:: Relocable Instructions :: by Andrzej Trybulec environ vocabularies NUMBERS, ARYTM_1, ARYTM_3, CARD_1, AMI_1, XBOOLE_0, RELAT_1, TARSKI, FUNCOP_1, GLIB_000, GOBOARD5, AMISTD_1, FUNCT_1, STRUCT_0, VALUED_1, FSM_1, FUNCT_4, TURING_1, CIRCUIT2, AMISTD_2, PARTFUN1, EXTPRO_1, NAT_1, RELOC, AMISTD_5, COMPOS_1, MSUALG_1, FINSET_1, QUANTAL1, MEMSTR_0, SCMFSA6B; notations TARSKI, XBOOLE_0, XTUPLE_0, SUBSET_1, ORDINAL1, SETFAM_1, MEMBERED, RELAT_1, FUNCT_1, PARTFUN1, FUNCT_2, FUNCT_4, PBOOLE, FINSET_1, CARD_1, NUMBERS, XCMPLX_0, XXREAL_0, NAT_1, CARD_3, FINSEQ_1, FUNCOP_1, NAT_D, FUNCT_7, VALUED_0, VALUED_1, AFINSQ_1, MEASURE6, STRUCT_0, MEMSTR_0, COMPOS_0, COMPOS_1, EXTPRO_1, AMISTD_1, AMISTD_2; constructors WELLORD2, REALSET1, NAT_D, AMISTD_1, XXREAL_2, PRE_POLY, AFINSQ_1, ORDINAL4, VALUED_1, AMISTD_2, PBOOLE, RELSET_1, FUNCT_7, FUNCT_4, MEMSTR_0, MEASURE6, XTUPLE_0; registrations XBOOLE_0, RELAT_1, FUNCT_1, FUNCOP_1, FINSET_1, XREAL_0, NAT_1, AMISTD_1, FUNCT_4, RELSET_1, GRFUNC_1, ORDINAL1, VALUED_1, COMPOS_1, EXTPRO_1, AMISTD_2, MEMSTR_0, MEASURE6, COMPOS_0, XTUPLE_0; requirements NUMERALS, BOOLE, SUBSET, ARITHM; definitions EXTPRO_1, AMISTD_2; equalities COMPOS_1, EXTPRO_1, FUNCOP_1, STRUCT_0, MEMSTR_0, COMPOS_0; expansions EXTPRO_1, AMISTD_1; theorems AMISTD_1, FUNCOP_1, FUNCT_1, FUNCT_4, GRFUNC_1, RELAT_1, TARSKI, ZFMISC_1, XBOOLE_0, XBOOLE_1, PBOOLE, PARTFUN1, VALUED_1, COMPOS_1, EXTPRO_1, NAT_D, AMISTD_2, MEMSTR_0, COMPOS_0; schemes NAT_1; begin :: Relocable instructions theorem for N be with_zero set for S be IC-Ins-separated non empty with_non-empty_values AMI-Struct over N for I be Instruction of S st I is jump-only for k be Nat holds IncAddr(I,k) is jump-only by COMPOS_0:def 9; registration let N be with_zero set, S be with_explicit_jumps IC-Ins-separated halting non empty with_non-empty_values AMI-Struct over N, I be IC-relocable Instruction of S, k be Nat; cluster IncAddr(I,k) -> IC-relocable; coherence proof let j,i being Nat, s being State of S; thus IC Exec(IncAddr(IncAddr(I,k),j),s) + i = IC Exec(IncAddr(I,k+j),s) + i by COMPOS_0:7 .= IC Exec(IncAddr(I,k+j+i),IncIC(s,i)) by AMISTD_2:def 3 .= IC Exec(IncAddr(I,k+(j+i)),IncIC(s,i)) .= IC Exec(IncAddr(IncAddr(I,k),j+i),IncIC(s,i)) by COMPOS_0:7; end; end; definition let N be with_zero set, S be halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N, I be Instruction of S; attr I is relocable means :Def1: for j,k being Nat, s being State of S holds Exec(IncAddr(I,j+k),IncIC(s,k)) = IncIC(Exec(IncAddr(I,j),s),k); end; registration let N be with_zero set, S be halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; cluster relocable -> IC-relocable for Instruction of S; coherence proof let I be Instruction of S such that A1: I is relocable; let j,k be Nat, s be State of S; reconsider kk=k as Nat; thus IC Exec(IncAddr(I,j),s) + k = IC IncIC(Exec(IncAddr(I,j),s),kk) by MEMSTR_0:53 .= IC Exec(IncAddr(I,j+k),IncIC(s,k)) by A1; end; end; definition let N be with_zero set, S be halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; attr S is relocable means :Def2: for I being Instruction of S holds I is relocable; end; theorem Th2: for N being with_zero set, I being Instruction of STC N, s be State of STC N, k being Nat holds Exec(I,IncIC(s,k)) = IncIC(Exec(I,s),k) proof let N being with_zero set, I being Instruction of STC N, s be State of STC N, k being Nat; per cases by AMISTD_1:6; suppose A1: InsCode I = 1; hence Exec(I,IncIC(s,k)) = IncIC(IncIC(s,k),1) by AMISTD_1:20 .