section \Intersection\ theory Intersection imports "HOL-Library.Monad_Syntax" Polygon Counterclockwise_2D_Arbitrary Affine_Form begin text \\label{sec:intersection}\ subsection \Polygons and @{term ccw}, @{term lex}, @{term psi}, @{term coll}\ lemma polychain_of_ccw_conjunction: assumes sorted: "ccw'.sortedP 0 Ps" assumes z: "z \ set (polychain_of Pc Ps)" shows "list_all (\(xi, xj). ccw xi xj (fst z) \ ccw xi xj (snd z)) (polychain_of Pc Ps)" using assms proof (induction Ps arbitrary: Pc z rule: list.induct) case (Cons P Ps) { assume "set Ps = {}" hence ?case using Cons by simp } moreover { assume "set Ps \ {}" hence "Ps \ []" by simp { fix a assume "a \ set Ps" hence "ccw' 0 P a" using Cons.prems by (auto elim!: linorder_list0.sortedP_Cons) } note ccw' = this have sorted': "linorder_list0.sortedP (ccw' 0) Ps" using Cons.prems by (auto elim!: linorder_list0.sortedP_Cons) from in_set_polychain_of_imp_sum_list[OF Cons(3)] obtain d where d: "z = (Pc + sum_list (take d (P # Ps)), Pc + sum_list (take (Suc d) (P # Ps)))" . from Cons(3) have disj: "z = (Pc, Pc + P) \ z \ set (polychain_of (Pc + P) Ps)" by auto let ?th = "\(xi, xj). ccw xi xj Pc \ ccw xi xj (Pc + P)" have la: "list_all ?th (polychain_of (Pc + P) Ps)" proof (rule list_allI) fix x assume x: "x \ set (polychain_of (Pc + P) Ps)" from in_set_polychain_of_imp_sum_list[OF this] obtain e where e: "x = (Pc + P + sum_list (take e Ps), Pc + P + sum_list (take (Suc e) Ps))" by auto { assume "e \ length Ps" hence "?th x" by (auto simp: e) } moreover { assume "e < length Ps" have 0: "\e. e < length Ps \ ccw' 0 P (Ps ! e)" by (rule ccw') (simp add: ) have 2: "0 < e \ ccw' 0 (P + sum_list (take e Ps)) (Ps ! e)" using \e < length Ps\ by (auto intro!: ccw'.add1 0 ccw'.sum2 sorted' ccw'.sorted_nth_less simp: sum_list_sum_nth) have "ccw Pc (Pc + P + sum_list (take e Ps)) (Pc + P + sum_list (take (Suc e) Ps))" by (cases "e = 0") (auto simp add: ccw_translate_origin take_Suc_eq add.assoc[symmetric] 0 2 intro!: ccw'_imp_ccw intro: cyclic) hence "ccw (Pc + P + sum_list (take e Ps)) (Pc + P + sum_list (take (Suc e) Ps)) Pc" by (rule cyclic) moreover have "0 < e \ ccw 0 (Ps ! e) (- sum_list (take e Ps))" using \e < length Ps\ by (auto simp add: take_Suc_eq add.assoc[symmetric] sum_list_sum_nth intro!: ccw'_imp_ccw ccw'.sum2 sorted' ccw'.sorted_nth_less) hence "ccw (Pc + P + sum_list (take e Ps)) (Pc + P + sum_list (take (Suc e) Ps)) (Pc + P)" by (cases "e = 0") (simp_all add: ccw_translate_origin take_Suc_eq) ultimately have "?th x" by (auto simp add: e) } ultimately show "?th x" by arith qed from disj have ?case proof assume z: "z \ set (polychain_of (Pc + P) Ps)" have "ccw 0 P (sum_list (take d (P # Ps)))" proof (cases d) case (Suc e) note e = this show ?thesis proof (cases e) case (Suc f) have "ccw 0 P (P + sum_list (take (Suc f) Ps))" using z by (force simp add: sum_list_sum_nth intro!: ccw'.sum intro: ccw' ccw'_imp_ccw) thus ?thesis by (simp add: e Suc) qed (simp add: e) qed simp hence "ccw Pc (Pc + P) (fst z)" by (simp add: d ccw_translate_origin) moreover from z have "ccw 0 P (P + sum_list (take d Ps))" by (cases d, force) (force simp add: sum_list_sum_nth intro!: ccw'_imp_ccw ccw'.sum intro: ccw')+ hence "ccw Pc (Pc + P) (snd z)" by (simp add: d ccw_translate_origin) moreover from z Cons.prems have "list_all (\(xi, xj). ccw xi xj (fst z) \ ccw xi xj (snd z)) (polychain_of (Pc + P) Ps)" by (intro Cons.IH) (auto elim!: linorder_list0.sortedP_Cons) ultimately show ?thesis by simp qed (simp add: la) } ultimately show ?case by blast qed simp lemma lex_polychain_of_center: "d \ set (polychain_of x0 xs) \ list_all (\x. lex x 0) xs \ lex (snd d) x0" proof (induction xs arbitrary: x0) case (Cons x xs) thus ?case by (auto simp add: lex_def lex_translate_origin dest!: Cons.IH) qed (auto simp: lex_translate_origin) lemma lex_polychain_of_last: "(c, d) \ set (polychain_of x0 xs) \ list_all (\x. lex x 0) xs \ lex (snd (last (polychain_of x0 xs))) d" proof (induction xs arbitrary: x0 c d) case (Cons x xs) let ?c1 = "c = x0 \ d = x0 + x" let ?c2 = "(c, d) \ set (polychain_of (x0 + x) xs)" from Cons(2) have "?c1 \ ?c2" by auto thus ?case proof assume ?c1 with Cons.prems show ?thesis by (auto intro!: lex_polychain_of_center) next assume ?c2 from Cons.IH[OF this] Cons.prems show ?thesis by auto qed qed (auto simp: lex_translate_origin) lemma distinct_fst_polychain_of: assumes "list_all (\x. x \ 0) xs" assumes "list_all (\x. lex x 0) xs" shows "distinct (map fst (polychain_of x0 xs))" using assms proof (induction xs arbitrary: x0) case Nil thus ?case by simp next case (Cons x xs) hence "\d. list_all (\x. lex x 0) (x # take d xs)" by (auto simp: list_all_iff dest!: in_set_takeD) from sum_list_nlex_eq_zero_iff[OF this] Cons.prems show ?case by (cases "xs = []") (auto intro!: Cons.IH elim!: in_set_polychain_of_imp_sum_list) qed lemma distinct_snd_polychain_of: assumes "list_all (\x. x \ 0) xs" assumes "list_all (\x. lex x 0) xs" shows "distinct (map snd (polychain_of x0 xs))" using assms proof (induction xs arbitrary: x0) case Nil thus ?case by simp next case (Cons x xs) have contra: "\d. xs \ [] \ list_all (\x. x \ 0) xs \ list_all ((=) 0) (take (Suc d) xs) \ False" by (auto simp: neq_Nil_conv) from Cons have "\d. list_all (\x. lex x 0) (take (Suc d) xs)" by (auto simp: list_all_iff dest!: in_set_takeD) from sum_list_nlex_eq_zero_iff[OF this] Cons.prems contra show ?case by (cases "xs = []") (auto intro!: Cons.IH elim!: in_set_polychain_of_imp_sum_list dest!: contra) qed subsection \Orient all entries\ lift_definition nlex_pdevs::"point pdevs \ point pdevs" is "\x n. if lex 0 (x n) then - x n else x n" by simp lemma pdevs_apply_nlex_pdevs[simp]: "pdevs_apply (nlex_pdevs x) n = (if lex 0 (pdevs_apply x n) then - pdevs_apply x n else pdevs_apply x n)" by transfer simp lemma nlex_pdevs_zero_pdevs[simp]: "nlex_pdevs zero_pdevs = zero_pdevs" by (auto intro!: pdevs_eqI) lemma pdevs_domain_nlex_pdevs[simp]: "pdevs_domain (nlex_pdevs x) = pdevs_domain x" by (auto simp: pdevs_domain_def) lemma degree_nlex_pdevs[simp]: "degree (nlex_pdevs x) = degree x" by (rule degree_cong) auto lemma pdevs_val_nlex_pdevs: assumes "e \ UNIV \ I" "uminus ` I = I" obtains e' where "e' \ UNIV \ I" "pdevs_val e x = pdevs_val e' (nlex_pdevs x)" using assms by (atomize_elim, intro exI[where x="\n. if lex 0 (pdevs_apply x n) then - e n else e n"]) (force simp: pdevs_val_pdevs_domain intro!: sum.cong) lemma pdevs_val_nlex_pdevs2: assumes "e \ UNIV \ I" "uminus ` I = I" obtains e' where "e' \ UNIV \ I" "pdevs_val e (nlex_pdevs x) = pdevs_val e' x" using assms by (atomize_elim, intro exI[where x="\n. (if lex 0 (pdevs_apply x n) then - e n else e n)"]) (force simp: pdevs_val_pdevs_domain intro!: sum.cong) lemma pdevs_val_selsort_ccw: assumes "distinct xs" assumes "e \ UNIV \ I" obtains e' where "e' \ UNIV \ I" "pdevs_val e (pdevs_of_list xs) = pdevs_val e' (pdevs_of_list (ccw.selsort 0 xs))" proof - have "set xs = set (ccw.selsort 0 xs)" "distinct xs" "distinct (ccw.selsort 0 xs)" by (simp_all add: assms) from this assms(2) obtain e' where "e' \ UNIV \ I" "pdevs_val e (pdevs_of_list xs) = pdevs_val e' (pdevs_of_list (ccw.selsort 0 xs))" by (rule pdevs_val_permute) thus thesis .. qed lemma pdevs_val_selsort_ccw2: assumes "distinct xs" assumes "e \ UNIV \ I" obtains e' where "e' \ UNIV \ I" "pdevs_val e (pdevs_of_list (ccw.selsort 0 xs)) = pdevs_val e' (pdevs_of_list xs)" proof - have "set (ccw.selsort 0 xs) = set xs" "distinct (ccw.selsort 0 xs)" "distinct xs" by (simp_all add: assms) from this assms(2) obtain e' where "e' \ UNIV \ I" "pdevs_val e (pdevs_of_list (ccw.selsort 0 xs)) = pdevs_val e' (pdevs_of_list xs)" by (rule pdevs_val_permute) thus thesis .. qed lemma lex_nlex_pdevs: "lex (pdevs_apply (nlex_pdevs x) i) 0" by (auto simp: lex_def algebra_simps prod_eq_iff) subsection \Lowest Vertex\ definition lowest_vertex::"'a::ordered_euclidean_space aform \ 'a" where "lowest_vertex X = fst X - sum_list (map snd (list_of_pdevs (snd X)))" lemma snd_abs: "snd (abs x) = abs (snd x)" by (metis abs_prod_def snd_conv) lemma lowest_vertex: fixes X Y::"(real*real) aform" assumes "e \ UNIV \ {-1 .. 1}" assumes "\i. snd (pdevs_apply (snd X) i) \ 0" assumes "\i. abs (snd (pdevs_apply (snd Y) i)) = abs (snd (pdevs_apply (snd X) i))" assumes "degree_aform Y = degree_aform X" assumes "fst Y = fst X" shows "snd (lowest_vertex X) \ snd (aform_val e Y)" proof - from abs_pdevs_val_le_tdev[OF assms(1), of "snd Y"] have "snd \pdevs_val e (snd Y)\ \ (\isnd (pdevs_apply (snd X) i)\)" unfolding lowest_vertex_def by (auto simp: aform_val_def tdev_def less_eq_prod_def snd_sum snd_abs assms) also have "\ = (\i \ snd (sum_list (map snd (list_of_pdevs (snd X))))" by (simp add: sum_list_list_of_pdevs dense_list_of_pdevs_def sum_list_distinct_conv_sum_set snd_sum atLeast0LessThan) finally show ?thesis by (auto simp: aform_val_def lowest_vertex_def minus_le_iff snd_abs abs_real_def assms split: if_split_asm) qed lemma sum_list_nonposI: fixes xs::"'a::ordered_comm_monoid_add list" shows "list_all (\x. x \ 0) xs \ sum_list xs \ 0" by (induct xs) (auto simp: intro!: add_nonpos_nonpos) lemma center_le_lowest: "fst (fst X) \ fst (lowest_vertex (fst X, nlex_pdevs (snd X)))" by (auto simp: lowest_vertex_def fst_sum_list intro!: sum_list_nonposI) (auto simp: lex_def list_all_iff list_of_pdevs_def dest!: in_set_butlastD split: if_split_asm) lemma lowest_vertex_eq_center_iff: "lowest_vertex (x0, nlex_pdevs (snd X)) = x0 \ snd X = zero_pdevs" proof assume "lowest_vertex (x0, nlex_pdevs (snd X)) = x0" then have "sum_list (map snd (list_of_pdevs (nlex_pdevs (snd X)))) = 0" by (simp add: lowest_vertex_def) moreover have "list_all (\x. Counterclockwise_2D_Arbitrary.lex x 0) (map snd (list_of_pdevs (nlex_pdevs (snd X))))" by (auto simp add: list_all_iff list_of_pdevs_def) ultimately have "\x\set (list_of_pdevs (nlex_pdevs (snd X))). snd x = 0" by (simp add: sum_list_nlex_eq_zero_iff list_all_iff) then have "pdevs_apply (snd X) i = pdevs_apply zero_pdevs i" for i by (simp add: list_of_pdevs_def split: if_splits) then show "snd X = zero_pdevs" by (rule pdevs_eqI) qed (simp add: lowest_vertex_def) subsection \Collinear Generators\ lemma scaleR_le_self_cancel: fixes c::"'a::ordered_real_vector" shows "a *\<^sub>R c \ c \ (1 < a \ c \ 0 \ a < 1 \ 0 \ c \ a = 1)" using scaleR_le_0_iff[of "a - 1" c] by (simp add: algebra_simps) lemma pdevs_val_coll: assumes coll: "list_all (coll 0 x) xs" assumes nlex: "list_all (\x. lex x 0) xs" assumes "x \ 0" assumes "f \ UNIV \ {-1 .. 1}" obtains e where "e \ {-1 .. 1}" "pdevs_val f (pdevs_of_list xs) = e *\<^sub>R (sum_list xs)" proof cases assume "sum_list xs = 0" have "pdevs_of_list xs = zero_pdevs" by (auto intro!: pdevs_eqI sum_list_nlex_eq_zeroI[OF nlex \sum_list xs = 0\] simp: pdevs_apply_pdevs_of_list list_all_iff dest!: nth_mem) hence "0 \ {-1 .. 1::real}" "pdevs_val f (pdevs_of_list xs) = 0 *\<^sub>R sum_list xs" by simp_all thus ?thesis .. next assume "sum_list xs \ 0" have "sum_list (map abs xs) \ 0" by (auto intro!: sum_list_nonneg) hence [simp]: "\sum_list (map abs xs) \ 0" by (metis \sum_list xs \ 0\ abs_le_zero_iff antisym_conv sum_list_abs) have collist: "list_all (coll 0 (sum_list xs)) xs" proof (rule list_allI) fix y assume "y \ set xs" hence "coll 0 x y" using coll by (auto simp: list_all_iff) also have "coll 0 x (sum_list xs)" using coll by (auto simp: list_all_iff intro!: coll_sum_list) finally (coll_trans) show "coll 0 (sum_list xs) y" by (simp add: coll_commute \x \ 0\) qed { fix i assume "i < length xs" hence "\r. xs ! i = r *\<^sub>R (sum_list xs)" by (metis (mono_tags) coll_scale nth_mem \sum_list xs \ 0\ list_all_iff collist) } then obtain r where r: "\i. i < length xs \ (xs ! i) = r i *\<^sub>R (sum_list xs)" by metis let ?coll = "pdevs_of_list xs" have "pdevs_val f (pdevs_of_list xs) = (\iR xs ! i)" unfolding pdevs_val_sum by (simp add: pdevs_apply_pdevs_of_list less_degree_pdevs_of_list_imp_less_length) also have "\ = (\iR (sum_list xs))" by (simp add: r less_degree_pdevs_of_list_imp_less_length) also have "\ = (\iR (sum_list xs)" by (simp add: algebra_simps scaleR_sum_left) finally have eq: "pdevs_val f ?coll = (\iR (sum_list xs)" (is "_ = ?e *\<^sub>R _") . have "abs (pdevs_val f ?coll) \ tdev ?coll" using assms(4) by (intro abs_pdevs_val_le_tdev) (auto simp: Pi_iff less_imp_le) also have "\ = sum_list (map abs xs)" using assms by simp also note eq finally have less: "\?e\ *\<^sub>R abs (sum_list xs) \ sum_list (map abs xs)" by (simp add: abs_scaleR) also have "\sum_list xs\ = sum_list (map abs xs)" using coll \x \ 0\ nlex by (rule abs_sum_list_coll) finally have "?e \ {-1 .. 