(* Author: Andreas Lochbihler, ETH Zurich Author: Joshua Schneider, ETH Zurich *) section \Example: deterministic discrete system\ theory DDS imports Concrete_Examples "HOL-Library.Rewrite" "HOL-Library.FSet" begin unbundle lifting_syntax subsection \Definition and generalised mapper and relator\ codatatype ('a, 'b) dds = DDS (run: "'a \ 'b \ ('a, 'b) dds") for map: map_dds' rel: rel_dds' primcorec map_dds :: "('a' \ 'a) \ ('b \ 'b') \ ('a, 'b) dds \ ('a', 'b') dds" where "run (map_dds f g S) = (\a. map_prod g (map_dds f g) (run S (f a)))" lemma map_dds_id: "map_dds id id S = S" by(coinduction arbitrary: S)(auto simp add: rel_fun_def prod.rel_map intro: prod.rel_refl_strong) lemma map_dds_comp: "map_dds f g (map_dds f' g' S) = map_dds (f' \ f) (g \ g') S" by(coinduction arbitrary: S)(auto simp add: rel_fun_def prod.rel_map intro: prod.rel_refl_strong) coinductive rel_dds :: "('a \ 'a' \ bool) \ ('b \ 'b' \ bool) \ ('a, 'b) dds \ ('a', 'b') dds \ bool" for A B where "rel_dds A B S S'" if "rel_fun A (rel_prod B (rel_dds A B)) (run S) (run S')" lemma rel_dds'_rel_dds: "rel_dds' B = rel_dds (=) B" apply (intro ext iffI) apply (erule rel_dds.coinduct) apply (erule dds.rel_cases) apply (simp) apply (erule rel_fun_mono[THEN predicate2D, OF order_refl, rotated -1]) apply (rule prod.rel_mono[OF order_refl]) apply (blast) apply (erule dds.rel_coinduct) apply (erule rel_dds.cases) apply (simp) done lemma rel_dds_eq [relator_eq]: "rel_dds (=) (=) = (=)" apply(rule ext iffI)+ subgoal by(erule dds.coinduct)(erule rel_dds.cases; simp) subgoal by(erule rel_dds.coinduct)(auto simp add: rel_fun_def intro!: prod.rel_refl_strong) done lemma rel_dds_mono [relator_mono]: "rel_dds A B \ rel_dds A' B'" if "A' \ A" "B \ B'" apply(rule predicate2I) apply(erule rel_dds.coinduct) apply(erule rel_dds.cases) apply simp apply(erule BNF_Def.rel_fun_mono) apply(auto intro: that[THEN predicate2D]) done lemma rel_dds_conversep: "rel_dds A\\ B\\ = (rel_dds A B)\\" apply(intro ext iffI; simp) subgoal apply(erule rel_dds.coinduct; erule rel_dds.cases; simp del: conversep_iff) apply(rewrite conversep_iff[symmetric]) apply(fold rel_fun_conversep prod.rel_conversep) apply(erule BNF_Def.rel_fun_mono) apply(auto simp del: conversep_iff) done subgoal apply(erule rel_dds.coinduct; erule rel_dds.cases; clarsimp simp del: conversep_iff) apply(rewrite in asm conversep_iff[symmetric]) apply(fold rel_fun_conversep prod.rel_conversep) apply(erule BNF_Def.rel_fun_mono) apply(auto simp del: conversep_iff) done done lemma DDS_parametric [transfer_rule]: "((A ===> rel_prod B (rel_dds A B)) ===> rel_dds A B) DDS DDS" by(auto intro!: rel_dds.intros) lemma run_parametric [transfer_rule]: "(rel_dds A B ===> A ===> rel_prod B (rel_dds A B)) run run" by(auto elim: rel_dds.cases) lemma corec_dds_parametric [transfer_rule]: "((S ===> A ===> rel_prod B (rel_sum (rel_dds A B) S)) ===> S ===> rel_dds A B) corec_dds corec_dds" apply(rule rel_funI)+ subgoal premises prems for f g s s' using prems(2) apply(coinduction arbitrary: s s') apply simp apply(rule comp_transfer[THEN rel_funD, THEN rel_funD, rotated]) apply(erule prems(1)[THEN rel_funD]) apply(rule prod.map_transfer[THEN rel_funD, THEN rel_funD, OF id_transfer]) apply(fastforce elim!: rel_sum.cases) done done lemma map_dds_parametric [transfer_rule]: "((A' ===> A) ===> (B ===> B') ===> rel_dds A B ===> rel_dds A' B') map_dds map_dds" unfolding map_dds_def by transfer_prover lemmas map_dds_rel_cong = map_dds_parametric[unfolded rel_fun_def, rule_format, rotated -1] lemma rel_dds_Grp: "rel_dds (Grp UNIV f)\\ (Grp UNIV g) = Grp UNIV (map_dds f g)" apply(rule ext iffI)+ apply(simp add: Grp_apply) apply(rule sym) apply(fold rel_dds_eq) apply(rewrite in "rel_dds _ _ _ \" map_dds_id[symmetric]) apply(erule map_dds_parametric[THEN rel_funD, THEN rel_funD, THEN rel_funD, rotated -1]; simp add: Grp_apply rel_fun_def) apply(erule GrpE; clarsimp) apply(rewrite in "rel_dds _ _ \" map_dds_id[symmetric]) apply(rule map_dds_parametric[THEN rel_funD, THEN rel_funD, THEN rel_funD, rotated -1]) apply(subst rel_dds_eq; simp) apply(simp_all add: Grp_apply rel_fun_def) done lemma rel_dds_pos_distr [relator_distr]: "rel_dds A B OO rel_dds C D \ rel_dds (A OO C) (B OO D)" apply (rule predicate2I) apply (erule relcomppE) subgoal for x y z apply (coinduction arbitrary: x y z) apply (simp) apply (rule rel_fun_mono[THEN predicate2D, OF order_refl, of "rel_prod B (rel_dds A B) OO rel_prod D (rel_dds C D)"]) apply (rule order_trans) apply (rule prod.rel_compp[symmetric, THEN eq_refl]) apply (rule prod.rel_mono[OF order_refl]) apply (blast) apply (rule rel_fun_pos_distr[THEN predicate2D]) apply (simp) apply (rule relcomppI) apply (auto elim: rel_dds.cases) done done lemma Quotient_dds [quot_map]: assumes "Quotient R1 Abs1 Rep1 T1" and "Quotient R2 Abs2 Rep2 T2" shows "Quotient (rel_dds R1 R2) (map_dds Rep1 Abs2) (map_dds Abs1 Rep2) (rel_dds T1 T2)" unfolding Quotient_alt_def5 proof (intro conjI, goal_cases) case 1 have "rel_dds T1 T2 \ rel_dds (Grp UNIV Rep1)\\ (Grp UNIV Abs2)" apply (rule rel_dds_mono) apply (rule assms(1)[unfolded Quotient_alt_def5, THEN conjunct2, THEN conjunct1, unfolded conversep_le_swap]) apply (rule assms(2)[unfolded Quotient_alt_def5, THEN conjunct1]) done also have "... = Grp UNIV (map_dds Rep1 Abs2)" using rel_dds_Grp . finally show ?case . next case 2 have "Grp UNIV (map_dds Abs1 Rep2) = rel_dds (Grp UNIV Abs1)\\ (Grp UNIV Rep2)" using rel_dds_Grp[symmetric] . also have "... \ rel_dds T1\\ T2\\" apply (rule rel_dds_mono) apply (simp) apply (rule assms(1)[unfolded Quotient_alt_def5, THEN conjunct1]) apply (rule assms(2)[unfolded Quotient_alt_def5, THEN conjunct2, THEN conjunct1]) done finally show ?case by (simp add: rel_dds_conversep) next case 3 show ?case apply (rule antisym) apply (rule predicate2I) apply (rule relcomppI) apply (subst map_dds_id[symmetric]) apply (erule map_dds_rel_cong) apply (simp_all)[2] apply (erule assms(1)[THEN Quotient_rep_equiv1]) apply (erule assms(2)[THEN Quotient_equiv_abs1]) apply (subst rel_dds_conversep[symmetric]) subgoal for x y apply (subgoal_tac "map_dds Rep1 Abs2 y = map_dds Rep1 Abs2 x") apply (simp) apply (subst (3) map_dds_id[symmetric]) apply (erule map_dds_rel_cong) apply (simp_all) apply (erule assms(1)[THEN Quotient_rep_equiv2]) apply (erule assms(2)[THEN Quotient_equiv_abs2]) apply (rule sym) apply (subst rel_dds_eq[symmetric]) apply (erule map_dds_rel_cong) apply (simp, rule assms(1)[THEN Quotient_rep_reflp]) apply (erule assms(2)[THEN Quotient_rel_abs]) done apply (unfold rel_dds_conversep[symmetric] assms[unfolded Quotient_alt_def5, THEN conjunct2, THEN conjunct2]) apply (rule rel_dds_pos_distr) done qed text \This is just the co-iterator.