (rule map_G_rel_cong) apply (rule rel_G_witness1[OF cond]) apply (rewrite in "rel_G _ _ _ _ _ _ \ _" mapl_G_def) apply (rewrite in "rel_G _ _ _ _ _ _ _ \" map_G_id[symmetric]) apply (rule map_G_rel_cong[OF prems]) apply (clarsimp)+ done qed subgoal for x y apply (simp) apply (rule rel_T.intros) apply (rewrite in "rel_G _ _ _ _ _ _ \ _" mapl_G_def) apply (rewrite in "rel_G _ _ _ _ _ _ _ \" map_G_id[symmetric]) apply (rule map_G_rel_cong) apply (rule rel_G_witness2[OF cond[unfolded rel_T_neg_distr_cond_def]]) apply (rewrite in "rel_G _ _ _ _ _ _ \ _" mapl_G_def) apply (rewrite in "rel_G _ _ _ _ _ _ _ \" map_G_id[symmetric]) apply (erule map_G_rel_cong) apply (clarsimp)+ done done lemma rel_T_neg_distr_imp: fixes Co1 :: "'co1 \ 'co1' \ bool" and Co1' :: "'co1' \ 'co1'' \ bool" and Co2 :: "'co2 \ 'co2' \ bool" and Co2' :: "'co2' \ 'co2'' \ bool" and Contra1 :: "'contra1 \ 'contra1' \ bool" and Contra1' :: "'contra1' \ 'contra1'' \ bool" and Contra2 :: "'contra2 \ 'contra2' \ bool" and Contra2' :: "'contra2' \ 'contra2'' \ bool" and tytok_G :: "((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \ (('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \ ('l1 \ 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \ ((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \ (('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \ ('l1 \ 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T) \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \ 'l1 \ ('l1 \ 'l1'') \ 'l1'' \ 'f) itself" and tytok_T :: "('l1 \ 'l1' \ 'l1'' \ 'f) itself" assumes "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" shows "rel_T_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T" unfolding rel_T_neg_distr_cond_def proof (intro allI predicate2I relcomppI) fix L1 :: "'l1 \ 'l1' \ bool" and L1' :: "'l1' \ 'l1'' \ bool" and x :: "(_, _, _, _, _, 'f) T" and y :: "(_, _, _, _, _, 'f) T" assume *: "rel_T (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y" let ?z = "map_T (relcompp_witness L1 L1') id id id id (rel_T_witness (L1 OO L1') Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y)" show "rel_T L1 Co1 Co2 Contra1 Contra2 x ?z" apply(subst map_T_id[symmetric]) apply(rule map_T_parametric[unfolded rel_fun_def, rule_format, rotated -1]) apply(rule rel_T_witness1[OF assms *]) apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness) done show "rel_T L1' Co1' Co2' Contra1' Contra2' ?z y" apply(rewrite in "rel_T _ _ _ _ _ _ \" map_T_id[symmetric]) apply(rule map_T_parametric[unfolded rel_fun_def, rule_format, rotated -1]) apply(rule rel_T_witness2[OF assms *]) apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness) done qed lemma rel_T_pos_distr_cond_eq: "\tytok. rel_T_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" by (intro rel_T_pos_distr_imp rel_G_pos_distr_cond_eq) lemma rel_T_neg_distr_cond_eq: "\tytok. rel_T_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" by (intro rel_T_neg_distr_imp rel_G_neg_distr_cond_eq) text \The BNF axioms are proved by the datatype package.\ thm T.set_map T.bd_card_order T.bd_cinfinite T.set_bd T.map_cong[OF refl] T.rel_mono_strong T.wit subsubsection \Parametricity laws\ context includes lifting_syntax begin lemma C_T_parametric: "(rel_G (rel_T L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 ===> rel_T L1 Co1 Co2 Contra1 Contra2) C_T C_T" by (fast elim: rel_T.intros) lemma D_T_parametric: "(rel_T L1 Co1 Co2 Contra1 Contra2 ===> rel_G (rel_T L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2) D_T D_T" by (fastforce elim: rel_T.cases) lemma rec_T_parametric: "((rel_G (rel_prod (rel_T L1 Co1 Co2 Contra1 Contra2) A) L1 Co1 Co2 Contra1 Contra2 ===> A) ===> rel_T L1 Co1 Co2 Contra1 Contra2 ===> A) rec_T rec_T" apply (intro rel_funI) subgoal premises prems for f g x y using prems(2) apply (induction) apply (simp) apply (rule prems(1)[THEN rel_funD]) apply (unfold mapl_G_def) apply (erule map_G_rel_cong) apply (auto) done done end subsection \Greatest fixpoints\ subsubsection \\BNFCC{} structure\ context notes [[typedef_overloaded, bnf_internals]] begin codatatype (set_U: 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U = C_U (D_U: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U, 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) G") for map: mapl_U rel: rell_U end coinductive rel_U :: "('l1 \ 'l1' \ bool) \ ('co1 \ 'co1' \ bool) \ ('co2 \ 'co2' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \ ('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) U \ bool" for L1 Co1 Co2 Contra1 Contra2 where "rel_U L1 Co1 Co2 Contra1 Contra2 x y" if "rel_G (rel_U L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 (D_U x) (D_U y)" primcorec map_U :: "('l1 \ 'l1') \ ('co1 \ 'co1') \ ('co2 \ 'co2') \ ('contra1' \ 'contra1) \ ('contra2' \ 'contra2) \ ('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \ ('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) U" where "D_U (map_U l1 co1 co2 contra1 contra2 x) = mapl_G (map_U l1 co1 co2 contra1 contra2) l1 (map_G id id co1 co2 contra1 contra2 (D_U x))" lemma rell_U_alt_def: "rell_U L1 = rel_U L1 (=) (=) (=) (=)" apply (intro ext iffI) apply (erule rel_U.coinduct) apply (erule U.rel_cases) apply (simp add: rell_G_def) apply (erule rel_G_mono'; blast) apply (erule U.rel_coinduct) apply (erule rel_U.cases) apply (simp add: rell_G_def) done lemma mapl_U_alt_def: "mapl_U l1 = map_U l1 id id id id" supply id_apply[simp del] apply (rule ext) subgoal for x apply (coinduction arbitrary: x) apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified] U.map_sel) apply (unfold rell_G_def) apply (rule map_G_rel_cong[OF rel_G_eq_refl]) apply (auto) done done lemma rel_U_mono [mono]: "\ L1 \ L1'; Co1 \ Co1'; Co2 \ Co2'; Contra1' \ Contra1; Contra2' \ Contra2 \ \ rel_U L1 Co1 Co2 Contra1 Contra2 \ rel_U L1' Co1' Co2' Contra1' Contra2'" apply (rule predicate2I) apply (erule rel_U.coinduct[of "rel_U L1 Co1 Co2 Contra1 Contra2"]) apply (erule rel_U.cases) apply (simp) apply (erule rel_G_mono') apply (blast)+ done lemma rel_U_eq: "rel_U (=) (=) (=) (=) (=) = (=)" unfolding rell_U_alt_def[symmetric] U.rel_eq .. lemma rel_U_conversep: "rel_U L1\\ Co1\\ Co2\\ Contra1\\ Contra2\\ = (rel_U L1 Co1 Co2 Contra1 Contra2)\\" apply (intro ext iffI) apply (simp) apply (erule rel_U.coinduct) apply (erule rel_U.cases) apply (simp del: conversep_iff) apply (rewrite conversep_iff[symmetric]) apply (fold rel_G_conversep) apply (erule rel_G_mono'; blast) apply (erule rel_U.coinduct) apply (subst (asm) conversep_iff) apply (erule rel_U.cases) apply (simp del: conversep_iff) apply (rewrite conversep_iff[symmetric]) apply (unfold rel_G_conversep[symmetric] conversep_conversep) apply (erule rel_G_mono'; blast) done lemma map_U_id0: "map_U id id id id id = id" unfolding mapl_U_alt_def[symmetric] U.map_id0 .. lemma map_U_id: "map_U id id id id id x = x" by (simp add: map_U_id0) lemma map_U_comp: "map_U l1 co1 co2 contra1 contra2 \ map_U l1' co1' co2' contra1' contra2' = map_U (l1 \ l1') (co1 \ co1') (co2 \ co2') (contra1' \ contra1) (contra2' \ contra2)" apply (rule ext) subgoal for x apply (coinduction arbitrary: x) apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified]) apply (unfold rell_G_def) apply (rule map_G_rel_cong[OF rel_G_eq_refl]) apply (auto) done done lemma map_U_parametric: "rel_fun (rel_fun L1 L1') (rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2') (rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2) (rel_fun (rel_U L1 Co1 Co2 Contra1 Contra2) (rel_U L1' Co1' Co2' Contra1' Contra2')))))) map_U map_U" apply (intro rel_funI) apply (coinduction) apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified]) apply (erule rel_U.cases) apply (hypsubst) apply (erule map_G_rel_cong) apply (blast elim: rel_funE)+ done definition rel_U_pos_distr_cond :: "('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('l1 \ 'l1' \ 'l1'' \ 'f) itself \ bool" where "rel_U_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \ (\(L1 :: 'l1 \ 'l1' \ bool) (L1' :: 'l1' \ 'l1'' \ bool). (rel_U L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) U \ _) OO rel_U L1' Co1' Co2' Contra1' Contra2' \ rel_U (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2'))" definition rel_U_neg_distr_cond :: "('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('l1 \ 'l1' \ 'l1'' \ 'f) itself \ bool" where "rel_U_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \ (\(L1 :: 'l1 \ 'l1' \ bool) (L1' :: 'l1' \ 'l1'' \ bool). rel_U (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') \ (rel_U L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) U \ _) OO rel_U L1' Co1' Co2' Contra1' Contra2')" primcorec rel_U_witness :: "('l1 \ 'l1'' \ bool) \ ('co1 \ 'co1' \ bool) \ ('co1' \ 'co1'' \ bool) \ ('co2 \ 'co2' \ bool) \ ('co2' \ 'co2'' \ bool) \ ('contra1 \ 'contra1' \ bool) \ ('contra1' \ 'contra1'' \ bool) \ ('contra2 \ 'contra2' \ bool) \ ('contra2' \ 'contra2'' \ bool) \ ('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \ ('l1 \ 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) U" where "D_U (rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' xy) = mapl_G (rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2') id (rel_G_witness (rel_U L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2')) L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (D_U (fst xy), D_U (snd xy)))" lemma rel_U_pos_distr_imp: fixes Co1 :: "'co1 \ 'co1' \ bool" and Co1' :: "'co1' \ 'co1'' \ bool" and Co2 :: "'co2 \ 'co2' \ bool" and Co2' :: "'co2' \ 'co2'' \ bool" and Contra1 :: "'contra1 \ 'contra1' \ bool" and Contra1' :: "'contra1' \ 'contra1'' \ bool" and Contra2 :: "'contra2 \ 'contra2' \ bool" and Contra2' :: "'contra2' \ 'contra2'' \ bool" and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \ ('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) U \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \ 'l1 \ 'l1' \ 'l1'' \ 'f) itself" and tytok_T :: "('l1 \ 'l1' \ 'l1'' \ 'f) itself" assumes "rel_G_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" shows "rel_U_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T" unfolding rel_U_pos_distr_cond_def apply (intro allI predicate2I) apply (erule relcomppE) subgoal premises prems for L1 L1' x z y using prems apply (coinduction arbitrary: x y z) apply (simp) apply (rule rel_G_pos_distr[THEN predicate2D, OF assms relcomppI, THEN rel_G_mono']) apply (auto elim: rel_U.cases) done done lemma rel_U_witness1: fixes L1 :: "'l1 \ 'l1'' \ bool" and Co1 :: "'co1 \ 'co1' \ bool" and Co1' :: "'co1' \ 'co1'' \ bool" and Co2 :: "'co2 \ 'co2' \ bool" and Co2' :: "'co2' \ 'co2'' \ bool" and Contra1 :: "'contra1 \ 'contra1' \ bool" and Contra1' :: "'contra1' \ 'contra1'' \ bool" and Contra2 :: "'contra2 \ 'contra2' \ bool" and Contra2' :: "'contra2' \ 'contra2'' \ bool" and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \ (('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U) \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \ 'l1 \ ('l1 \ 'l1'') \ 'l1'' \ 'f) itself" and x :: "(_, _, _, _, _, 'f) U" assumes cond: "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" and rel_OO: "rel_U L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y" shows "rel_U (\x (x', y). x' = x \ L1 x y) Co1 Co2 Contra1 Contra2 x (rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y))" using rel_OO apply (coinduction arbitrary: x y) apply (erule rel_U.cases) apply (clarsimp) apply (rewrite in "rel_G _ _ _ _ _ _ \ _" map_G_id[symmetric]) apply (subst mapl_G_def) apply (rule map_G_rel_cong) apply (erule rel_G_witness1[OF cond]) apply (auto) done lemma rel_U_witness2: fixes L1 :: "'l1 \ 'l1'' \ bool" and Co1 :: "'co1 \ 'co1' \ bool" and Co1' :: "'co1' \ 'co1'' \ bool" and Co2 :: "'co2 \ 'co2' \ bool" and Co2' :: "'co2' \ 'co2'' \ bool" and Contra1 :: "'contra1 \ 'contra1' \ bool" and Contra1' :: "'contra1' \ 'contra1'' \ bool" and