= IncIC(s,1+k) by MEMSTR_0:57 .= IncIC(IncIC(s,1),k) by MEMSTR_0:57 .= IncIC(Exec(I,s),k) by A1,AMISTD_1:20; end; suppose InsCode I = 0; then A2: I is halting by AMISTD_1:4; hence Exec(I,IncIC(s,k)) = IncIC(s,k) .= IncIC(Exec(I,s),k) by A2; end; end; definition let N be with_zero set; let S be halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; attr S is IC-recognized means for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic FinPartState of S st p is non empty holds IC S in dom p; end; theorem Th3: for N being with_zero set for S being halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N holds S is IC-recognized iff for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic FinPartState of S st DataPart p <> {} holds IC S in dom p proof let N be with_zero set; let S be halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; thus S is IC-recognized implies for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic FinPartState of S st DataPart p <> {} holds IC S in dom p proof assume A1: S is IC-recognized; let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be q-autonomic FinPartState of S; assume DataPart p <> {}; then p is non empty; hence thesis by A1; end; assume A2: for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic FinPartState of S st DataPart p <> {} holds IC S in dom p; let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be q-autonomic FinPartState of S; A3: dom p c= {IC S} \/ dom DataPart p by MEMSTR_0:32; assume A4: p is non empty; per cases; suppose A5: IC S in dom p; thus IC S in dom p by A5; end; suppose not IC S in dom p; then {IC S} misses dom p by ZFMISC_1:50; then dom DataPart p is non empty by A4,A3,XBOOLE_1:3,73; then DataPart p is non empty; hence IC S in dom p by A2; end; end; registration let N be with_zero set; cluster Data-Locations STC N -> empty; coherence proof the carrier of STC N = {0} by AMISTD_1:def 7 .= {IC STC N} by AMISTD_1:def 7; hence thesis by XBOOLE_1:37; end; end; registration let N be with_zero set; let p be PartState of STC N; cluster DataPart p -> empty; coherence; end; registration let N be with_zero set; cluster STC N -> IC-recognized relocable; coherence proof for q be non halt-free finite (the InstructionsF of STC N)-valued NAT-defined Function for p being q-autonomic FinPartState of STC N st DataPart p <> {} holds IC STC N in dom p; hence STC N is IC-recognized by Th3; let I be Instruction of STC N; let j,k be Nat, s be State of STC N; thus Exec(IncAddr(I,j+k),IncIC(s,k)) = Exec(I,IncIC(s,k)) by COMPOS_0:4 .= IncIC(Exec(I,s),k) by Th2 .= IncIC(Exec(IncAddr(I,j),s),k) by COMPOS_0:4; end; end; registration let N be with_zero set; cluster relocable IC-recognized for standard halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; existence proof take STC N; thus thesis; end; end; registration let N be with_zero set; let S be relocable halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; cluster -> relocable for Instruction of S; coherence by Def2; end; reserve k for Nat; theorem Th4: for N be with_zero set for S be relocable halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N for INS being Instruction of S, s being State of S holds Exec(IncAddr(INS,k),IncIC(s,k)) = IncIC(Exec(INS,s),k) proof let N be with_zero set; let S be relocable halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; let INS be Instruction of S, s be State of S; thus Exec(IncAddr(INS,k),IncIC(s,k)) = Exec(IncAddr(INS,(0 qua Nat)+k),IncIC(s,k)) .= IncIC(Exec(IncAddr(INS,0),s),k) by Def1 .