\ primcorec dds_of :: "('s \ 'a \ ('b \ 's)) \ 's \ ('a, 'b) dds" where "run (dds_of f s) = map_prod id (dds_of f) \ f s" lemma dds_of_parametric [transfer_rule]: "((S ===> A ===> rel_prod B S) ===> S ===> rel_dds A B) dds_of dds_of" unfolding dds_of_def by transfer_prover subsection \Evenness of partial sums\ definition even_psum :: "(int, bool) dds" where "even_psum = dds_of (\psum n. (even (psum + n), psum + n)) 0" definition even_psum_nat :: "(nat, bool) dds" where "even_psum_nat = map_dds int id even_psum" subsection \Composition\ primcorec compose :: "('a, 'b) dds \ ('b, 'c) dds \ ('a, 'c) dds" (infixl "\" 120) where "run (S1 \ S2) = (\a. let (b, S1') = run S1 a; (c, S2') = run S2 b in (c, S1' \ S2'))" lemma compose_parametric [transfer_rule]: "(rel_dds A B ===> rel_dds B C ===> rel_dds A C) (\) (\)" unfolding compose_def by transfer_prover text \ For the following lemma, a direct proof by induction is easy as the inner functor of the @{type dds} codatatype is fairly simple. \ lemma "map_dds f g S1 \ S2 = map_dds f id (S1 \ map_dds g id S2)" apply(coinduction arbitrary: S1 S2) apply(auto simp add: case_prod_map_prod rel_fun_def split: prod.split) done text \However, we can also follow the systematic route via parametricity:\ lemma compose_map1: "map_dds f g S1 \ S2 = map_dds f id (S1 \ map_dds g id S2)" for S1 :: "('a, 'b) dds" and S2 :: "('b, 'c) dds" using compose_parametric[of "(Grp UNIV f)\\" "Grp UNIV g" "Grp UNIV id :: 'c \ 'c \ bool"] apply(rewrite in "_ ===> rel_dds \ _ ===> _" in asm conversep_conversep[symmetric]) apply(rewrite in "_ ===> rel_dds _ \ ===> _" in asm conversep_Grp_id[symmetric]) apply(simp only: rel_dds_conversep rel_dds_Grp) apply(simp add: rel_fun_def Grp_apply) done lemma compose_map2: "S1 \ map_dds f g S2 = map_dds id g (map_dds id f S1 \ S2)" for S1 :: "('a, 'b) dds" and S2 :: "('b, 'c) dds" using compose_parametric[of "Grp UNIV id :: 'a \ 'a \ bool" "(Grp UNIV f)\\" "Grp UNIV g"] apply(rewrite in "rel_dds \ _ ===> _" in asm conversep_conversep[symmetric]) apply(rewrite in "_ ===> _ ===> rel_dds \ _" in asm conversep_Grp_id[symmetric]) apply(simp only: rel_dds_conversep rel_dds_Grp) apply(simp add: rel_fun_def Grp_apply) done primcorec parallel :: "('a, 'b) dds \ ('c, 'd) dds \ ('a + 'c, 'b + 'd) dds" (infixr "\" 130) where "run (S1 \ S2) = (\x. case x of Inl a \ let (b, S1') = run S1 a in (Inl b, S1' \ S2) | Inr c \ let (d, S2') = run S2 c in (Inr d, S1 \ S2'))" lemma parallel_parametric [transfer_rule]: "(rel_dds A B ===> rel_dds C D ===> rel_dds (rel_sum A C) (rel_sum B D)) (\) (\)" unfolding parallel_def by transfer_prover lemma map_parallel: "map_dds f h S1 \ map_dds g k S2 = map_dds (map_sum f g) (map_sum h k) (S1 \ S2)" using parallel_parametric[where A="(Grp UNIV f)\\" and B="Grp UNIV h" and C="(Grp UNIV g)\\" and D="Grp UNIV k"] by(simp add: sum.rel_conversep sum.rel_Grp rel_dds_Grp)(simp add: rel_fun_def Grp_apply) subsection \Graph traversal: refinement and quotients\ lemma finite_Image: "finite A \ finite (R `` A) \ (\x\A. finite {y. (x, y) \ R})" by(simp add: Image_def) context includes fset.lifting begin lift_definition fImage :: "('a \ 'b) fset \ 'a fset \ 'b fset" is Image parametric Image_parametric by(auto simp add: finite_Image intro: finite_subset[OF _ finite_imageI]) lemmas fImage_iff = Image_iff[Transfer.transferred] lemmas fImageI [intro] = ImageI[Transfer.transferred] lemmas fImageE [elim!] = ImageE[Transfer.transferred] lemmas rev_fImageI = rev_ImageI[Transfer.transferred] lemmas fImage_mono = Image_mono[Transfer.transferred] lifting_update fset.lifting lifting_forget fset.lifting end type_synonym 'a graph = "('a \ 'a) fset" definition traverse :: "'a graph \ ('a fset, 'a fset) dds" where "traverse E = dds_of (\visited A. ((fImage E A) |-| visited, visited |\| A)) {||}" type_synonym 'a graph' = "('a \ 'a) list" definition traverse_impl :: "'a graph' \ ('a list, 'a list) dds" where "traverse_impl E = dds_of (\visited A. (map snd [(x, y)\E . x \ set A \ y |\| visited], visited |\| fset_of_list A)) {||}" definition list_fset_rel :: "'a list \ 'a fset \ bool" where "list_fset_rel xs A \ fset_of_list xs = A" lemma traverse_refinement: \ \This is the refinement lemma.