Contra2 :: "'contra2 \ 'contra2' \ bool" and Contra2' :: "'contra2' \ 'contra2'' \ bool" and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \ (('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U) \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \ 'l1 \ ('l1 \ 'l1'') \ 'l1'' \ 'f) itself" and x :: "(_, _, _, _, _, 'f) U" assumes cond: "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" and rel_OO: "rel_U L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y" shows "rel_U (\(x, y') y. y' = y \ L1 x y) Co1' Co2' Contra1' Contra2' (rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y)) y" using rel_OO apply (coinduction arbitrary: x y) apply (erule rel_U.cases) apply (clarsimp) apply (rewrite in "rel_G _ _ _ _ _ _ _ \" map_G_id[symmetric]) apply (subst mapl_G_def) apply (rule map_G_rel_cong) apply (erule rel_G_witness2[OF cond]) apply (auto) done lemma rel_U_neg_distr_imp: fixes Co1 :: "'co1 \ 'co1' \ bool" and Co1' :: "'co1' \ 'co1'' \ bool" and Co2 :: "'co2 \ 'co2' \ bool" and Co2' :: "'co2' \ 'co2'' \ bool" and Contra1 :: "'contra1 \ 'contra1' \ bool" and Contra1' :: "'contra1' \ 'contra1'' \ bool" and Contra2 :: "'contra2 \ 'contra2' \ bool" and Contra2' :: "'contra2' \ 'contra2'' \ bool" and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \ (('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U) \ ('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \ 'l1 \ ('l1 \ 'l1'') \ 'l1'' \ 'f) itself" and tytok_T :: "('l1 \ 'l1' \ 'l1'' \ 'f) itself" assumes "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G" shows "rel_U_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T" unfolding rel_U_neg_distr_cond_def proof (intro allI predicate2I relcomppI) fix L1 :: "'l1 \ 'l1' \ bool" and L1' :: "'l1' \ 'l1'' \ bool" and x :: "(_, _, _, _, _, 'f) U" and y :: "(_, _, _, _, _, 'f) U" assume *: "rel_U (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y" let ?z = "map_U (relcompp_witness L1 L1') id id id id (rel_U_witness (L1 OO L1') Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y))" show "rel_U L1 Co1 Co2 Contra1 Contra2 x ?z" apply(subst map_U_id[symmetric]) apply(rule map_U_parametric[unfolded rel_fun_def, rule_format, rotated -1]) apply(rule rel_U_witness1[OF assms *]) apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness) done show "rel_U L1' Co1' Co2' Contra1' Contra2' ?z y" apply(rewrite in "rel_U _ _ _ _ _ _ \" map_U_id[symmetric]) apply(rule map_U_parametric[unfolded rel_fun_def, rule_format, rotated -1]) apply(rule rel_U_witness2[OF assms *]) apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness) done qed lemma rel_U_pos_distr_cond_eq: "\tytok. rel_U_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" by (intro rel_U_pos_distr_imp rel_G_pos_distr_cond_eq) lemma rel_U_neg_distr_cond_eq: "\tytok. rel_U_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok" by (intro rel_U_neg_distr_imp rel_G_neg_distr_cond_eq) text \The BNF axioms are proved by the datatype package.\ thm U.set_map U.bd_card_order U.bd_cinfinite U.set_bd U.map_cong[OF refl] U.rel_mono_strong U.wit subsubsection \Parametricity laws\ context includes lifting_syntax begin lemma C_U_parametric: "(rel_G (rel_U L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 ===> rel_U L1 Co1 Co2 Contra1 Contra2) C_U C_U" by (fastforce intro: rel_U.intros) lemma D_U_parametric: "(rel_U L1 Co1 Co2 Contra1 Contra2 ===> rel_G (rel_U L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2) D_U D_U" by (fast elim: rel_U.cases) lemma corec_U_parametric: "((A ===> rel_G (rel_sum (rel_U L1 Co1 Co2 Contra1 Contra2) A) L1 Co1 Co2 Contra1 Contra2) ===> A ===> rel_U L1 Co1 Co2 Contra1 Contra2) corec_U corec_U" apply (intro rel_funI) subgoal premises prems for f g x y using prems(2) apply (coinduction arbitrary: x y) apply (simp) apply (unfold mapl_G_def) apply (rule map_G_rel_cong) apply (erule prems(1)[THEN rel_funD]) apply (fastforce elim: rel_sum.cases) apply (simp_all) done done end end