1}" by (auto simp add: less_le scaleR_le_self_cancel) thus ?thesis using eq .. qed lemma scaleR_eq_self_cancel: fixes x::"'a::real_vector" shows "a *\<^sub>R x = x \ a = 1 \ x = 0" using scaleR_cancel_right[of a x 1] by simp lemma abs_pdevs_val_less_tdev: assumes "e \ UNIV \ {-1 <..< 1}" "degree x > 0" shows "\pdevs_val e x\ < tdev x" proof - have bnds: "\i. \e i\ < 1" "\i. \e i\ \ 1" using assms by (auto simp: Pi_iff abs_less_iff order.strict_implies_order) moreover let ?w = "degree x - 1" have witness: "\e ?w\ *\<^sub>R \pdevs_apply x ?w\ < \pdevs_apply x ?w\" using degree_least_nonzero[of x] assms bnds by (intro neq_le_trans) (auto simp: scaleR_eq_self_cancel Pi_iff intro!: scaleR_left_le_one_le neq_le_trans intro: abs_leI less_imp_le dest!: order.strict_implies_not_eq) ultimately show ?thesis using assms witness bnds by (auto simp: pdevs_val_sum tdev_def abs_scaleR intro!: le_less_trans[OF sum_abs] sum_strict_mono_ex1 scaleR_left_le_one_le) qed lemma pdevs_val_coll_strict: assumes coll: "list_all (coll 0 x) xs" assumes nlex: "list_all (\x. lex x 0) xs" assumes "x \ 0" assumes "f \ UNIV \ {-1 <..< 1}" obtains e where "e \ {-1 <..< 1}" "pdevs_val f (pdevs_of_list xs) = e *\<^sub>R (sum_list xs)" proof cases assume "sum_list xs = 0" have "pdevs_of_list xs = zero_pdevs" by (auto intro!: pdevs_eqI sum_list_nlex_eq_zeroI[OF nlex \sum_list xs = 0\] simp: pdevs_apply_pdevs_of_list list_all_iff dest!: nth_mem) hence "0 \ {-1 <..< 1::real}" "pdevs_val f (pdevs_of_list xs) = 0 *\<^sub>R sum_list xs" by simp_all thus ?thesis .. next assume "sum_list xs \ 0" have "sum_list (map abs xs) \ 0" by (auto intro!: sum_list_nonneg) hence [simp]: "\sum_list (map abs xs) \ 0" by (metis \sum_list xs \ 0\ abs_le_zero_iff antisym_conv sum_list_abs) have "\x \ set xs. x \ 0" proof (rule ccontr) assume "\ (\x\set xs. x \ 0)" hence "\x. x \ set xs \ x = 0" by auto hence "sum_list xs = 0" by (auto simp: sum_list_eq_0_iff_nonpos list_all_iff less_eq_prod_def prod_eq_iff fst_sum_list snd_sum_list) thus False using \sum_list xs \ 0\ by simp qed then obtain i where i: "i < length xs" "xs ! i \ 0" by (metis in_set_conv_nth) hence "i < degree (pdevs_of_list xs)" by (auto intro!: degree_gt simp: pdevs_apply_pdevs_of_list) hence deg_pos: "0 < degree (pdevs_of_list xs)" by simp have collist: "list_all (coll 0 (sum_list xs)) xs" proof (rule list_allI) fix y assume "y \ set xs" hence "coll 0 x y" using coll by (auto simp: list_all_iff) also have "coll 0 x (sum_list xs)" using coll by (auto simp: list_all_iff intro!: coll_sum_list) finally (coll_trans) show "coll 0 (sum_list xs) y" by (simp add: coll_commute \x \ 0\) qed { fix i assume "i < length xs" hence "\r. xs ! i = r *\<^sub>R (sum_list xs)" by (metis (mono_tags, lifting) \sum_list xs \ 0\ coll_scale collist list_all_iff nth_mem) } then obtain r where r: "\i. i < length xs \ (xs ! i) = r i *\<^sub>R (sum_list xs)" by metis let ?coll = "pdevs_of_list xs" have "pdevs_val f (pdevs_of_list xs) = (\iR xs ! i)" unfolding pdevs_val_sum by (simp add: less_degree_pdevs_of_list_imp_less_length pdevs_apply_pdevs_of_list) also have "\ = (\iR (sum_list xs))" by (simp add: r less_degree_pdevs_of_list_imp_less_length) also have "\ = (\iR (sum_list xs)" by (simp add: algebra_simps scaleR_sum_left) finally have eq: "pdevs_val f ?coll = (\iR (sum_list xs)" (is "_ = ?e *\<^sub>R _") . have "abs (pdevs_val f ?coll) < tdev ?coll" using assms(4) by (intro abs_pdevs_val_less_tdev) (auto simp: Pi_iff less_imp_le deg_pos) also have "\ = sum_list (map abs xs)" using assms by simp also note eq finally have less: "\?e\ *\<^sub>R abs (sum_list xs) < sum_list (map abs xs)" by (simp add: abs_scaleR) also have "\sum_list xs\ = sum_list (map abs xs)" using coll \x \ 0\ nlex by (rule abs_sum_list_coll) finally have "?e \ {-1 <..< 1}" by (auto simp add: less_le scaleR_le_self_cancel) thus ?thesis using eq .. qed subsection \Independent Generators\ fun independent_pdevs::"point list \ point list" where "independent_pdevs [] = []" | "independent_pdevs (x#xs) = (let (cs, is) = List.partition (coll 0 x) xs; s = x + sum_list cs in (if s = 0 then [] else [s]) @ independent_pdevs is)" lemma in_set_independent_pdevsE: assumes "y \ set (independent_pdevs xs)" obtains x where "x\set xs" "coll 0 x y" proof atomize_elim show "\x. x \ set xs \ coll 0 x y" using assms proof (induct xs rule: independent_pdevs.induct) case 1 thus ?case by simp next case (2 z zs) let ?c1 = "y = z + sum_list (filter (coll 0 z) zs)" let ?c2 = "y \ set (independent_pdevs (filter (Not \ coll 0 z) zs))" from 2 have "?c1 \ ?c2" by (auto simp: Let_def split: if_split_asm) thus ?case proof assume ?c2 hence "y \ set (independent_pdevs (snd (partition (coll 0 z) zs)))" by simp from 2(1)[OF refl prod.collapse refl this] show ?case by auto next assume y: ?c1 show ?case unfolding y by (rule exI[where x="z"]) (auto intro!: coll_add coll_sum_list ) qed qed qed lemma in_set_independent_pdevs_nonzero: "x \ set (independent_pdevs xs) \ x \ 0" proof (induct xs rule: independent_pdevs.induct) case (2 y ys) from 2(1)[OF refl prod.collapse refl] 2(2) show ?case by (auto simp: Let_def split: if_split_asm) qed simp lemma independent_pdevs_pairwise_non_coll: assumes "x \ set (independent_pdevs xs)" assumes "y \ set (independent_pdevs xs)" assumes "\x. x \ set xs \ x \ 0" assumes "x \ y" shows "\ coll 0 x y" using assms proof (induct xs rule: independent_pdevs.induct) case 1 thus ?case by simp next case (2 z zs) from 2 have "z \ 0" by simp from 2(2) have "x \ 0" by (rule in_set_independent_pdevs_nonzero) from 2(3) have "y \ 0" by (rule in_set_independent_pdevs_nonzero) let ?c = "filter (coll 0 z) zs" let ?nc = "filter (Not \ coll 0 z) zs" { assume "x \ set (independent_pdevs ?nc)" "y \ set (independent_pdevs ?nc)" hence "\coll 0 x y" by (intro 2(1)[OF refl prod.collapse refl _ _ 2(4) 2(5)]) auto } note IH = this { fix x assume "x \ 0" "z + sum_list ?c \ 0" "coll 0 x (z + sum_list ?c)" hence "x \ set (independent_pdevs ?nc)" using sum_list_filter_coll_ex_scale[OF \z \ 0\, of "z#zs"] by (auto elim!: in_set_independent_pdevsE simp: coll_commute) (metis (no_types) \x \ 0\ coll_scale coll_scaleR) } note nc = this from 2(2,3,4,5) nc[OF \x \ 0\] nc[OF \y \ 0\] show ?case by (auto simp: Let_def IH coll_commute split: if_split_asm) qed lemma distinct_independent_pdevs[simp]: shows "distinct (independent_pdevs xs)" proof (induct xs rule: independent_pdevs.induct) case 1 thus ?case by simp next case (2 x xs) let ?is = "independent_pdevs (filter (Not \ coll 0 x) xs)" have "distinct ?is" by (rule 2) (auto intro!: 2) thus ?case proof (clarsimp simp add: Let_def) let ?s = "x + sum_list (filter (coll 0 x) xs)" assume s: "?s \ 0" "?s \ set ?is" from in_set_independent_pdevsE[OF s(2)] obtain y where y: "y \ set (filter (Not \ coll 0 x) xs)" "coll 0 y (x + sum_list (filter (coll 0 x) xs))" by auto { assume "y = 0 \ x = 0 \ sum_list (filter (coll 0 x) xs) = 0" hence False using s y by (auto simp: coll_commute) } moreover { assume "y \ 0" "x \ 0" "sum_list (filter (coll 0 x) xs) \ 0" "sum_list (filter (coll 0 x) xs) + x \ 0" have *: "coll 0 (sum_list (filter (coll 0 x) xs)) x" by (auto intro!: coll_sum_list simp: coll_commute) have "coll 0 y (sum_list (filter (coll 0 x) xs) + x)" using s y by (simp add: add.commute) hence "coll 0 y x" using * by (rule coll_add_trans) fact+ hence False using s y by (simp add: coll_commute) } ultimately show False using s y by (auto simp: add.commute) qed qed lemma in_set_independent_pdevs_invariant_nlex: "x \ set (independent_pdevs xs) \ (\x. x \ set xs \ lex x 0) \ (\x. x \ set xs \ x \ 0) \ Counterclockwise_2D_Arbitrary.lex x 0" proof (induction xs arbitrary: x rule: independent_pdevs.induct ) case 1 thus ?case by simp next case (2 y ys) from 2 have "y \ 0" by auto from 2(2) have "x \ set (independent_pdevs (filter (Not \ coll 0 y) ys)) \ x = y + sum_list (filter (coll 0 y) ys)" by (auto simp: Let_def split: if_split_asm) thus ?case proof assume "x \ set (independent_pdevs (filter (Not \ coll 0 y) ys))" from 2(1)[OF refl prod.collapse refl, simplified, OF this 2(3,4)] show ?case by simp next assume "x = y + sum_list (filter (coll 0 y) ys)" also have "lex \ 0" by (force intro: nlex_add nlex_sum simp: sum_list_sum_nth dest: nth_mem intro: 2(3)) finally show ?case . qed qed lemma pdevs_val_independent_pdevs2: assumes "e \ UNIV \ I" shows "\e'. e' \ UNIV \ I \ pdevs_val e (pdevs_of_list (independent_pdevs xs)) = pdevs_val e' (pdevs_of_list xs)" using assms proof (induct xs arbitrary: e rule: independent_pdevs.induct) case 1 thus ?case by force next case (2 x xs) let ?coll = "(filter (coll 0 x) (x#xs))" let ?ncoll = "(filter (Not o coll 0 x) (x#xs))" let ?e0 = "if sum_list ?coll = 0 then e else e \ (+) (Suc 0)" have "pdevs_val e (pdevs_of_list (independent_pdevs (x#xs))) = e 0 *\<^sub>R (sum_list ?coll) + pdevs_val ?e0 (pdevs_of_list (independent_pdevs ?ncoll))" (is "_ = ?vc + ?vnc") by (simp add: Let_def) also have e_split: "(\_. e 0) \ UNIV \ I" "?e0 \ UNIV \ I" using 2(2) by auto from 2(1)[OF refl prod.collapse refl e_split(2)] obtain e' where e': "e' \ UNIV \ I" and "?vnc = pdevs_val e' (pdevs_of_list ?ncoll)" by (auto simp add: o_def) note this(2) also have "?vc = pdevs_val (\_. e 0) (pdevs_of_list ?coll)" by (simp add: pdevs_val_const_pdevs_of_list) also from pdevs_val_pdevs_of_list_append[OF e_split(1) e'] obtain e'' where e'': "e'' \ UNIV \ I" and "pdevs_val (\_. e 0) (pdevs_of_list ?coll) + pdevs_val e' (pdevs_of_list ?ncoll) = pdevs_val e'' (pdevs_of_list (?coll @ ?ncoll))" by metis note this(2) also from pdevs_val_perm[OF partition_permI e'', of "coll 0 x" "x#xs"] obtain e''' where e''': "e''' \ UNIV \ I" and "\ = pdevs_val e''' (pdevs_of_list (x # xs))" by metis note this(2) finally show ?case using e''' by auto qed lemma list_all_filter: "list_all p (filter p xs)" by (induct xs) auto lemma pdevs_val_independent_pdevs: assumes "list_all (\x. lex x 0) xs" assumes "list_all (\x. x \ 0) xs" assumes "e \ UNIV \ {-1 .. 1}" shows "\e'. e' \ UNIV \ {-1 .. 1} \ pdevs_val e (pdevs_of_list xs) = pdevs_val e' (pdevs_of_list (independent_pdevs xs))" using assms(1,2,3) proof (induct xs arbitrary: e rule: independent_pdevs.induct) case 1 thus ?case by force next case (2 x xs) let ?coll = "(filter (coll 0 x) (x#xs))" let ?ncoll = "(filter (Not o coll 0 x) xs)" from 2 have "x \ 0" by simp from pdevs_val_partition[OF 2(4), of "x#xs" "coll 0 x"] obtain f g where part: "pdevs_val e (pdevs_of_list (x # xs)) = pdevs_val f (pdevs_of_list ?coll) + pdevs_val g (pdevs_of_list (filter (Not o coll 0 x) (x#xs)))" and f: "f \ UNIV \ {-1 .. 1}" and g: "g \ UNIV \ {-1 .. 1}" by blast note part also have "list_all (\x. lex x 0) (filter (coll 0 x) (x#xs))" using 2(2) by (auto simp: inner_prod_def list_all_iff) from pdevs_val_coll[OF list_all_filter this \x \ 0\ f] obtain f' where "pdevs_val f (pdevs_of_list ?coll) = f' *\<^sub>R sum_list (filter (coll 0 x) (x#xs))" and f': "f' \ {-1 .. 1}" by blast note this(1) also have "filter (Not o coll 0 x) (x#xs) = ?ncoll" by simp also from 2(2) have "list_all (\x. lex x 0) ?ncoll" "list_all (\x. x \ 0) ?ncoll" by (auto simp: list_all_iff) from 2(1)[OF refl partition_filter_conv[symmetric] refl this g] obtain g' where "pdevs_val g (pdevs_of_list ?ncoll) = pdevs_val g' (pdevs_of_list (independent_pdevs ?ncoll))" and g': "g' \ UNIV \ {-1 .. 1}" by metis note this(1) also define h where "h = (if sum_list ?coll \ 0 then rec_nat f' (\i _. g' i) else g')" have "f' *\<^sub>R sum_list ?coll + pdevs_val g' (pdevs_of_list (independent_pdevs ?ncoll)) = pdevs_val h (pdevs_of_list (independent_pdevs (x#xs)))" by (simp add: h_def o_def Let_def) finally have "pdevs_val e (pdevs_of_list (x # xs)) = pdevs_val h (pdevs_of_list (independent_pdevs (x # xs)))" . moreover have "h \ UNIV \ {-1 .. 1}" proof fix i show "h i \ {-1 .. 1}" using f' g' by (cases i) (auto simp: h_def) qed ultimately show ?case by blast qed lemma pdevs_val_independent_pdevs_strict: assumes "list_all (\x. lex x 0) xs" assumes "list_all (\x. x \ 0) xs" assumes "e \ UNIV \ {-1 <..< 1}" shows "\e'. e' \ UNIV \ {-1 <..< 1} \ pdevs_val e (pdevs_of_list xs) = pdevs_val e' (pdevs_of_list (independent_pdevs xs))" using assms(1,2,3) proof (induct xs arbitrary: e rule: independent_pdevs.induct) case 1 thus ?case by force next case (2 x xs) let ?coll = "(filter (coll 0 x) (x#xs))" let ?ncoll = "(filter (Not o coll 0 x) xs)" from 2 have "x \ 0" by simp from pdevs_val_partition[OF 2(4), of "x#xs" "coll 0 x"] obtain f g where part: "pdevs_val e (pdevs_of_list (x # xs)) = pdevs_val f (pdevs_of_list ?coll) + pdevs_val g (pdevs_of_list (filter (Not o coll 0 x) (x#xs)))" and f: "f \ UNIV \ {-1 <..