= IncIC(Exec(INS,s),k) by COMPOS_0:3; end; theorem Th5: for N be with_zero set for S be relocable halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N for INS being Instruction of S, s being State of S, j, k being Nat st IC s = j+k holds Exec(INS, DecIC(s,k)) = DecIC(Exec(IncAddr(INS, k), s),k) proof let N be with_zero set; let S be relocable halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; let INS be Instruction of S, s be State of S, j,k be Nat such that A1: IC s = j+k; set s1 = s +* Start-At(j,S); A2: IncIC(s1,k) = s +* Start-At(IC s,S) by A1,MEMSTR_0:58 .= s by MEMSTR_0:31; thus Exec(INS, DecIC(s,k)) = Exec(INS,s1) by A1,NAT_D:34 .= (Exec(INS,s1) +* Start-At(IC Exec(INS,s1),S)) by MEMSTR_0:31 .= (IncIC(Exec(INS,s1),k) +* Start-At(IC Exec(INS,s1),S)) by FUNCT_4:114 .= DecIC( IncIC(Exec(INS,s1),k),k) by MEMSTR_0:59 .= DecIC(Exec(IncAddr(INS, k), s),k) by A2,Th4; end; registration let N be with_zero set; cluster relocable IC-recognized for halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; existence proof take STC N; thus thesis; end; end; reserve N for with_zero set, S for IC-recognized halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; theorem Th6: for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of S holds IC S in dom p proof let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of S; A1: dom p meets {IC S} \/ Data-Locations S by MEMSTR_0:41; per cases by A1,XBOOLE_1:70; suppose dom p meets {IC S}; hence thesis by ZFMISC_1:50; end; suppose dom p meets Data-Locations S; then dom p /\ Data-Locations S <> {} by XBOOLE_0:def 7; then DataPart p <> {} by RELAT_1:38,61; hence thesis by Th3; end; end; definition let N; let S be halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; attr S is CurIns-recognized means :Def4: for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of S for s being State of S st p c= s for P being Instruction-Sequence of S st q c= P for i being Nat holds IC Comput(P,s,i) in dom q; end; registration let N; cluster STC N -> CurIns-recognized; coherence proof let q be non halt-free finite (the InstructionsF of STC N)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of STC N, s be State of STC N such that A1: p c= s; let P be Instruction-Sequence of STC N such that A2: q c= P; let i be Nat; set Csi = Comput(P,s,i); set loc = IC Csi; set loc1 = loc+1; assume A3: not IC Comput(P,s,i) in dom q; the InstructionsF of STC N = {[0,0,0],[1,0,0]} by AMISTD_1:def 7; then reconsider I = [1,0,0] as Instruction of STC N by TARSKI:def 2; set p1 = q +* (loc .--> I); set p2 = q +* (loc .--> halt STC N); reconsider P1 = P +* (loc .--> I) as Instruction-Sequence of STC N; reconsider P2 = P +* (loc .--> halt STC N) as Instruction-Sequence of STC N; A5: loc in dom (loc .--> halt STC N) by TARSKI:def 1; A7: loc in dom (loc .--> I) by TARSKI:def 1; A8: dom q misses dom (loc .--> halt STC N) by A3,ZFMISC_1:50; A9: dom q misses dom (loc .--> I) by A3,ZFMISC_1:50; A10: p1 c= P1 by A2,FUNCT_4:123; A11: p2 c= P2 by A2,FUNCT_4:123; set Cs2i = Comput(P2,s,i), Cs1i = Comput(P1,s,i); p is not q-autonomic proof (loc .--> halt STC N).loc = halt STC N by FUNCOP_1:72; then A12: P2.loc = halt STC N by A5,FUNCT_4:13; (loc .