\ "(list_fset_rel ===> rel_dds list_fset_rel list_fset_rel) traverse_impl traverse" unfolding traverse_impl_def traverse_def apply(rule rel_funI) apply(rule dds_of_parametric[where S="(=)", THEN rel_funD, THEN rel_funD]) apply(auto simp add: rel_fun_def list_fset_rel_def fset_of_list_elem intro: rev_fimage_eqI) done lemma fset_of_list_parametric [transfer_rule]: "(list_all2 A ===> rel_fset A) fset_of_list fset_of_list" including fset.lifting unfolding rel_fun_def by transfer(rule list.set_transfer[unfolded rel_fun_def]) lemma traverse_impl_parametric [transfer_rule]: assumes [transfer_rule]: "bi_unique A" shows "(list_all2 (rel_prod A A) ===> rel_dds (list_all2 A) (list_all2 A)) traverse_impl traverse_impl" unfolding traverse_impl_def by transfer_prover text \ By constructing finite sets as a quotient of lists, we can synthesise an abstract version of @{const traverse_impl} automatically, together with a polymorphic refinement lemma. \ quotient_type 'a fset' = "'a list" / "vimage2p set set (=)" by (auto intro: equivpI reflpI sympI transpI simp add: vimage2p_def) lift_definition traverse'' :: "('a \ 'a) fset' \ ('a fset', 'a fset') dds" is "traverse_impl :: 'a graph' \ _" parametric traverse_impl_parametric unfolding traverse_impl_def apply (rule dds_of_parametric[where S="(=)", THEN rel_funD, THEN rel_funD]) apply (auto simp add: rel_fun_def vimage2p_def fset_of_list_elem) done subsection \Generalised rewriting\ definition accumulate :: "('a fset, 'a fset) dds" where "accumulate = dds_of (\A X. (A |\| X, A |\| X)) {||}" lemma accumulate_mono: "rel_dds (|\|) (|\|) accumulate accumulate" unfolding accumulate_def apply (rule dds_of_parametric[THEN rel_funD, THEN rel_funD, of "(|\|)"]) apply (intro rel_funI rel_prod.intros) apply (erule (1) funion_mono)+ apply (simp) done lemma traverse_mono: "((|\|) ===> rel_dds (=) (|\|)) traverse traverse" unfolding traverse_def apply (rule rel_funI) apply (rule dds_of_parametric[THEN rel_funD, THEN rel_funD, of "(=)"]) apply (intro rel_funI rel_prod.intros) apply (simp) apply (rule fminus_mono) apply (erule fImage_mono) apply (simp_all) done lemma assumes "G |\| H" shows "rel_dds (=) (|\|) (traverse G \ accumulate) (traverse H \ accumulate)" apply (rule compose_parametric[THEN rel_funD, THEN rel_funD]) apply (rule traverse_mono[THEN rel_funD]) apply (rule assms) apply (rule accumulate_mono) done definition seen :: "('a fset, 'a fset) dds" where "seen = dds_of (\S X. (S |\| X, S |\| X)) {||}" lemma seen_mono: "rel_dds (|\|) (|\|) seen seen" unfolding seen_def apply (rule dds_of_parametric[THEN rel_funD, THEN rel_funD, of "(|\|)"]) apply (intro rel_funI rel_prod.intros) apply (erule (1) finter_mono funion_mono)+ apply (simp) done lemma assumes "G |\| H" shows "rel_dds (=) (|\|) (traverse G \ seen) (traverse H \ seen)" apply (rule compose_parametric[THEN rel_funD, THEN rel_funD]) apply (rule traverse_mono[THEN rel_funD]) apply (rule assms) apply (rule seen_mono) done end