< 1}" and g: "g \ UNIV \ {-1 <..< 1}" by blast note part also have "list_all (\x. lex x 0) (filter (coll 0 x) (x#xs))" using 2(2) by (auto simp: inner_prod_def list_all_iff) from pdevs_val_coll_strict[OF list_all_filter this \x \ 0\ f] obtain f' where "pdevs_val f (pdevs_of_list ?coll) = f' *\<^sub>R sum_list (filter (coll 0 x) (x#xs))" and f': "f' \ {-1 <..< 1}" by blast note this(1) also have "filter (Not o coll 0 x) (x#xs) = ?ncoll" by simp also from 2(2) have "list_all (\x. lex x 0) ?ncoll" "list_all (\x. x \ 0) ?ncoll" by (auto simp: list_all_iff) from 2(1)[OF refl partition_filter_conv[symmetric] refl this g] obtain g' where "pdevs_val g (pdevs_of_list ?ncoll) = pdevs_val g' (pdevs_of_list (independent_pdevs ?ncoll))" and g': "g' \ UNIV \ {-1 <..< 1}" by metis note this(1) also define h where "h = (if sum_list ?coll \ 0 then rec_nat f' (\i _. g' i) else g')" have "f' *\<^sub>R sum_list ?coll + pdevs_val g' (pdevs_of_list (independent_pdevs ?ncoll)) = pdevs_val h (pdevs_of_list (independent_pdevs (x#xs)))" by (simp add: h_def o_def Let_def) finally have "pdevs_val e (pdevs_of_list (x # xs)) = pdevs_val h (pdevs_of_list (independent_pdevs (x # xs)))" . moreover have "h \ UNIV \ {-1 <..< 1}" proof fix i show "h i \ {-1 <..< 1}" using f' g' by (cases i) (auto simp: h_def) qed ultimately show ?case by blast qed lemma sum_list_independent_pdevs: "sum_list (independent_pdevs xs) = sum_list xs" proof (induct xs rule: independent_pdevs.induct) case (2 y ys) from 2[OF refl prod.collapse refl] show ?case using sum_list_partition[of "coll 0 y" ys, symmetric] by (auto simp: Let_def) qed simp lemma independent_pdevs_eq_Nil_iff: "list_all (\x. lex x 0) xs \ list_all (\x. x \ 0) xs \ independent_pdevs xs = [] \ xs = []" proof (induct xs) case Nil thus ?case by simp next case (Cons x xs) from Cons(2) have "list_all (\x. lex x 0) (x # filter (coll 0 x) xs)" by (auto simp: list_all_iff) from sum_list_nlex_eq_zero_iff[OF this] Cons(3) show ?case by (auto simp: list_all_iff) qed subsection \Independent Oriented Generators\ definition "inl p = independent_pdevs (map snd (list_of_pdevs (nlex_pdevs p)))" lemma distinct_inl[simp]: "distinct (inl (snd X))" by (auto simp: inl_def) lemma in_set_inl_nonzero: "x \ set (inl xs) \ x \ 0" by (auto simp: inl_def in_set_independent_pdevs_nonzero) lemma inl_ncoll: "y \ set (inl (snd X)) \ z \ set (inl (snd X)) \ y \ z \ \coll 0 y z" unfolding inl_def by (rule independent_pdevs_pairwise_non_coll, assumption+) (auto simp: inl_def list_of_pdevs_nonzero) lemma in_set_inl_lex: "x \ set (inl xs) \ lex x 0" by (auto simp: inl_def list_of_pdevs_def dest!: in_set_independent_pdevs_invariant_nlex split: if_split_asm) interpretation ccw0: linorder_list "ccw 0" "set (inl (snd X))" proof unfold_locales fix a b c show "a \ b \ ccw 0 a b \ ccw 0 b a" by (metis UNIV_I ccw_self(1) nondegenerate) assume a: "a \ set (inl (snd X))" show "ccw 0 a a" by simp assume b: "b \ set (inl (snd X))" show "ccw 0 a b \ ccw 0 b a \ a = b" by (metis ccw_self(1) in_set_inl_nonzero mem_Collect_eq not_ccw_eq a b) assume c: "c \ set (inl (snd X))" assume distinct: "a \ b" "b \ c" "a \ c" assume ab: "ccw 0 a b" and bc: "ccw 0 b c" show "ccw 0 a c" using a b c ab bc proof (cases "a = (0, 1)" "b = (0, 1)" "c = (0, 1)" rule: case_split[case_product case_split[case_product case_split]]) assume nu: "a \ (0, 1)" "b \ (0, 1)" "c \ (0, 1)" have "distinct5 a b c (0, 1) 0" "in5 UNIV a b c (0, 1) 0" using a b c distinct nu by (simp_all add: in_set_inl_nonzero) moreover have "ccw 0 (0, 1) a" "ccw 0 (0, 1) b" "ccw 0 (0, 1) c" by (auto intro!: nlex_ccw_left in_set_inl_lex a b c) ultimately show ?thesis using ab bc by (rule ccw.transitive[where S=UNIV and s="(0, 1)"]) next assume "a \ (0, 1)" "b = (0, 1)" "c \ (0, 1)" thus ?thesis using ccw_switch23 in_set_inl_lex inl_ncoll nlex_ccw_left a b ab by blast next assume "a \ (0, 1)" "b \ (0, 1)" "c = (0, 1)" thus ?thesis using ccw_switch23 in_set_inl_lex inl_ncoll nlex_ccw_left b c bc by blast qed (auto simp add: nlex_ccw_left in_set_inl_lex) qed lemma sorted_inl: "ccw.sortedP 0 (ccw.selsort 0 (inl (snd X)))" by (rule ccw0.sortedP_selsort) auto lemma sorted_scaled_inl: "ccw.sortedP 0 (map ((*\<^sub>R) 2) (ccw.selsort 0 (inl (snd X))))" using sorted_inl by (rule ccw_sorted_scaleR) simp lemma distinct_selsort_inl: "distinct (ccw.selsort 0 (inl (snd X)))" by simp lemma distinct_map_scaleRI: fixes xs::"'a::real_vector list" shows "distinct xs \ c \ 0 \ distinct (map ((*\<^sub>R) c) xs)" by (induct xs) auto lemma distinct_scaled_inl: "distinct (map ((*\<^sub>R) 2) (ccw.selsort 0 (inl (snd X))))" using distinct_selsort_inl by (rule distinct_map_scaleRI) simp lemma ccw'_sortedP_scaled_inl: "ccw'.sortedP 0 (map ((*\<^sub>R) 2) (ccw.selsort 0 (inl (snd X))))" using ccw_sorted_implies_ccw'_sortedP by (rule ccw'_sorted_scaleR) (auto simp: sorted_inl inl_ncoll) lemma pdevs_val_pdevs_of_list_inl2E: assumes "e \ UNIV \ {-1 .. 1}" obtains e' where "pdevs_val e X = pdevs_val e' (pdevs_of_list (inl X))" "e' \ UNIV \ {-1 .. 1}" proof - let ?l = "map snd (list_of_pdevs (nlex_pdevs X))" have l: "list_all (\x. Counterclockwise_2D_Arbitrary.lex x 0) ?l" "list_all (\x. x \ 0) (map snd (list_of_pdevs (nlex_pdevs X)))" by (auto simp: list_all_iff list_of_pdevs_def) from pdevs_val_nlex_pdevs[OF assms(1)] obtain e' where "e' \ UNIV \ {-1 .. 1}" "pdevs_val e X = pdevs_val e' (nlex_pdevs X)" by auto note this(2) also from pdevs_val_of_list_of_pdevs2[OF \e' \ _\] obtain e'' where "e'' \ UNIV \ {-1 .. 1}" "\ = pdevs_val e'' (pdevs_of_list ?l)" by metis note this(2) also from pdevs_val_independent_pdevs[OF l \e'' \ _\] obtain e''' where "e''' \ UNIV \ {-1 .. 1}" and "\ = pdevs_val e''' (pdevs_of_list (independent_pdevs ?l))" by metis note this(2) also have "\ = pdevs_val e''' (pdevs_of_list (inl X))" by (simp add: inl_def) finally have "pdevs_val e X = pdevs_val e''' (pdevs_of_list (inl X))" . thus thesis using \e''' \ _\ .. qed lemma pdevs_val_pdevs_of_list_inlE: assumes "e \ UNIV \ I" "uminus ` I = I" "0 \ I" obtains e' where "pdevs_val e (pdevs_of_list (inl X)) = pdevs_val e' X" "e' \ UNIV \ I" proof - let ?l = "map snd (list_of_pdevs (nlex_pdevs X))" have "pdevs_val e (pdevs_of_list (inl X)) = pdevs_val e (pdevs_of_list (independent_pdevs ?l))" by (simp add: inl_def) also from pdevs_val_independent_pdevs2[OF \e \ _\] obtain e' where "pdevs_val e (pdevs_of_list (independent_pdevs ?l)) = pdevs_val e' (pdevs_of_list ?l)" and "e' \ UNIV \ I" by auto note this(1) also from pdevs_val_of_list_of_pdevs[OF \e' \ _\ \0 \ I\, of "nlex_pdevs X"] obtain e'' where "pdevs_val e' (pdevs_of_list ?l) = pdevs_val e'' (nlex_pdevs X)" and "e'' \ UNIV \ I" by metis note this(1) also from pdevs_val_nlex_pdevs2[OF \e'' \ _\ \_ = I\] obtain e''' where "pdevs_val e'' (nlex_pdevs X) = pdevs_val e''' X" "e''' \ UNIV \ I" by metis note this(1) finally have "pdevs_val e (pdevs_of_list (inl X)) = pdevs_val e''' X" . thus ?thesis using \e''' \ UNIV \ I\ .. qed lemma sum_list_nlex_eq_sum_list_inl: "sum_list (map snd (list_of_pdevs (nlex_pdevs X))) = sum_list (inl X)" by (auto simp: inl_def sum_list_list_of_pdevs sum_list_independent_pdevs) lemma Affine_inl: "Affine (fst X, pdevs_of_list (inl (snd X))) = Affine X" by (auto simp: Affine_def valuate_def aform_val_def elim: pdevs_val_pdevs_of_list_inlE[of _ _ "snd X"] pdevs_val_pdevs_of_list_inl2E[of _ "snd X"]) subsection \Half Segments\ definition half_segments_of_aform::"point aform \ (point*point) list" where "half_segments_of_aform X = (let x0 = lowest_vertex (fst X, nlex_pdevs (snd X)) in polychain_of x0 (map ((*\<^sub>R) 2) (ccw.selsort 0 (inl (snd X)))))" lemma subsequent_half_segments: fixes X assumes "Suc i < length (half_segments_of_aform X)" shows "snd (half_segments_of_aform X ! i) = fst (half_segments_of_aform X ! Suc i)" using assms by (cases i) (auto simp: half_segments_of_aform_def Let_def polychain_of_subsequent_eq) lemma polychain_half_segments_of_aform: "polychain (half_segments_of_aform X)" by (auto simp: subsequent_half_segments intro!: polychainI) lemma fst_half_segments: "half_segments_of_aform X \ [] \ fst (half_segments_of_aform X ! 0) = lowest_vertex (fst X, nlex_pdevs (snd X))" by (auto simp: half_segments_of_aform_def Let_def o_def split_beta') lemma nlex_half_segments_of_aform: "(a, b) \ set (half_segments_of_aform X) \ lex b a" by (auto simp: half_segments_of_aform_def prod_eq_iff lex_def dest!: in_set_polychain_ofD in_set_inl_lex) lemma ccw_half_segments_of_aform_all: assumes cd: "(c, d) \ set (half_segments_of_aform X)" shows "list_all (\(xi, xj). ccw xi xj c \ ccw xi xj d) (half_segments_of_aform X)" proof - have "list_all (\(xi, xj). ccw xi xj (fst (c, d)) \ ccw xi xj (snd (c, d))) (polychain_of (lowest_vertex (fst X, nlex_pdevs (snd X))) ((map ((*\<^sub>R) 2) (linorder_list0.selsort (ccw 0) (inl (snd X))))))" using ccw'_sortedP_scaled_inl cd[unfolded half_segments_of_aform_def Let_def] by (rule polychain_of_ccw_conjunction) thus ?thesis unfolding half_segments_of_aform_def[unfolded Let_def, symmetric] fst_conv snd_conv . qed lemma ccw_half_segments_of_aform: assumes ij: "(xi, xj) \ set (half_segments_of_aform X)" assumes c: "(c, d) \ set (half_segments_of_aform X)" shows "ccw xi xj c" "ccw xi xj d" using ccw_half_segments_of_aform_all[OF c] ij by (auto simp add: list_all_iff) lemma half_segments_of_aform1: assumes ch: "x \ convex hull set (map fst (half_segments_of_aform X))" assumes ab: "(a, b) \ set (half_segments_of_aform X)" shows "ccw a b x" using finite_set _ ch proof (rule ccw.convex_hull) fix c assume "c \ set (map fst (half_segments_of_aform X))" then obtain d where "(c, d) \ set (half_segments_of_aform X)" by auto with ab show "ccw a b c" by (rule ccw_half_segments_of_aform(1)) qed (insert ab, simp add: nlex_half_segments_of_aform) lemma half_segments_of_aform2: assumes ch: "x \ convex hull set (map snd (half_segments_of_aform X))" assumes ab: "(a, b) \ set (half_segments_of_aform X)" shows "ccw a b x" using finite_set _ ch proof (rule ccw.convex_hull) fix d assume "d \ set (map snd (half_segments_of_aform X))" then obtain c where "(c, d) \ set (half_segments_of_aform X)" by auto with ab show "ccw a b d" by (rule ccw_half_segments_of_aform(2)) qed (insert ab, simp add: nlex_half_segments_of_aform) lemma in_set_half_segments_of_aform_aform_valE: assumes "(x2, y2) \ set (half_segments_of_aform X)" obtains e where "y2 = aform_val e X" "e \ UNIV \ {-1 .. 1}" proof - from assms obtain d where "y2 = lowest_vertex (fst X, nlex_pdevs (snd X)) + sum_list (take (Suc d) (map ((*\<^sub>R) 2) (ccw.selsort 0 (inl (snd X)))))" by (auto simp: half_segments_of_aform_def elim!: in_set_polychain_of_imp_sum_list) also have "lowest_vertex (fst X, nlex_pdevs (snd X)) = fst X - sum_list (map snd (list_of_pdevs (nlex_pdevs (snd X))))" by (simp add: lowest_vertex_def) also have "sum_list (map snd (list_of_pdevs (nlex_pdevs (snd X)))) = pdevs_val (\_. 1) (nlex_pdevs (snd X))" by (auto simp: pdevs_val_sum_list) also have "sum_list (take (Suc d) (map ((*\<^sub>R) 2) (ccw.selsort 0 (inl (snd X))))) = pdevs_val (\i. if i \ d then 2 else 0) (pdevs_of_list (ccw.selsort 0 (inl (snd X))))" (is "_ = pdevs_val ?e _") by (subst sum_list_take_pdevs_val_eq) (auto simp: pdevs_val_sum if_distrib pdevs_apply_pdevs_of_list degree_pdevs_of_list_scaleR intro!: sum.cong ) also obtain e'' where "\ = pdevs_val e'' (pdevs_of_list (inl (snd X)))" "e'' \ UNIV \ {0..2}" by (auto intro: pdevs_val_selsort_ccw2[of "inl (snd X)" ?e "{0 .. 2}"]) note this(1) also note inl_def also let ?l = "map snd (list_of_pdevs (nlex_pdevs (snd X)))" from pdevs_val_independent_pdevs2[OF \e'' \ _\] obtain e''' where "pdevs_val e'' (pdevs_of_list (independent_pdevs ?l)) = pdevs_val e''' (pdevs_of_list ?l)" and "e''' \ UNIV \ {0..2}" by auto note this(1) also have "0 \ {0 .. 2::real}" by simp from pdevs_val_of_list_of_pdevs[OF \e''' \ _\ this, of "nlex_pdevs (snd X)"] obtain e'''' where "pdevs_val e''' (pdevs_of_list ?l) = pdevs_val e'''' (nlex_pdevs (snd X))" and "e'''' \ UNIV \ {0 .. 2}" by metis note this(1) finally have "y2 = fst X + (pdevs_val e'''' (nlex_pdevs (snd X)) - pdevs_val (\_. 1) (nlex_pdevs (snd X)))" by simp also have "pdevs_val e'''' (nlex_pdevs (snd X)) - pdevs_val (\_. 1) (nlex_pdevs (snd X)) = pdevs_val (\i. e'''' i - 1) (nlex_pdevs (snd X))" by (simp add: pdevs_val_minus) also have "(\i. e'''' i - 1) \ UNIV \ {-1 .. 1}" using \e'''' \ _\ by auto from pdevs_val_nlex_pdevs2[OF this] obtain f where "f \ UNIV \ {-1 .. 1}" and "pdevs_val (\i. e'''' i - 1) (nlex_pdevs (snd X)) = pdevs_val f (snd X)" by auto note this(2) finally have "y2 = aform_val f X" by (simp add: aform_val_def) thus ?thesis using \f \ _\ .. qed lemma fst_hd_half_segments_of_aform: assumes "half_segments_of_aform X \ []" shows "fst (hd (half_segments_of_aform X)) = lowest_vertex (fst X, (nlex_pdevs (snd X)))" using assms by (auto simp: half_segments_of_aform_def Let_def fst_hd_polychain_of) lemma "linorder_list0.sortedP (ccw' (lowest_vertex (fst X, nlex_pdevs (snd X)))) (map snd (half_segments_of_aform X))" (is "linorder_list0.sortedP (ccw' ?x0) ?ms") unfolding half_segments_of_aform_def Let_def by (rule ccw'_sortedP_polychain_of_snd) (rule ccw'_sortedP_scaled_inl) lemma rev_zip: "length xs = length ys \ rev (zip xs ys) = zip (rev xs) (rev ys)" by (induct xs ys rule: list_induct2) auto lemma zip_upt_self_aux: "zip [0..i. (i, xs ! i)) [0.. UNIV \ {-1 <..< 1}" assumes "seg \ set (half_segments_of_aform X)" assumes "length (half_segments_of_aform X) \ 1" shows "ccw' (fst seg) (snd seg) (aform_val e X)" using assms unfolding half_segments_of_aform_def Let_def proof - have len: "length (map ((*\<^sub>R) 2) (linorder_list0.selsort (ccw 0) (inl (snd X)))) \ 1" using assms by (auto simp: half_segments_of_aform_def) have "aform_val e X = fst X + pdevs_val e (snd X)" by (simp add: aform_val_def) also obtain e' where "e' \ UNIV \ {-1 <..< 1}" "pdevs_val e (snd X) = pdevs_val e' (nlex_pdevs (snd X))" using pdevs_val_nlex_pdevs[OF \e \ _\] by auto note this(2) also obtain e'' where "e'' \ UNIV \ {-1 <..< 1}" "\ = pdevs_val e'' (pdevs_of_list (map snd (list_of_pdevs (nlex_pdevs (snd X)))))" by (metis pdevs_val_of_list_of_pdevs2[OF \e' \ _\]) note this(2) also obtain e''' where "e''' \ UNIV \ {-1 <..< 1}" "\ = pdevs_val e''' (pdevs_of_list (inl (snd X)))" unfolding inl_def using pdevs_val_independent_pdevs_strict[OF list_all_list_of_pdevsI, OF lex_nlex_pdevs list_of_pdevs_all_nonzero \e'' \ _\] by metis note this(2) also from pdevs_val_selsort_ccw[OF distinct_inl \e''' \ _\] obtain f where "f \ UNIV \ {-1 <..< 1}" "\ = pdevs_val f (pdevs_of_list (linorder_list0.selsort (ccw 0) (inl (snd X))))" (is "_ = pdevs_val _ (pdevs_of_list ?sl)") by metis note this(2) also have "\ = pdevs_val (\i. f i + 1) (pdevs_of_list ?sl) + lowest_vertex (fst X, nlex_pdevs (snd X)) - fst X" proof - have "sum_list (dense_list_of_pdevs (nlex_pdevs (snd X))) = sum_list (dense_list_of_pdevs (pdevs_of_list (ccw.selsort 0 (inl (snd X)))))" by (subst dense_list_of_pdevs_pdevs_of_list) (auto simp: in_set_independent_pdevs_nonzero dense_list_of_pdevs_pdevs_of_list inl_def sum_list_distinct_selsort sum_list_independent_pdevs sum_list_list_of_pdevs) thus ?thesis by (auto simp add: pdevs_val_add lowest_vertex_def algebra_simps pdevs_val_sum_list sum_list_list_of_pdevs in_set_inl_nonzero dense_list_of_pdevs_pdevs_of_list) qed also have "pdevs_val (\i. f i + 1) (pdevs_of_list ?sl) = pdevs_val (\i. 1/2 * (f i + 1)) (pdevs_of_list (map ((*\<^sub>R) 2) ?sl))" (is "_ = pdevs_val ?f' (pdevs_of_list ?ssl)") by (subst pdevs_val_cmul) (simp add: pdevs_of_list_map_scaleR) also have "distinct ?ssl" "?f' \ UNIV \ {0<..<1}" using \f \ _\ by (auto simp: distinct_map_scaleRI Pi_iff algebra_simps real_0_less_add_iff) from pdevs_of_list_sum[OF this] obtain g where "g \ UNIV \ {0<..<1}" "pdevs_val ?f' (pdevs_of_list ?ssl) = (\P\set ?ssl. g P *\<^sub>R P)" by blast note this(2) finally have "aform_val e X = lowest_vertex (fst X, nlex_pdevs (snd X)) + (\P\set ?ssl. g P *\<^sub>R P)" by simp also have "ccw' (fst seg) (snd seg) \" using \g \ _\ _ len \seg \ _\[unfolded half_segments_of_aform_def Let_def] by (rule in_polychain_of_ccw) (simp add: ccw'_sortedP_scaled_inl) finally show ?thesis . qed lemma half_segments_of_aform_strict_all: assumes "e \ UNIV \ {-1 <..< 1}" assumes "length (half_segments_of_aform X) \ 1" shows "list_all (\seg. ccw' (fst seg) (snd seg) (aform_val e X)) (half_segments_of_aform X)" using assms by (auto intro!: half_segments_of_aform_strict simp: list_all_iff) lemma list_allD: "list_all P xs \ x \ set xs \ P x" by (auto simp: list_all_iff) lemma minus_one_less_multI: fixes e x::real shows "- 1 \ e \ 0 < x \ x < 1 \ - 1 < e * x" by (metis abs_add_one_gt_zero abs_real_def le_less_trans less_not_sym mult_less_0_iff mult_less_cancel_left1 real_0_less_add_iff) lemma less_one_multI: fixes e x::real shows "e \ 1 \ 0 < x \ x < 1 \ e * x < 1" by (metis (erased, opaque_lifting) less_eq_real_def monoid_mult_class.mult.left_neutral mult_strict_mono zero_less_one) lemma ccw_half_segments_of_aform_strictI: assumes "e \ UNIV \ {-1 <..< 1}" assumes "(s1, s2) \ set (half_segments_of_aform X)" assumes "length (half_segments_of_aform X) \ 1" assumes "x = (aform_val e X)" shows "ccw' s1 s2 x" using half_segments_of_aform_strict[OF assms(1-3)] assms(4) by simp lemma ccw'_sortedP_subsequent: assumes "Suc i < length xs" "ccw'.sortedP 0 (map dirvec xs)" "fst (xs ! Suc i) = snd (xs ! i)" shows "ccw' (fst (xs ! i)) (snd (xs ! i)) (snd (xs ! Suc i))" using assms proof (induct xs arbitrary: i) case Nil thus ?case by simp next case (Cons x xs) thus ?case by (auto simp: nth_Cons dirvec_minus split: nat.split elim!: ccw'.sortedP_Cons) (metis (no_types, lifting) ccw'.renormalize length_greater_0_conv nth_mem prod.case_eq_if) qed lemma ccw'_sortedP_uminus: "ccw'.sortedP 0 xs \ ccw'.sortedP 0 (map uminus xs)" by (induct xs) (auto intro!: ccw'.sortedP.Cons elim!: ccw'.sortedP_Cons simp del: uminus_Pair) lemma subsequent_half_segments_ccw: fixes X assumes "Suc i < length (half_segments_of_aform X)" shows "ccw' (fst (half_segments_of_aform X ! i)) (snd (half_segments_of_aform X ! i)) (snd (half_segments_of_aform X ! Suc i))" using assms by (intro ccw'_sortedP_subsequent ) (auto simp: subsequent_half_segments half_segments_of_aform_def sorted_inl polychain_of_subsequent_eq intro!: ccw_sorted_implies_ccw'_sortedP[OF inl_ncoll] ccw'_sorted_scaleR) lemma convex_polychain_half_segments_of_aform: "convex_polychain (half_segments_of_aform X)" proof cases assume "length (half_segments_of_aform X) = 1" thus ?thesis by (auto simp: length_Suc_conv convex_polychain_def polychain_def) next assume len: "length (half_segments_of_aform X) \ 1" show ?thesis by (rule convex_polychainI) (simp_all add: polychain_half_segments_of_aform subsequent_half_segments_ccw ccw'_def[symmetric]) qed lemma hd_distinct_neq_last: "distinct xs \ length xs > 1 \ hd xs \ last xs" by (metis One_nat_def add_Suc_right distinct.simps(2) last.simps last_in_set less_irrefl list.exhaust list.sel(1) list.size(3) list.size(4) add.right_neutral nat_neq_iff not_less0) lemma ccw_hd_last_half_segments_dirvec: assumes "length (half_segments_of_aform X) > 1" shows "ccw' 0 (dirvec (hd (half_segments_of_aform X))) (dirvec (last (half_segments_of_aform X)))" proof - let ?i = "ccw.selsort 0 (inl (snd X))" let ?s = "map ((*\<^sub>R) 2) (ccw.selsort 0 (inl (snd X)))" from assms have l: "1 < length (inl (snd X))" "inl (snd X) \ []" using assms by (auto simp add: half_segments_of_aform_def) hence "hd ?i \ set ?i" "last ?i \ set ?i" by (auto intro!: hd_in_set last_in_set simp del: ccw.set_selsort) hence "\coll 0 (hd ?i) (last ?i)" using l by (intro inl_ncoll[of _ X]) (auto simp: hd_distinct_neq_last) hence "\coll 0 (hd ?s) (last ?s)" using l by (auto simp: hd_map last_map) hence "ccw' 0 (hd (map ((*\<^sub>R) 2) (linorder_list0.selsort (ccw 0) (inl (snd X))))) (last (map ((*\<^sub>R) 2) (linorder_list0.selsort (ccw 0) (inl (snd X)))))" using assms by (auto simp add: half_segments_of_aform_def intro!: sorted_inl ccw_sorted_scaleR ccw.hd_last_sorted ccw_ncoll_imp_ccw) with assms show ?thesis by (auto simp add: half_segments_of_aform_def Let_def dirvec_hd_polychain_of dirvec_last_polychain_of length_greater_0_conv[symmetric] simp del: polychain_of.simps length_greater_0_conv split: if_split_asm) qed lemma map_fst_half_segments_aux_eq: "[] \ half_segments_of_aform X \ map fst (half_segments_of_aform X) = fst (hd (half_segments_of_aform X))#butlast (map snd (half_segments_of_aform X))" by (rule nth_equalityI) (auto simp: nth_Cons hd_conv_nth nth_butlast subsequent_half_segments split: nat.split) lemma le_less_Suc_eq: "x - Suc 0 \ (i::nat) \ i < x \ x - Suc 0 = i" by simp lemma map_snd_half_segments_aux_eq: "half_segments_of_aform X \ [] \ map snd (half_segments_of_aform X) = tl (map fst (half_segments_of_aform X)) @ [snd (last (half_segments_of_aform X))]" by (rule nth_equalityI) (auto simp: nth_Cons hd_conv_nth nth_append nth_tl subsequent_half_segments not_less last_conv_nth algebra_simps dest!: le_less_Suc_eq split: nat.split) lemma ccw'_sortedP_snd_half_segments_of_aform: "ccw'.sortedP (lowest_vertex (fst X, nlex_pdevs (snd X))) (map snd (half_segments_of_aform X))" by (auto simp: half_segments_of_aform_def Let_def intro!: ccw'.sortedP.Cons ccw'_sortedP_polychain_of_snd ccw'_sortedP_scaled_inl) lemma lex_half_segments_lowest_vertex: assumes "(c, d) \ set (half_segments_of_aform X)" shows "lex d (lowest_vertex (fst X, nlex_pdevs (snd X)))" unfolding half_segments_of_aform_def Let_def by (rule lex_polychain_of_center[OF assms[unfolded half_segments_of_aform_def Let_def], unfolded snd_conv]) (auto simp: list_all_iff lex_def dest!: in_set_inl_lex) lemma lex_half_segments_lowest_vertex': assumes "d \ set (map snd (half_segments_of_aform X))" shows "lex d (lowest_vertex (fst X, nlex_pdevs (snd X)))" using assms by (auto intro: lex_half_segments_lowest_vertex) lemma lex_half_segments_last: assumes "(c, d) \ set (half_segments_of_aform X)" shows "lex (snd (last (half_segments_of_aform X))) d" using assms unfolding half_segments_of_aform_def Let_def by (rule lex_polychain_of_last) (auto simp: list_all_iff lex_def dest!: in_set_inl_lex) lemma lex_half_segments_last': assumes "d \ set (map snd (half_segments_of_aform X))" shows "lex (snd (last (half_segments_of_aform X))) d" using assms by (auto intro: lex_half_segments_last) lemma ccw'_half_segments_lowest_last: assumes set_butlast: "(c, d) \ set (butlast (half_segments_of_aform X))" assumes ne: "inl (snd X) \ []" shows "ccw' (lowest_vertex (fst X, nlex_pdevs (snd X))) d (snd (last (half_segments_of_aform X)))" using set_butlast unfolding half_segments_of_aform_def Let_def by (rule ccw'_polychain_of_sorted_center_last) (auto simp: ne ccw'_sortedP_scaled_inl) lemma distinct_fst_half_segments: "distinct (map fst (half_segments_of_aform X))" by (auto simp: half_segments_of_aform_def list_all_iff lex_scale1_zero simp del: scaleR_Pair intro!: distinct_fst_polychain_of dest: in_set_inl_nonzero in_set_inl_lex) lemma distinct_snd_half_segments: "distinct (map snd (half_segments_of_aform X))" by (auto simp: half_segments_of_aform_def list_all_iff lex_scale1_zero simp del: scaleR_Pair intro!: distinct_snd_polychain_of dest: in_set_inl_nonzero in_set_inl_lex) subsection \Mirror\ definition "mirror_point x y = 2 *\<^sub>R x - y" lemma ccw'_mirror_point3[simp]: "ccw' (mirror_point x y) (mirror_point x z) (mirror_point x w) \ ccw' y z w " by (auto simp: mirror_point_def det3_def' ccw'_def algebra_simps) lemma mirror_point_self_inverse[simp]: fixes x::"'a::real_vector" shows "mirror_point p (mirror_point p x) = x" by (auto simp: mirror_point_def scaleR_2) lemma mirror_half_segments_of_aform: assumes "e \ UNIV \ {-1 <..< 1}" assumes "length (half_segments_of_aform X) \ 1" shows "list_all (\seg. ccw' (fst seg) (snd seg) (aform_val e X)) (map (pairself (mirror_point (fst X))) (half_segments_of_aform X))" unfolding list_all_length proof safe let ?m = "map (pairself (mirror_point (fst X))) (half_segments_of_aform X)" fix n assume "n < length ?m" hence "ccw' (fst (half_segments_of_aform X ! n)) (snd (half_segments_of_aform X ! n)) (aform_val (- e) X)" using assms by (auto dest!: nth_mem intro!: half_segments_of_aform_strict) also have "aform_val (-e) X = 2 *\<^sub>R fst X - aform_val e X" by (auto simp: aform_val_def pdevs_val_sum algebra_simps scaleR_2 sum_negf) finally have le: "ccw' (fst (half_segments_of_aform X ! n)) (snd (half_segments_of_aform X ! n)) (2 *\<^sub>R fst X - aform_val e X)" . have eq: "(map (pairself (mirror_point (fst X))) (half_segments_of_aform X) ! n) = (2 *\<^sub>R fst X - fst ((half_segments_of_aform X) ! n), 2 *\<^sub>R fst X - snd ((half_segments_of_aform X) ! n))" using \n < length ?m\ by (cases "half_segments_of_aform X ! n") (auto simp add: mirror_point_def) show "ccw' (fst (?m ! n)) (snd (?m ! n)) (aform_val e X)" using le unfolding eq by (auto simp: algebra_simps ccw'_def det3_def') qed lemma last_half_segments: assumes "half_segments_of_aform X \ []" shows "snd (last (half_segments_of_aform X)) = mirror_point (fst X) (lowest_vertex (fst X, nlex_pdevs (snd X)))" using assms by (auto simp add: half_segments_of_aform_def Let_def lowest_vertex_def mirror_point_def scaleR_2 scaleR_sum_list[symmetric] last_polychain_of sum_list_distinct_selsort inl_def sum_list_independent_pdevs sum_list_list_of_pdevs) lemma convex_polychain_map_mirror: assumes "convex_polychain hs" shows "convex_polychain (map (pairself (mirror_point x)) hs)" proof (rule convex_polychainI) qed (insert assms, auto simp: convex_polychain_def polychain_map_pairself pairself_apply mirror_point_def det3_def' algebra_simps) lemma ccw'_mirror_point0: "ccw' (mirror_point x y) z w \ ccw' y (mirror_point x z) (mirror_point x w)" by (metis ccw'_mirror_point3 mirror_point_self_inverse) lemma ccw'_sortedP_mirror: "ccw'.sortedP x0 (map (mirror_point p0) xs) \ ccw'.sortedP (mirror_point p0 x0) xs" by (induct xs) (simp_all add: linorder_list0.sortedP.Nil linorder_list0.sortedP_Cons_iff ccw'_mirror_point0) lemma ccw'_sortedP_mirror2: "ccw'.sortedP (mirror_point p0 x0) (map (mirror_point p0) xs) \ ccw'.sortedP x0 xs" using ccw'_sortedP_mirror[of "mirror_point p0 x0" p0 xs] by simp lemma map_mirror_o_snd_polychain_of_eq: "map (mirror_point x0 \ snd) (polychain_of y xs) = map snd (polychain_of (mirror_point x0 y) (map uminus xs))" by (induct xs arbitrary: x0 y) (auto simp: mirror_point_def o_def algebra_simps) lemma lowest_vertex_eq_mirror_last: "half_segments_of_aform X \ [] \ (lowest_vertex (fst X, nlex_pdevs (snd X))) = mirror_point (fst X) (snd (last (half_segments_of_aform X)))" using last_half_segments[of X] by simp lemma snd_last: "xs \ [] \ snd (last xs) = last (map snd xs)" by (induct xs) auto lemma mirror_point_snd_last_eq_lowest: "half_segments_of_aform X \ [] \ mirror_point (fst X) (last (map snd (half_segments_of_aform X))) = lowest_vertex (fst X, nlex_pdevs (snd X))" by (simp add: lowest_vertex_eq_mirror_last snd_last) lemma lex_mirror_point: "lex (mirror_point x0 a) (mirror_point x0 b) \ lex b a" by (auto simp: mirror_point_def lex_def) lemma ccw'_mirror_point: "ccw' (mirror_point x0 a) (mirror_point x0 b) (mirror_point x0 c) \ ccw' a b c" by (auto simp: mirror_point_def) lemma inj_mirror_point: "inj (mirror_point (x::'a::real_vector))" by (auto simp: mirror_point_def inj_on_def algebra_simps) lemma distinct_map_mirror_point_eq: "distinct (map (mirror_point (x::'a::real_vector)) xs) = distinct xs" by (auto simp: distinct_map intro!: subset_inj_on[OF inj_mirror_point]) lemma eq_self_mirror_iff: fixes x::"'a::real_vector" shows "x = mirror_point y x \ x = y" by (auto simp: mirror_point_def algebra_simps scaleR_2[symmetric]) subsection \Full Segments\ definition segments_of_aform::"point aform \ (point * point) list" where "segments_of_aform X = (let hs = half_segments_of_aform X in hs @ map (pairself (mirror_point (fst X))) hs)" lemma segments_of_aform_strict: assumes "e \ UNIV \ {-1 <..< 1}" assumes "length (half_segments_of_aform X) \ 1" shows "list_all (\seg. ccw' (fst seg) (snd seg) (aform_val e X)) (segments_of_aform X)" using assms by (auto simp: segments_of_aform_def Let_def mirror_half_segments_of_aform half_segments_of_aform_strict_all) lemma mirror_point_aform_val[simp]: "mirror_point (fst X) (aform_val e X) = aform_val (- e) X" by (auto simp: mirror_point_def aform_val_def pdevs_val_sum algebra_simps scaleR_2 sum_negf) lemma in_set_segments_of_aform_aform_valE: assumes "(x2, y2) \ set (segments_of_aform X)" obtains e where "y2 = aform_val e X" "e \ UNIV \ {-1 .. 1}" using assms proof (auto simp: segments_of_aform_def Let_def) assume "(x2, y2) \ set (half_segments_of_aform X)" from in_set_half_segments_of_aform_aform_valE[OF this] obtain e where "y2 = aform_val e X" "e \ UNIV \ {- 1..1}" by auto thus ?thesis .. next fix a b aa ba assume "((a, b), aa, ba) \ set (half_segments_of_aform X)" from in_set_half_segments_of_aform_aform_valE[OF this] obtain e where e: "(aa, ba) = aform_val e X" "e \ UNIV \ {- 1..1}" by auto assume "y2 = mirror_point (fst X) (aa, ba)" hence "y2 = aform_val (-e) X" "(-e) \ UNIV \ {-1 .. 1}" using e by auto thus ?thesis .. qed lemma last_half_segments_eq_mirror_hd: assumes "half_segments_of_aform X \ []" shows "snd (last (half_segments_of_aform X)) = mirror_point (fst X) (fst (hd (half_segments_of_aform X)))" by (simp add: last_half_segments assms fst_hd_half_segments_of_aform) lemma polychain_segments_of_aform: "polychain (segments_of_aform X)" by (auto simp: segments_of_aform_def Let_def polychain_half_segments_of_aform polychain_map_pairself last_half_segments_eq_mirror_hd hd_map pairself_apply intro!: polychain_appendI) lemma segments_of_aform_closed: assumes "segments_of_aform X \ []" shows "fst (hd (segments_of_aform X)) = snd (last (segments_of_aform X))" using assms by (auto simp: segments_of_aform_def Let_def fst_hd_half_segments_of_aform last_map pairself_apply last_half_segments mirror_point_def) lemma convex_polychain_segments_of_aform: assumes "1 < length (half_segments_of_aform X)" shows "convex_polychain (segments_of_aform X)" unfolding segments_of_aform_def Let_def using ccw_hd_last_half_segments_dirvec[OF assms] by (intro convex_polychain_appendI) (auto simp: convex_polychain_half_segments_of_aform convex_polychain_map_mirror dirvec_minus hd_map pairself_apply last_half_segments mirror_point_def fst_hd_half_segments_of_aform det3_def' algebra_simps ccw'_def intro!: polychain_appendI polychain_half_segments_of_aform polychain_map_pairself) lemma convex_polygon_segments_of_aform: assumes "1 < length (half_segments_of_aform X)" shows "convex_polygon (segments_of_aform X)" proof - from assms have hne: "half_segments_of_aform X \ []" by auto from convex_polychain_segments_of_aform[OF assms] have "convex_polychain (segments_of_aform X)" . thus ?thesis by (auto simp: convex_polygon_def segments_of_aform_closed) qed lemma previous_segments_of_aformE: assumes "(y, z) \ set (segments_of_aform X)" obtains x where "(x, y) \ set (segments_of_aform X)" proof - from assms have ne[simp]: "segments_of_aform X \ []" by auto from assms obtain i where i: "i set (segments_of_aform X)" by (metis fst_conv hd_conv_nth i(2) last_in_set ne snd_conv surj_pair) thus ?thesis .. next case (Suc j) have "(fst (segments_of_aform X ! j), snd (segments_of_aform X ! j)) \ set (segments_of_aform X)" using Suc i(1) by auto also from i have "y = fst (segments_of_aform X ! i)" by auto hence "snd (segments_of_aform X ! j) = y" using polychain_segments_of_aform[of X] i(1) Suc by (auto simp: polychain_def Suc) finally have "(fst (segments_of_aform X ! j), y) \ set (segments_of_aform X)" . thus ?thesis .. qed qed lemma fst_compose_pairself: "fst o pairself f = f o fst" and snd_compose_pairself: "snd o pairself f = f o snd" by (auto simp: pairself_apply) lemma in_set_butlastI: "xs \ [] \ x \ set xs \ x \ last xs \ x \ set (butlast xs)" by (induct xs) (auto split: if_splits) lemma distinct_in_set_butlastD: "x \ set (butlast xs) \ distinct xs \ x \ last xs" by (induct xs) auto lemma distinct_in_set_tlD: "x \ set (tl xs) \ distinct xs \ x \ hd xs" by (induct xs) auto lemma ccw'_sortedP_snd_segments_of_aform: assumes "length (inl (snd X)) > 1" shows "ccw'.sortedP (lowest_vertex (fst X, nlex_pdevs (snd X))) (butlast (map snd (segments_of_aform X)))" proof cases assume "[] = half_segments_of_aform X" from this show ?thesis by (simp add: segments_of_aform_def Let_def ccw'.sortedP.Nil) next assume H: "[] \ half_segments_of_aform X" let ?m = "mirror_point (fst X)" have ne: "inl (snd X) \ []" using assms by auto have "ccw'.sortedP (lowest_vertex (fst X, nlex_pdevs (snd X))) (map snd (half_segments_of_aform X) @ butlast (map (?m \ snd) (half_segments_of_aform X)))" proof (rule ccw'.sortedP_appendI) show "ccw'.sortedP (lowest_vertex (fst X, nlex_pdevs (snd X))) (map snd (half_segments_of_aform X))" by (rule ccw'_sortedP_snd_half_segments_of_aform) have "butlast (map (?m \ snd) (half_segments_of_aform X)) = butlast (map (?m \ snd) (polychain_of (lowest_vertex (fst X, nlex_pdevs (snd X))) (map ((*\<^sub>R) 2) (ccw.selsort 0 (inl (snd X))))))" by (simp add: half_segments_of_aform_def) also have "\ = map snd (butlast (polychain_of (?m (lowest_vertex (fst X, nlex_pdevs (snd X)))) (map uminus (map ((*\<^sub>R) 2) (ccw.selsort 0 (inl (snd X)))))))" (is "_ = map snd (butlast (polychain_of ?x ?xs))") by (simp add: map_mirror_o_snd_polychain_of_eq map_butlast) also { have "ccw'.sortedP 0 ?xs" by (intro ccw'_sortedP_uminus ccw'_sortedP_scaled_inl) moreover have "ccw'.sortedP ?x (map snd (polychain_of ?x ?xs))" unfolding ccw'_sortedP_mirror[symmetric] map_map map_mirror_o_snd_polychain_of_eq by (auto simp add: o_def intro!: ccw'_sortedP_polychain_of_snd ccw'_sortedP_scaled_inl) ultimately have "ccw'.sortedP (snd (last (polychain_of ?x ?xs))) (map snd (butlast (polychain_of ?x ?xs)))" by (rule ccw'_sortedP_convex_rotate_aux) } also have "(snd (last (polychain_of ?x ?xs))) = ?m (last (map snd (half_segments_of_aform X)))" by (simp add: half_segments_of_aform_def ne map_mirror_o_snd_polychain_of_eq last_map[symmetric, where f="?m"] last_map[symmetric, where f="snd"]) also have "\ = lowest_vertex (fst X, nlex_pdevs (snd X))" using ne H by (auto simp: lowest_vertex_eq_mirror_last snd_last) finally show "ccw'.sortedP (lowest_vertex (fst X, nlex_pdevs (snd X))) (butlast (map (?m \ snd) (half_segments_of_aform X)))" . next fix x y assume seg: "x \ set (map snd (half_segments_of_aform X))" and mseg: "y \ set (butlast (map (?m \ snd) (half_segments_of_aform X)))" from seg assms have neq_Nil: "inl (snd X) \ []" "half_segments_of_aform X \ []" by auto from seg obtain a where a: "(a, x) \ set (half_segments_of_aform X)" by auto from mseg obtain b where mirror_y: "(b, ?m y) \ set (butlast (half_segments_of_aform X))" by (auto simp: map_butlast[symmetric]) let ?l = "lowest_vertex (fst X, nlex_pdevs (snd X))" let ?ml = "?m ?l" have mirror_eq_last: "?ml = snd (last (half_segments_of_aform X))" using seg H by (intro last_half_segments[symmetric]) simp define r where "r = ?l + (0, abs (snd x - snd ?l) + abs (snd y - snd ?l) + abs (snd ?ml - snd ?l) + 1)" have d1: "x \ r" "y \ r" "?l \ r" "?ml \ r" by (auto simp: r_def plus_prod_def prod_eq_iff) have "distinct (map (?m \ snd) (half_segments_of_aform X))" unfolding map_comp_map[symmetric] unfolding o_def distinct_map_mirror_point_eq by (rule distinct_snd_half_segments) from distinct_in_set_butlastD[OF \y \ _\ this] have "?l \ y" by (simp add: neq_Nil lowest_vertex_eq_mirror_last last_map) moreover have "?l \ ?ml" using neq_Nil by (auto simp add: eq_self_mirror_iff lowest_vertex_eq_center_iff inl_def) ultimately have d2: "?l \ y" "?l \ ?ml" by auto have *: "ccw' ?l (?m y) ?ml" by (metis mirror_eq_last ccw'_half_segments_lowest_last mirror_y neq_Nil(1)) have "ccw' ?ml y ?l" by (rule ccw'_mirror_point[of "fst X"]) (simp add: *) hence lmy: "ccw' ?l ?ml y" by (simp add: ccw'_def det3_def' algebra_simps) let ?ccw = "ccw' (lowest_vertex (fst X, nlex_pdevs (snd X))) x y" { assume "x \ ?ml" hence x_butlast: "(a, x) \ set (butlast (half_segments_of_aform X))" unfolding mirror_eq_last using a by (auto intro!: in_set_butlastI simp: prod_eq_iff) have "ccw' ?l x ?ml" by (metis mirror_eq_last ccw'_half_segments_lowest_last x_butlast neq_Nil(1)) } note lxml = this { assume "x = ?ml" hence ?ccw by (simp add: lmy) } moreover { assume "x \ ?ml" "y = ?ml" hence ?ccw by (simp add: lxml) } moreover { assume d3: "x \ ?ml" "y \ ?ml" from \x \ set _\ have "x \ set (map snd (half_segments_of_aform X))" by force hence "x \ set (tl (map fst (half_segments_of_aform X)))" using d3 unfolding map_snd_half_segments_aux_eq[OF neq_Nil(2)] by (auto simp: mirror_eq_last) from distinct_in_set_tlD[OF this distinct_fst_half_segments] have "?l \ x" by (simp add: fst_hd_half_segments_of_aform neq_Nil hd_map) from lxml[OF \x \ ?ml\] \ccw' ?l ?ml y\ have d4: "x \ y" by (rule neq_left_right_of lxml) have "distinct5 x ?ml y r ?l" using d1 d2 \?l \ x\ d3 d4 by simp_all moreover note _ moreover have "lex x ?l" by (rule lex_half_segments_lowest_vertex) fact hence "ccw ?l r x" unfolding r_def by (rule lex_ccw_left) simp moreover have "lex ?ml ?l" using last_in_set[OF H[symmetric]] by (auto simp: mirror_eq_last intro: lex_half_segments_lowest_vertex') hence "ccw ?l r ?ml" unfolding r_def by (rule lex_ccw_left) simp moreover have "lex (?m (lowest_vertex (fst X, nlex_pdevs (snd X)))) (?m y)" using mirror_y by (force dest!: in_set_butlastD intro: lex_half_segments_last' simp: mirror_eq_last ) hence "lex y ?l" by (rule lex_mirror_point) hence "ccw ?l r y" unfolding r_def by (rule lex_ccw_left) simp moreover from \x \ ?ml\ have "ccw ?l x ?ml" by (simp add: ccw_def lxml) moreover from lmy have "ccw ?l ?ml y" by (simp add: ccw_def) ultimately have "ccw ?l x y" by (rule ccw.transitive[where S=UNIV]) simp moreover { have "x \ ?l" using \?l \ x\ by simp moreover have "lex (?m y) (?m ?ml)" using mirror_y by (force intro: lex_half_segments_lowest_vertex in_set_butlastD) hence "lex ?ml y" by (rule lex_mirror_point) moreover from a have "lex ?ml x" unfolding mirror_eq_last by (rule lex_half_segments_last) moreover note \lex y ?l\ \lex x ?l\ \ccw' ?l x ?ml\ \ccw' ?l ?ml y\ ultimately have ncoll: "\ coll ?l x y" by (rule not_coll_ordered_lexI) } ultimately have ?ccw by (simp add: ccw_def) } ultimately show ?ccw by blast qed thus ?thesis using H by (simp add: segments_of_aform_def Let_def butlast_append snd_compose_pairself) qed lemma polychain_of_segments_of_aform1: assumes "length (segments_of_aform X) = 1" shows "False" using assms by (auto simp: segments_of_aform_def Let_def half_segments_of_aform_def add_is_1 split: if_split_asm) lemma polychain_of_segments_of_aform2: assumes "segments_of_aform X = [x, y]" assumes "between (fst x, snd x) p" shows "p \ convex hull set (map fst (segments_of_aform X))" proof - from polychain_segments_of_aform[of X] segments_of_aform_closed[of X] assms have "fst y = snd x" "snd y = fst x" by (simp_all add: polychain_def) thus ?thesis using assms by (cases x) (auto simp: between_mem_convex_hull) qed lemma append_eq_2: assumes "length xs = length ys" shows "xs @ ys = [x, y] \ xs = [x] \ ys = [y]" using assms proof (cases xs) case (Cons z zs) thus ?thesis using assms by (cases zs) auto qed simp lemma segments_of_aform_line_segment: assumes "segments_of_aform X = [x, y]" assumes "e \ UNIV \ {-1 .. 1}" shows "aform_val e X \ closed_segment (fst x) (snd x)" proof - from pdevs_val_pdevs_of_list_inl2E[OF \e \ _\, of "snd X"] obtain e' where e': "pdevs_val e (snd X) = pdevs_val e' (pdevs_of_list (inl (snd X)))" "e' \ UNIV \ {- 1..1}" . from e' have "0 \ 1 + e' 0" by (auto simp: Pi_iff dest!: spec[where x=0]) with assms e' show ?thesis by (auto simp: segments_of_aform_def Let_def append_eq_2 half_segments_of_aform_def polychain_of_singleton_iff mirror_point_def ccw.selsort_singleton_iff lowest_vertex_def aform_val_def sum_list_nlex_eq_sum_list_inl closed_segment_def Pi_iff intro!: exI[where x="(1 + e' 0) / 2"]) (auto simp: algebra_simps) qed subsection \Continuous Generalization\ lemma LIMSEQ_minus_fract_mult: "(\n. r * (1 - 1 / real (Suc (Suc n)))) \ r" by (rule tendsto_eq_rhs[OF tendsto_mult[where a=r and b = 1]]) (auto simp: inverse_eq_divide[symmetric] simp del: of_nat_Suc intro: filterlim_compose[OF LIMSEQ_inverse_real_of_nat filterlim_Suc] tendsto_eq_intros) lemma det3_nonneg_segments_of_aform: assumes "e \ UNIV \ {-1 .. 1}" assumes "length (half_segments_of_aform X) \ 1" shows "list_all (\seg. det3 (fst seg) (snd seg) (aform_val e X) \ 0) (segments_of_aform X)" unfolding list_all_iff proof safe fix a b c d assume seg: "((a, b), c, d) \ set (segments_of_aform X)" (is "?seg \ _") define normal_of_segment where "normal_of_segment = (\((a0, a1), b0, b1). (b1 - a1, a0 - b0)::real*real)" define support_of_segment where "support_of_segment = (\(a, b). normal_of_segment (a, b) \ a)" have "closed ((\x. x \ normal_of_segment ?seg) -` {..support_of_segment ?seg})" (is "closed ?cl") by (auto intro!: continuous_intros closed_vimage) moreover define f where "f n i = e i * ( 1 - 1 / (Suc (Suc n)))" for n i have "\n. aform_val (f n) X \ ?cl" proof fix n have "f n \ UNIV \ {-1 <..< 1}" using assms by (auto simp: f_def Pi_iff intro!: less_one_multI minus_one_less_multI) from list_allD[OF segments_of_aform_strict[OF this assms(2)] seg] show "aform_val (f n) X \ (\x. x \ normal_of_segment ((a, b), c, d)) -` {..support_of_segment ((a, b), c, d)}" by (auto simp: list_all_iff normal_of_segment_def support_of_segment_def det3_def' field_simps inner_prod_def ccw'_def) qed moreover have "\i. (\n. f n i) \ e i" unfolding f_def by (rule LIMSEQ_minus_fract_mult) hence "(\n. aform_val (f n) X) \ aform_val e X" by (auto simp: aform_val_def pdevs_val_sum intro!: tendsto_intros) ultimately have "aform_val e X \ ?cl" by (rule closed_sequentially) thus "det3 (fst ?seg) (snd ?seg) (aform_val e X) \ 0" by (auto simp: list_all_iff normal_of_segment_def support_of_segment_def det3_def' field_simps inner_prod_def) qed lemma det3_nonneg_segments_of_aformI: assumes "e \ UNIV \ {-1 .. 1}" assumes "length (half_segments_of_aform X) \ 1" assumes "seg \ set (segments_of_aform X)" shows "det3 (fst seg) (snd seg) (aform_val e X) \ 0" using assms det3_nonneg_segments_of_aform by (auto simp: list_all_iff) subsection \Intersection of Vertical Line with Segment\ fun intersect_segment_xline'::"nat \ point * point \ real \ point option" where "intersect_segment_xline' p ((x0, y0), (x1, y1)) xl = (if x0 \ xl \ xl \ x1 then if x0 = x1 then Some ((min y0 y1), (max y0 y1)) else let yl = truncate_down p (truncate_down p (real_divl p (y1 - y0) (x1 - x0) * (xl - x0)) + y0); yr = truncate_up p (truncate_up p (real_divr p (y1 - y0) (x1 - x0) * (xl - x0)) + y0) in Some (yl, yr) else None)" lemma norm_pair_fst0[simp]: "norm (0, x) = norm x" by (auto simp: norm_prod_def) lemmas add_right_mono_le = order_trans[OF add_right_mono] lemmas mult_right_mono_le = order_trans[OF mult_right_mono] lemmas add_right_mono_ge = order_trans[OF _ add_right_mono] lemmas mult_right_mono_ge = order_trans[OF _ mult_right_mono] lemma dest_segment: fixes x b::real assumes "(x, b) \ closed_segment (x0, y0) (x1, y1)" assumes "x0 \ x1" shows "b = (y1 - y0) * (x - x0) / (x1 - x0) + y0" proof - from assms obtain u where u: "x = x0 *\<^sub>R (1 - u) + u * x1" "b = y0 *\<^sub>R (1 - u) + u * y1" "0 \ u" "u \ 1" by (auto simp: closed_segment_def algebra_simps) show "b = (y1 - y0) * (x - x0) / (x1 - x0) + y0 " using assms by (auto simp: closed_segment_def field_simps u) qed lemma intersect_segment_xline': assumes "intersect_segment_xline' prec (p0, p1) x = Some (m, M)" shows "closed_segment p0 p1 \ {p. fst p = x} \ {(x, m) .. (x, M)}" using assms proof (cases p0) case (Pair x0 y0) note p0 = this show ?thesis proof (cases p1) case (Pair x1 y1) note p1 = this { assume "x0 = x1" "x = x1" "m = min y0 y1" "M = max y0 y1" hence ?thesis by (force simp: abs_le_iff p0 p1 min_def max_def algebra_simps dest: segment_bound split: if_split_asm) } thus ?thesis using assms by (auto simp: abs_le_iff p0 p1 split: if_split_asm intro!: truncate_up_le truncate_down_le add_right_mono_le[OF truncate_down] add_right_mono_le[OF real_divl] add_right_mono_le[OF mult_right_mono_le[OF real_divl]] add_right_mono_ge[OF _ truncate_up] add_right_mono_ge[OF _ mult_right_mono_ge[OF _ real_divr]] dest!: dest_segment) qed qed lemma in_segment_fst_le: fixes x0 x1 b::real assumes "x0 \ x1" "(x, b) \ closed_segment (x0, y0) (x1, y1)" shows "x \ x1" using assms using mult_left_mono[OF \x0 \ x1\, where c="1 - u" for u] by (force simp add: min_def max_def split: if_split_asm simp add: algebra_simps not_le closed_segment_def) lemma in_segment_fst_ge: fixes x0 x1 b::real assumes "x0 \ x1" "(x, b) \ closed_segment (x0, y0) (x1, y1)" shows "x0 \ x" using assms using mult_left_mono[OF \x0 \ x1\] by (force simp add: min_def max_def split: if_split_asm simp add: algebra_simps not_le closed_segment_def) lemma intersect_segment_xline'_eq_None: assumes "intersect_segment_xline' prec (p0, p1) x = None" assumes "fst p0 \ fst p1" shows "closed_segment p0 p1 \ {p. fst p = x} = {}" using assms by (cases p0, cases p1) (auto simp: abs_le_iff split: if_split_asm dest: in_segment_fst_le in_segment_fst_ge) fun intersect_segment_xline where "intersect_segment_xline prec ((a, b), (c, d)) x = (if a \ c then intersect_segment_xline' prec ((a, b), (c, d)) x else intersect_segment_xline' prec ((c, d), (a, b)) x)" lemma closed_segment_commute: "closed_segment a b = closed_segment b a" by (meson convex_contains_segment convex_closed_segment dual_order.antisym ends_in_segment) lemma intersect_segment_xline: assumes "intersect_segment_xline prec (p0, p1) x = Some (m, M)" shows "closed_segment p0 p1 \ {p. fst p = x} \ {(x, m) .. (x, M)}" using assms by (cases p0, cases p1) (auto simp: closed_segment_commute split: if_split_asm simp del: intersect_segment_xline'.simps dest!: intersect_segment_xline') lemma intersect_segment_xline_fst_snd: assumes "intersect_segment_xline prec seg x = Some (m, M)" shows "closed_segment (fst seg) (snd seg) \ {p. fst p = x} \ {(x, m) .. (x, M)}" using intersect_segment_xline[of prec "fst seg" "snd seg" x m M] assms by simp lemma intersect_segment_xline_eq_None: assumes "intersect_segment_xline prec (p0, p1) x = None" shows "closed_segment p0 p1 \ {p. fst p = x} = {}" using assms by (cases p0, cases p1) (auto simp: closed_segment_commute split: if_split_asm simp del: intersect_segment_xline'.simps dest!: intersect_segment_xline'_eq_None) lemma inter_image_empty_iff: "(X \ {p. f p = x} = {}) \ (x \ f ` X)" by auto lemma fst_closed_segment[simp]: "fst ` closed_segment a b = closed_segment (fst a) (fst b)" by (force simp: closed_segment_def) lemma intersect_segment_xline_eq_empty: fixes p0 p1::"real * real" assumes "closed_segment p0 p1 \ {p. fst p = x} = {}" shows "intersect_segment_xline prec (p0, p1) x = None" using assms by (cases p0, cases p1) (auto simp: inter_image_empty_iff closed_segment_eq_real_ivl split: if_split_asm) lemma intersect_segment_xline_le: assumes "intersect_segment_xline prec y xl = Some (m0, M0)" shows "m0 \ M0" using assms by (cases y) (auto simp: min_def split: if_split_asm intro!: truncate_up_le truncate_down_le order_trans[OF real_divl] order_trans[OF _ real_divr] mult_right_mono) lemma intersect_segment_xline_None_iff: fixes p0 p1::"real * real" shows "intersect_segment_xline prec (p0, p1) x = None \ closed_segment p0 p1 \ {p. fst p = x} = {}" by (auto intro!: intersect_segment_xline_eq_empty dest!: intersect_segment_xline_eq_None) subsection \Bounds on Vertical Intersection with Oriented List of Segments\ primrec bound_intersect_2d where "bound_intersect_2d prec [] x = None" | "bound_intersect_2d prec (X # Xs) xl = (case bound_intersect_2d prec Xs xl of None \ intersect_segment_xline prec X xl | Some (m, M) \ (case intersect_segment_xline prec X xl of None \ Some (m, M) | Some (m', M') \ Some (min m' m, max M' M)))" lemma bound_intersect_2d_eq_None: assumes "bound_intersect_2d prec Xs x = None" assumes "X \ set Xs" shows "intersect_segment_xline prec X x = None" using assms by (induct Xs) (auto split: option.split_asm) lemma bound_intersect_2d_upper: assumes "bound_intersect_2d prec Xs x = Some (m, M)" obtains X m' where "X \ set Xs" "intersect_segment_xline prec X x = Some (m', M)" "\X m' M' . X \ set Xs \ intersect_segment_xline prec X x = Some (m', M') \ M' \ M" proof atomize_elim show "\X m'. X \ set Xs \ intersect_segment_xline prec X x = Some (m', M) \ (\X m' M'. X \ set Xs \ intersect_segment_xline prec X x = Some (m', M') \ M' \ M)" using assms proof (induct Xs arbitrary: m M) case Nil thus ?case by (simp add: bound_intersect_2d_def) next case (Cons X Xs) show ?case proof (cases "bound_intersect_2d prec Xs x") case None thus ?thesis using Cons by (intro exI[where x=X] exI[where x=m]) (simp del: intersect_segment_xline.simps add: bound_intersect_2d_eq_None) next case (Some mM) note Some1=this then obtain m' M' where mM: "mM = (m', M')" by (cases mM) from Cons(1)[OF Some[unfolded mM]] obtain X' m'' where X': "X' \ set Xs" and m'': "intersect_segment_xline prec X' x = Some (m'', M')" and max: "\X m' M'a. X \ set Xs \ intersect_segment_xline prec X x = Some (m', M'a) \ M'a \ M'" by auto show ?thesis proof (cases "intersect_segment_xline prec X x") case None thus ?thesis using Some1 mM Cons(2) X' m'' max by (intro exI[where x= X'] exI[where x= m'']) (auto simp del: intersect_segment_xline.simps split: option.split_asm) next case (Some mM''') thus ?thesis using Some1 mM Cons(2) X' m'' by (cases mM''') (force simp: max_def min_def simp del: intersect_segment_xline.simps split: option.split_asm if_split_asm dest!: max intro!: exI[where x= "if M' \ snd mM''' then X' else X"] exI[where x= "if M' \ snd mM''' then m'' else fst mM'''"]) qed qed qed qed lemma bound_intersect_2d_lower: assumes "bound_intersect_2d prec Xs x = Some (m, M)" obtains X M' where "X \ set Xs" "intersect_segment_xline prec X x = Some (m, M')" "\X m' M' . X \ set Xs \ intersect_segment_xline prec X x = Some (m', M') \ m \ m'" proof atomize_elim show "\X M'. X \ set Xs \ intersect_segment_xline prec X x = Some (m, M') \ (\X m' M'. X \ set Xs \ intersect_segment_xline prec X x = Some (m', M') \ m \ m')" using assms proof (induct Xs arbitrary: m M) case Nil thus ?case by (simp add: bound_intersect_2d_def) next case (Cons X Xs) show ?case proof (cases "bound_intersect_2d prec Xs x") case None thus ?thesis using Cons by (intro exI[where x= X]) (simp del: intersect_segment_xline.simps add: bound_intersect_2d_eq_None) next case (Some mM) note Some1=this then obtain m' M' where mM: "mM = (m', M')" by (cases mM) from Cons(1)[OF Some[unfolded mM]] obtain X' M'' where X': "X' \ set Xs" and M'': "intersect_segment_xline prec X' x = Some (m', M'')" and min: "\X m'a M'. X \ set Xs \ intersect_segment_xline prec X x = Some (m'a, M') \ m' \ m'a" by auto show ?thesis proof (cases "intersect_segment_xline prec X x") case None thus ?thesis using Some1 mM Cons(2) X' M'' min by (intro exI[where x= X'] exI[where x= M'']) (auto simp del: intersect_segment_xline.simps split: option.split_asm) next case (Some mM''') thus ?thesis using Some1 mM Cons(2) X' M'' min by (cases mM''') (force simp: max_def min_def simp del: intersect_segment_xline.simps split: option.split_asm if_split_asm dest!: min intro!: exI[where x= "if m' \ fst mM''' then X' else X"] exI[where x= "if m' \ fst mM''' then M'' else snd mM'''"]) qed qed qed qed lemma bound_intersect_2d: assumes "bound_intersect_2d prec Xs x = Some (m, M)" shows "(\(p1, p2) \ set Xs. closed_segment p1 p2) \ {p. fst p = x} \ {(x, m) .. (x, M)}" proof (clarsimp, safe) fix b x0 y0 x1 y1 assume H: "((x0, y0), x1, y1) \ set Xs" "(x, b) \ closed_segment (x0, y0) (x1, y1)" hence "intersect_segment_xline prec ((x0, y0), x1, y1) x \ None" by (intro notI) (auto dest!: intersect_segment_xline_eq_None simp del: intersect_segment_xline.simps) then obtain e f where ef: "intersect_segment_xline prec ((x0, y0), x1, y1) x = Some (e, f)" by auto with H have "m \ e" by (auto intro: bound_intersect_2d_lower[OF assms]) also have "\ \ b" using intersect_segment_xline[OF ef] H by force finally show "m \ b" . have "b \ f" using intersect_segment_xline[OF ef] H by force also have "\ \ M" using H ef by (auto intro: bound_intersect_2d_upper[OF assms]) finally show "b \ M" . qed lemma bound_intersect_2d_eq_None_iff: "bound_intersect_2d prec Xs x = None \ (\X\set Xs. intersect_segment_xline prec X x = None)" by (induct Xs) (auto simp: split: option.split_asm) lemma bound_intersect_2d_nonempty: assumes "bound_intersect_2d prec Xs x = Some (m, M)" shows "(\(p1, p2) \ set Xs. closed_segment p1 p2) \ {p. fst p = x} \ {}" proof - from assms have "bound_intersect_2d prec Xs x \ None" by simp then obtain p1 p2 where "(p1, p2) \ set Xs" "intersect_segment_xline prec (p1, p2) x \ None" unfolding bound_intersect_2d_eq_None_iff by auto hence "closed_segment p1 p2 \ {p. fst p = x} \ {}" by (simp add: intersect_segment_xline_None_iff) thus ?thesis using \(p1, p2) \ set Xs\ by auto qed lemma bound_intersect_2d_le: assumes "bound_intersect_2d prec Xs x = Some (m, M)" shows "m \ M" proof - from bound_intersect_2d_nonempty[OF assms] bound_intersect_2d[OF assms] show "m \ M" by auto qed subsection \Bounds on Vertical Intersection with General List of Segments\ definition "bound_intersect_2d_ud prec X xl = (case segments_of_aform X of [] \ if fst (fst X) = xl then let m = snd (fst X) in Some (m, m) else None | [x, y] \ intersect_segment_xline prec x xl | xs \ (case bound_intersect_2d prec (filter (\((x1, y1), x2, y2). x1 < x2) xs) xl of Some (m, M') \ (case bound_intersect_2d prec (filter (\((x1, y1), x2, y2). x1 > x2) xs) xl of Some (m', M) \ Some (min m m', max M M') | None \ None) | None \ None))" lemma list_cases4: "\x P. (x = [] \ P) \ (\y. x = [y] \ P) \ (\y z. x = [y, z] \ P) \ (\w y z zs. x = w # y # z # zs \ P) \ P" by (metis list.exhaust) lemma bound_intersect_2d_ud_segments_of_aform_le: "bound_intersect_2d_ud prec X xl = Some (m0, M0) \ m0 \ M0" by (cases "segments_of_aform X" rule: list_cases4) (auto simp: Let_def bound_intersect_2d_ud_def min_def max_def intersect_segment_xline_le if_split_eq1 split: option.split_asm prod.split_asm list.split_asm dest!: bound_intersect_2d_le) lemma pdevs_domain_eq_empty_iff[simp]: "pdevs_domain (snd X) = {} \ snd X = zero_pdevs" by (auto simp: intro!: pdevs_eqI) lemma ccw_contr_on_line_left: assumes "det3 (a, b) (x, c) (x, d) \ 0" "a > x" shows "d \ c" proof - from assms have "d * (a - x) \ c * (a - x)" by (auto simp: det3_def' algebra_simps) with assms show "c \ d" by auto qed lemma ccw_contr_on_line_right: assumes "det3 (a, b) (x, c) (x, d) \ 0" "a < x" shows "d \ c" proof - from assms have "c * (x - a) \ d * (x - a)" by (auto simp: det3_def' algebra_simps) with assms show "d \ c" by auto qed lemma singleton_contrE: assumes "\x y. x \ y \ x \ X \ y \ X \ False" assumes "X \ {}" obtains x where "X = {x}" using assms by blast lemma segment_intersection_singleton: fixes xl and a b::"real * real" defines "i \ closed_segment a b \ {p. fst p = xl}" assumes ne1: "fst a \ fst b" assumes upper: "i \ {}" obtains p1 where "i = {p1}" proof (rule singleton_contrE[OF _ upper]) fix x y assume H: "x \ y" "x \ i" "y \ i" then obtain u v where uv: "x = u *\<^sub>R b + (1 - u) *\<^sub>R a" "y = v *\<^sub>R b + (1 - v) *\<^sub>R a" "0 \ u" "u \ 1" "0 \ v" "v \ 1" by (auto simp add: closed_segment_def i_def field_simps) then have "x + u *\<^sub>R a = a + u *\<^sub>R b" "y + v *\<^sub>R a = a + v *\<^sub>R b" by simp_all then have "fst (x + u *\<^sub>R a) = fst (a + u *\<^sub>R b)" "fst (y + v *\<^sub>R a) = fst (a + v *\<^sub>R b)" by simp_all then have "u = v * (fst a - fst b) / (fst a - fst b)" using ne1 H(2,3) \0 \ u\ \u \ 1\ \0 \ v\ \v \ 1\ by (simp add: closed_segment_def i_def field_simps) then have "u = v" by (simp add: ne1) then show False using H uv by simp qed lemma bound_intersect_2d_ud_segments_of_aform: assumes "bound_intersect_2d_ud prec X xl = Some (m0, M0)" assumes "e \ UNIV \ {-1 .. 1}" shows "{aform_val e X} \ {x. fst x = xl} \ {(xl, m0) .. (xl, M0)}" proof safe fix a b assume safeassms: "(a, b) = aform_val e X" "xl = fst (a, b)" hence fst_aform_val: "fst (aform_val e X) = xl" by simp { assume len: "length (segments_of_aform X) > 2" with assms obtain m M m' M' where lb: "bound_intersect_2d prec [((x1, y1), x2, y2)\segments_of_aform X . x1 < x2] xl = Some (m, M')" and ub: "bound_intersect_2d prec [((x1, y1), x2, y2)\segments_of_aform X . x2 < x1] xl = Some (m', M)" and minmax: "m0 = min m m'" "M0 = max M M'" by (auto simp: bound_intersect_2d_ud_def split: option.split_asm list.split_asm ) from bound_intersect_2d_upper[OF ub] obtain X1 m1 where upper: "X1 \ set [((x1, y1), x2, y2)\segments_of_aform X . x2 < x1]" "intersect_segment_xline prec X1 xl = Some (m1, M)" by metis from bound_intersect_2d_lower[OF lb] obtain X2 M2 where lower: "X2 \ set [((x1, y1), x2, y2)\segments_of_aform X . x1 < x2]" "intersect_segment_xline prec X2 xl = Some (m, M2)" by metis from upper(1) lower(1) have X1: "X1 \ set (segments_of_aform X)" "fst (fst X1) > fst (snd X1)" and X2: "X2 \ set (segments_of_aform X)" "fst (fst X2) < fst (snd X2)" by auto note upper_seg = intersect_segment_xline_fst_snd[OF upper(2)] note lower_seg = intersect_segment_xline_fst_snd[OF lower(2)] from len have lh: "length (half_segments_of_aform X) \ 1" by (auto simp: segments_of_aform_def Let_def) from X1 have ne1: "fst (fst X1) \ fst (snd X1)" by simp moreover have "closed_segment (fst X1) (snd X1) \ {p. fst p = xl} \ {}" using upper(2) by (simp add: intersect_segment_xline_None_iff[of prec, symmetric]) ultimately obtain p1 where p1: "closed_segment (fst X1) (snd X1) \ {p. fst p = xl} = {p1}" by (rule segment_intersection_singleton) then obtain u where u: "p1 = (1 - u) *\<^sub>R fst X1 + u *\<^sub>R (snd X1)" "0 \ u" "u \ 1" by (auto simp: closed_segment_def algebra_simps) have coll1: "det3 (fst X1) p1 (aform_val e X) \ 0" and coll1': "det3 p1 (snd X1) (aform_val e X) \ 0" unfolding atomize_conj using u by (cases "u = 0 \ u = 1") (auto simp: u(1) intro: det3_nonneg_scaleR_segment1 det3_nonneg_scaleR_segment2 det3_nonneg_segments_of_aformI[OF \e \ _\ lh X1(1)]) from X2 have ne2: "fst (fst X2) \ fst (snd X2)" by simp moreover have "closed_segment (fst X2) (snd X2) \ {p. fst p = xl} \ {}" using lower(2) by (simp add: intersect_segment_xline_None_iff[of prec, symmetric]) ultimately obtain p2 where p2: "closed_segment (fst X2) (snd X2) \ {p. fst p = xl} = {p2}" by (rule segment_intersection_singleton) then obtain v where v: "p2 = (1 - v) *\<^sub>R fst X2 + v *\<^sub>R (snd X2)" "0 \ v" "v \ 1" by (auto simp: closed_segment_def algebra_simps) have coll2: "det3 (fst X2) p2 (aform_val e X) \ 0" and coll2': "det3 p2 (snd X2) (aform_val e X) \ 0" unfolding atomize_conj using v by (cases "v = 0 \ v = 1") (auto simp: v(1) intro: det3_nonneg_scaleR_segment1 det3_nonneg_scaleR_segment2 det3_nonneg_segments_of_aformI[OF \e \ _\ lh X2(1)]) from in_set_segments_of_aform_aform_valE [of "fst X1" "snd X1" X, unfolded prod.collapse, OF X1(1)] obtain e1s where e1s: "snd X1 = aform_val e1s X" "e1s \ UNIV \ {- 1..1}" . from previous_segments_of_aformE [of "fst X1" "snd X1" X, unfolded prod.collapse, OF X1(1)] obtain fX0 where "(fX0, fst X1) \ set (segments_of_aform X)" . from in_set_segments_of_aform_aform_valE[OF this] obtain e1f where e1f: "fst X1 = aform_val e1f X" "e1f \ UNIV \ {- 1..1}" . have "p1 \ closed_segment (aform_val e1f X) (aform_val e1s X)" using p1 by (auto simp: e1s e1f) with segment_in_aform_val[OF e1s(2) e1f(2), of X] obtain ep1 where ep1: "ep1 \ UNIV \ {-1 .. 1}" "p1 = aform_val ep1 X" by (auto simp: Affine_def valuate_def closed_segment_commute) from in_set_segments_of_aform_aform_valE [of "fst X2" "snd X2" X, unfolded prod.collapse, OF X2(1)] obtain e2s where e2s: "snd X2 = aform_val e2s X" "e2s \ UNIV \ {- 1..1}" . from previous_segments_of_aformE [of "fst X2" "snd X2" X, unfolded prod.collapse, OF X2(1)] obtain fX02 where "(fX02, fst X2) \ set (segments_of_aform X)" . from in_set_segments_of_aform_aform_valE[OF this] obtain e2f where e2f: "fst X2 = aform_val e2f X" "e2f \ UNIV \ {- 1..1}" . have "p2 \ closed_segment (aform_val e2f X) (aform_val e2s X)" using p2 by (auto simp: e2s e2f) with segment_in_aform_val[OF e2f(2) e2s(2), of X] obtain ep2 where ep2: "ep2 \ UNIV \ {-1 .. 1}" "p2 = aform_val ep2 X" by (auto simp: Affine_def valuate_def) from det3_nonneg_segments_of_aformI[OF ep2(1), of X "(fst X1, snd X1)", unfolded prod.collapse, OF lh X1(1), unfolded ep2(2)[symmetric]] have c2: "det3 (fst X1) (snd X1) p2 \ 0" . hence c12: "det3 (fst X1) p1 p2 \ 0" using u by (cases "u = 0") (auto simp: u(1) det3_nonneg_scaleR_segment2) from det3_nonneg_segments_of_aformI[OF ep1(1), of X "(fst X2, snd X2)", unfolded prod.collapse, OF lh X2(1), unfolded ep1(2)[symmetric]] have c1: "det3 (fst X2) (snd X2) p1 \ 0" . hence c21: "det3 (fst X2) p2 p1 \ 0" using v by (cases "v = 0") (auto simp: v(1) det3_nonneg_scaleR_segment2) from p1 p2 have p1p2xl: "fst p1 = xl" "fst p2 = xl" by (auto simp: det3_def') from upper_seg p1 have "snd p1 \ M" by (auto simp: less_eq_prod_def) from lower_seg p2 have "m \ snd p2" by (auto simp: less_eq_prod_def) { have *: "(fst p1, snd (aform_val e X)) = aform_val e X" by (simp add: prod_eq_iff p1p2xl fst_aform_val) hence coll: "det3 (fst (fst X1), snd (fst X1)) (fst p1, snd p1) (fst p1, snd (aform_val e X)) \ 0" and coll': "det3 (fst (snd X1), snd (snd X1)) (fst p1, snd (aform_val e X)) (fst p1, snd p1) \ 0" using coll1 coll1' by (auto simp: det3_rotate) have "snd (aform_val e X) \ M" proof (cases "fst (fst X1) = xl") case False have "fst (fst X1) \ fst p1" unfolding u using X1 by (auto simp: algebra_simps intro!: mult_left_mono u) moreover have "fst (fst X1) \ fst p1" using False by (simp add: p1p2xl) ultimately have "fst (fst X1) > fst p1" by simp from ccw_contr_on_line_left[OF coll this] show ?thesis using \snd p1 \ M\ by simp next case True have "fst (snd X1) * (1 - u) \ fst (fst X1) * (1 - u)" using X1 u by (auto simp: intro!: mult_right_mono) hence "fst (snd X1) \ fst p1" unfolding u by (auto simp: algebra_simps) moreover have "fst (snd X1) \ fst p1" using True ne1 by (simp add: p1p2xl) ultimately have "fst (snd X1) < fst p1" by simp from ccw_contr_on_line_right[OF coll' this] show ?thesis using \snd p1 \ M\ by simp qed } moreover { have "(fst p2, snd (aform_val e X)) = aform_val e X" by (simp add: prod_eq_iff p1p2xl fst_aform_val) hence coll: "det3 (fst (fst X2), snd (fst X2)) (fst p2, snd p2) (fst p2, snd (aform_val e X)) \ 0" and coll': "det3 (fst (snd X2), snd (snd X2)) (fst p2, snd (aform_val e X)) (fst p2, snd p2) \ 0" using coll2 coll2' by (auto simp: det3_rotate) have "m \ snd (aform_val e X)" proof (cases "fst (fst X2) = xl") case False have "fst (fst X2) \ fst p2" unfolding v using X2 by (auto simp: algebra_simps intro!: mult_left_mono v) moreover have "fst (fst X2) \ fst p2" using False by (simp add: p1p2xl) ultimately have "fst (fst X2) < fst p2" by simp from ccw_contr_on_line_right[OF coll this] show ?thesis using \m \ snd p2\ by simp next case True have "(1 - v) * fst (snd X2) \ (1 - v) * fst (fst X2)" using X2 v by (auto simp: intro!: mult_left_mono) hence "fst (snd X2) \ fst p2" unfolding v by (auto simp: algebra_simps) moreover have "fst (snd X2) \ fst p2" using True ne2 by (simp add: p1p2xl) ultimately have "fst (snd X2) > fst p2" by simp from ccw_contr_on_line_left[OF coll' this] show ?thesis using \m \ snd p2\ by simp qed } ultimately have "aform_val e X \ {(xl, m) .. (xl, M)}" by (auto simp: less_eq_prod_def fst_aform_val) hence "aform_val e X \ {(xl, m0) .. (xl, M0)}" by (auto simp: minmax less_eq_prod_def) } moreover { assume "length (segments_of_aform X) = 2" then obtain a b where s: "segments_of_aform X = [a, b]" by (auto simp: numeral_2_eq_2 length_Suc_conv) from segments_of_aform_line_segment[OF this assms(2)] have "aform_val e X \ closed_segment (fst a) (snd a)" . moreover from assms have "intersect_segment_xline prec a xl = Some (m0, M0)" by (auto simp: bound_intersect_2d_ud_def s) note intersect_segment_xline_fst_snd[OF this] ultimately have "aform_val e X \ {(xl, m0) .. (xl, M0)}" by (auto simp: less_eq_prod_def fst_aform_val) } moreover { assume "length (segments_of_aform X) = 1" from polychain_of_segments_of_aform1[OF this] have "aform_val e X \ {(xl, m0) .. (xl, M0)}" by auto } moreover { assume len: "length (segments_of_aform X) = 0" hence "independent_pdevs (map snd (list_of_pdevs (nlex_pdevs (snd X)))) = []" by (simp add: segments_of_aform_def Let_def half_segments_of_aform_def inl_def) hence "snd X = zero_pdevs" by (subst (asm) independent_pdevs_eq_Nil_iff) (auto simp: list_all_iff list_of_pdevs_def) hence "aform_val e X = fst X" by (simp add: aform_val_def) with len assms have "aform_val e X \ {(xl, m0) .. (xl, M0)}" by (auto simp: bound_intersect_2d_ud_def Let_def split: if_split_asm) } ultimately have "aform_val e X \ {(xl, m0)..(xl, M0)}" by arith thus "(a, b) \ {(fst (a, b), m0)..(fst (a, b), M0)}" using safeassms by simp qed subsection \Approximation from Orthogonal Directions\ definition inter_aform_plane_ortho:: "nat \ 'a::executable_euclidean_space aform \ 'a \ real \ 'a aform option" where "inter_aform_plane_ortho p Z n g = do { mMs \ those (map (\b. bound_intersect_2d_ud p (inner2_aform Z n b) g) Basis_list); let l = (\(b, m)\zip Basis_list (map fst mMs). m *\<^sub>R b); let u = (\(b, M)\zip Basis_list (map snd mMs). M *\<^sub>R b); Some (aform_of_ivl l u) }" lemma those_eq_SomeD: assumes "those (map f xs) = Some ys" shows "ys = map (the o f) xs \ (\i.\y. i < length xs \ f (xs ! i) = Some y)" using assms by (induct xs arbitrary: ys) (auto split: option.split_asm simp: o_def nth_Cons split: nat.split) lemma sum_list_zip_map: assumes "distinct xs" shows "(\(x, y)\zip xs (map g xs). f x y) = (\x\set xs. f x (g x))" by (force simp add: sum_list_distinct_conv_sum_set assms distinct_zipI1 split_beta' in_set_zip in_set_conv_nth inj_on_convol_ident intro!: sum.reindex_cong[where l="\x. (x, g x)"]) lemma inter_aform_plane_ortho_overappr: assumes "inter_aform_plane_ortho p Z n g = Some X" shows "{x. \i \ Basis. x \ i \ {y. (g, y) \ (\x. (x \ n, x \ i)) ` Affine Z}} \ Affine X" proof - let ?inter = "(\b. bound_intersect_2d_ud p (inner2_aform Z n b) g)" obtain xs where xs: "those (map ?inter Basis_list) = Some xs" using assms by (cases "those (map ?inter Basis_list)") (auto simp: inter_aform_plane_ortho_def) from those_eq_SomeD[OF this] obtain y' where xs_eq: "xs = map (the \ ?inter) Basis_list" and y': "\i. i < length (Basis_list::'a list) \ ?inter (Basis_list ! i) = Some (y' i)" by metis have "\(i::'a) \ Basis. \ji::'a. i\Basis \ j i < length (Basis_list::'a list)" "\i::'a. i\Basis \ i = Basis_list ! j i" by metis define y where "y = y' o j" with y' j have y: "\i. i \ Basis \ ?inter i = Some (y i)" by (metis comp_def) hence y_le: "\i. i \ Basis \ fst (y i) \ snd (y i)" by (auto intro!: bound_intersect_2d_ud_segments_of_aform_le) hence "(\b\Basis. fst (y b) *\<^sub>R b) \ (\b\Basis. snd (y b) *\<^sub>R b)" by (auto simp: eucl_le[where 'a='a]) with assms have X: "Affine X = {\b\Basis. fst (y b) *\<^sub>R b..\b\Basis. snd (y b) *\<^sub>R b}" by (auto simp: inter_aform_plane_ortho_def sum_list_zip_map xs xs_eq y Affine_aform_of_ivl) show ?thesis proof safe fix x assume x: "\i\Basis. x \ i \ {y. (g, y) \ (\x. (x \ n, x \ i)) ` Affine Z}" { fix i::'a assume i: "i \ Basis" from x i have x_in2: "(g, x \ i) \ (\x. (x \ n, x \ i)) ` Affine Z" by auto from x_in2 obtain e where e: "e \ UNIV \ {- 1..1}" and g: "g = aform_val e Z \ n" and x: "x \ i = aform_val e Z \ i" by (auto simp: Affine_def valuate_def) have "{aform_val e (inner2_aform Z n i)} = {aform_val e (inner2_aform Z n i)} \ {x. fst x = g}" by (auto simp: g inner2_def) also from y[OF \i \ Basis\] have "?inter i = Some (fst (y i), snd (y i))" by simp note bound_intersect_2d_ud_segments_of_aform[OF this e] finally have "x \ i \ {fst (y i) .. snd (y i)}" by (auto simp: x inner2_def) } thus "x \ Affine X" unfolding X by (auto simp: eucl_le[where 'a='a]) qed qed lemma inter_proj_eq: fixes n g l defines "G \ {x. x \ n = g}" shows "(\x. x \ l) ` (Z \ G) = {y. (g, y) \ (\x. (x \ n, x \ l)) ` Z}" by (auto simp: G_def) lemma inter_overappr: fixes n \ l shows "Z \ {x. x \ n = g} \ {x. \i \ Basis. x \ i \ {y. (g, y) \ (\x. (x \ n, x \ i)) ` Z}}" by auto lemma inter_inter_aform_plane_ortho: assumes "inter_aform_plane_ortho p Z n g = Some X" shows "Affine Z \ {x. x \ n = g} \ Affine X" proof - note inter_overappr[of "Affine Z" n g] also note inter_aform_plane_ortho_overappr[OF assms] finally show ?thesis . qed subsection \``Completeness'' of Intersection\ abbreviation "encompasses x seg \ det3 (fst seg) (snd seg) x \ 0" lemma encompasses_cases: "encompasses x seg \ encompasses x (snd seg, fst seg)" by (auto simp: det3_def' algebra_simps) lemma list_all_encompasses_cases: assumes "list_all (encompasses p) (x # y # zs)" obtains "list_all (encompasses p) [x, y, (snd y, fst x)]" | "list_all (encompasses p) ((fst x, snd y)#zs)" using encompasses_cases proof assume "encompasses p (snd y, fst x)" hence "list_all (encompasses p) [x, y, (snd y, fst x)]" using assms by (auto simp: list_all_iff) thus ?thesis .. next assume "encompasses p (snd (snd y, fst x), fst (snd y, fst x))" hence "list_all (encompasses p) ((fst x, snd y)#zs)" using assms by (auto simp: list_all_iff) thus ?thesis .. qed lemma triangle_encompassing_polychain_of: assumes "det3 p a b \ 0" "det3 p b c \ 0" "det3 p c a \ 0" assumes "ccw' a b c" shows "p \ convex hull {a, b, c}" proof - from assms have nn: "det3 b c p \ 0" "det3 c a p \ 0" "det3 a b p \ 0" "det3 a b c \ 0" by (auto simp: det3_def' algebra_simps) have "det3 a b c *\<^sub>R p = det3 b c p *\<^sub>R a + det3 c a p *\<^sub>R b + det3 a b p *\<^sub>R c" by (auto simp: det3_def' algebra_simps prod_eq_iff) hence "inverse (det3 a b c) *\<^sub>R (det3 a b c *\<^sub>R p) = inverse (det3 a b c) *\<^sub>R (det3 b c p *\<^sub>R a + det3 c a p *\<^sub>R b + det3 a b p *\<^sub>R c)" by simp with assms have p_eq: "p = (det3 b c p / det3 a b c) *\<^sub>R a + (det3 c a p / det3 a b c) *\<^sub>R b + (det3 a b p / det3 a b c) *\<^sub>R c" (is "_ = scaleR ?u _ + scaleR ?v _ + scaleR ?w _") by (simp add: inverse_eq_divide algebra_simps ccw'_def) have det_eq: "det3 b c p / det3 a b c + det3 c a p / det3 a b c + det3 a b p / det3 a b c = 1" using assms(4) by (simp add: add_divide_distrib[symmetric] det3_def' algebra_simps ccw'_def) show ?thesis unfolding convex_hull_3 using assms(4) by (blast intro: exI[where x="?u"] exI[where x="?v"] exI[where x="?w"] intro!: p_eq divide_nonneg_nonneg nn det_eq) qed lemma encompasses_convex_polygon3: assumes "list_all (encompasses p) (x#y#z#zs)" assumes "convex_polygon (x#y#z#zs)" assumes "ccw'.sortedP (fst x) (map snd (butlast (x#y#z#zs)))" shows "p \ convex hull (set (map fst (x#y#z#zs)))" using assms proof (induct zs arbitrary: x y z p) case Nil thus ?case by (auto simp: det3_def' algebra_simps elim!: ccw'.sortedP_Cons ccw'.sortedP_Nil intro!: triangle_encompassing_polychain_of) next case (Cons w ws) from Cons.prems(2) have "snd y = fst z" by auto from Cons.prems(1) show ?case proof (rule list_all_encompasses_cases) assume "list_all (encompasses p) [x, y, (snd y, fst x)]" hence "p \ convex hull {fst x, fst y, snd y}" using Cons.prems by (auto simp: det3_def' algebra_simps elim!: ccw'.sortedP_Cons ccw'.sortedP_Nil intro!: triangle_encompassing_polychain_of) thus ?case by (rule rev_subsetD[OF _ hull_mono]) (auto simp: \snd y = fst z\) next assume *: "list_all (encompasses p) ((fst x, snd y) # z # w # ws)" from Cons.prems have enc: "ws \ [] \ encompasses p (last ws)" by (auto simp: list_all_iff) have "set (map fst ((fst x, snd y)#z#w#ws)) \ set (map fst (x # y # z # w # ws))" by auto moreover { note * moreover have "convex_polygon ((fst x, snd y) # z # w # ws)" by (metis convex_polygon_skip Cons.prems(2,3)) moreover have "ccw'.sortedP (fst (fst x, snd y)) (map snd (butlast ((fst x, snd y) # z # w # ws)))" using Cons.prems(3) by (auto elim!: ccw'.sortedP_Cons intro!: ccw'.sortedP.Cons ccw'.sortedP.Nil split: if_split_asm) ultimately have "p \ convex hull set (map fst ((fst x, snd y)#z#w#ws))" by (rule Cons.hyps) } ultimately show "p \ convex hull set (map fst (x # y # z # w # ws))" by (rule subsetD[OF hull_mono]) qed qed lemma segments_of_aform_empty_Affine_eq: assumes "segments_of_aform X = []" shows "Affine X = {fst X}" proof - have "independent_pdevs (map snd (list_of_pdevs (nlex_pdevs (snd X)))) = [] \ (list_of_pdevs (nlex_pdevs (snd X))) = []" by (subst independent_pdevs_eq_Nil_iff) (auto simp: list_all_iff list_of_pdevs_def ) with assms show ?thesis by (force simp: aform_val_def list_of_pdevs_def Affine_def valuate_def segments_of_aform_def Let_def half_segments_of_aform_def inl_def) qed lemma not_segments_of_aform_singleton: "segments_of_aform X \ [x]" by (auto simp: segments_of_aform_def Let_def add_is_1 dest!: arg_cong[where f=length]) lemma encompasses_segments_of_aform_in_AffineI: assumes "length (segments_of_aform X) > 2" assumes "list_all (encompasses p) (segments_of_aform X)" shows "p \ Affine X" proof - from assms(1) obtain x y z zs where eq: "segments_of_aform X = x#y#z#zs" by (cases "segments_of_aform X" rule: list_cases4) auto hence "fst x = fst (hd (half_segments_of_aform X))" by (metis segments_of_aform_def hd_append list.map_disc_iff list.sel(1)) also have "\ = lowest_vertex (fst X, nlex_pdevs (snd X))" using assms by (intro fst_hd_half_segments_of_aform) (auto simp: segments_of_aform_def) finally have fstx: "fst x = lowest_vertex (fst X, nlex_pdevs (snd X))" . have "p \ convex hull (set (map fst (segments_of_aform X)))" using assms(2) unfolding eq proof (rule encompasses_convex_polygon3) show "convex_polygon (x # y # z # zs)" using assms(1) unfolding eq[symmetric] by (intro convex_polygon_segments_of_aform) (simp add: segments_of_aform_def Let_def) show "ccw'.sortedP (fst x) (map snd (butlast (x # y # z # zs)))" using assms(1) unfolding fstx map_butlast eq[symmetric] by (intro ccw'_sortedP_snd_segments_of_aform) (simp add: segments_of_aform_def Let_def half_segments_of_aform_def) qed also have "\ \ convex hull (Affine X)" proof (rule hull_mono, safe) fix a b assume "(a, b) \ set (map fst (segments_of_aform X))" then obtain c d where "((a, b), c, d) \ set (segments_of_aform X)" by auto from previous_segments_of_aformE[OF this] obtain x where "(x, a, b) \ set (segments_of_aform X)" by auto from in_set_segments_of_aform_aform_valE[OF this] obtain e where "(a, b) = aform_val e X" "e \ UNIV \ {- 1..1}" by auto thus "(a, b) \ Affine X" by (auto simp: Affine_def valuate_def image_iff) qed also have "\ = Affine X" by (simp add: convex_Affine convex_hull_eq) finally show ?thesis . qed end