--> I).loc = I by FUNCOP_1:72; then A13: P1.loc = I by A7,FUNCT_4:13; take P1, P2; q c= p1 by A9,FUNCT_4:32; hence A14: q c= P1 by A10,XBOOLE_1:1; q c= p2 by A8,FUNCT_4:32; hence A15: q c= P2 by A11,XBOOLE_1:1; take s, s; thus p c= s by A1; A16: (Cs1i|dom p) = (Csi|dom p) by A14,A2,A1,EXTPRO_1:def 10; thus p c= s by A1; A17: (Cs1i|dom p) = (Cs2i|dom p) by A14,A15,A1,EXTPRO_1:def 10; take k = i+1; set Cs1k = Comput(P1,s,k); A18: Cs1k = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec (CurInstr(P1,Cs1i), Cs1i); InsCode I = 1; then A19: IC Exec(I,Cs1i) = IC Cs1i + 1 by AMISTD_1:9; A20: IC Csi = IC(Csi|dom p) by Th6,FUNCT_1:49; then IC Cs1i = loc by A16,Th6,FUNCT_1:49; then A21: IC Cs1k = loc1 by A19,A18,A13,PBOOLE:143; set Cs2k = Comput(P2,s,k); A22: Cs2k = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2,Cs2i), Cs2i); A23: P2/.IC Cs2i = P2.IC Cs2i by PBOOLE:143; IC Cs2i = loc by A16,A20,A17,Th6,FUNCT_1:49; then A24: IC Cs2k = loc by A22,A12,A23,EXTPRO_1:def 3; IC(Cs1k|dom p) = IC Cs1k & IC(Cs2k|dom p) = IC Cs2k by Th6,FUNCT_1:49; hence thesis by A21,A24; end; hence contradiction; end; end; registration let N be with_zero set; cluster relocable IC-recognized CurIns-recognized for halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; existence proof take STC N; thus thesis; end; end; reserve S for IC-recognized CurIns-recognized halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; theorem for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of S, s1,s2 being State of S st p c= s1 & p c= s2 for P1,P2 being Instruction-Sequence of S st q c= P1 & q c= P2 for i being Nat holds IC Comput(P1,s1,i) = IC Comput(P2,s2,i) & CurInstr(P1,Comput(P1,s1,i)) = CurInstr(P2,Comput(P2,s2,i)) proof let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of S, s1, s2 be State of S such that A1: p c= s1 and A2: p c= s2; let P1,P2 be Instruction-Sequence of S such that A3: q c= P1 and A4: q c= P2; A5: dom q c= dom P1 by A3,RELAT_1:11; A6: dom q c= dom P2 by A4,RELAT_1:11; let i be Nat; set Cs2i = Comput(P2,s2,i); set Cs1i = Comput(P1,s1,i); A7: IC Cs1i in dom q by A3,Def4,A1; A8: IC Cs2i in dom q by A4,Def4,A2; thus A9: IC Cs1i = IC Cs2i proof assume A10: IC Comput(P1,s1,i) <> IC Comput(P2,s2,i); (Cs1i|dom p).IC S = Cs1i.IC S & (Cs2i|dom p).IC S = Cs2i.IC S by Th6,FUNCT_1:49; hence contradiction by A10,A3,A4,A1,A2,EXTPRO_1:def 10; end; thus CurInstr(P1,Comput(P1,s1,i)) = P1.IC Cs1i by A7,A5,PARTFUN1:def 6 .= q.IC Cs1i by A7,A3,GRFUNC_1:2 .= P2.IC Cs2i by A8,A4,A9,GRFUNC_1:2 .= CurInstr(P2,Comput(P2,s2,i)) by A8,A6,PARTFUN1:def 6; end; reserve S for relocable IC-recognized CurIns-recognized halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; theorem for k being Nat for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic FinPartState of S st IC S in dom p for s being State of S st p c= s for P being Instruction-Sequence of S st q c= P for i being Nat holds Comput(P +* Reloc(q,k),s +* IncIC( p,k),i) = IncIC(Comput(P,s,i),k) proof let k be Nat; let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be q-autonomic FinPartState of S such that A1: IC S in dom p; let s be State of S such that A2: p c= s; let P be Instruction-Sequence of S; assume A3: q c= P; defpred P[Nat] means Comput(P+*Reloc(q,k),s+*IncIC( p,k),$1) = IncIC(Comput(P,s,$1),k); A4: for i being Nat st P[i] holds P[i+1] proof let i be Nat such that A5: Comput(P+*Reloc(q,k),s+*IncIC( p,k),i) = IncIC(Comput(P,s,i),k); reconsider kk = IC Comput(P,s,i) as Nat; A6: IC S in dom Start-At (IC Comput(P,s,i) +k,S) by TARSKI:def 1; A7: IC (IncIC(Comput(P,s,i),k)) = IC Start-At (IC Comput(P,s,i) +k,S) by A6,FUNCT_4:13 .= IC Comput(P,s,i) + k by FUNCOP_1:72; p is not empty by A1; then A8: IC Comput(P,s,i) in dom q by A3,Def4,A2; then A9: IC Comput(P,s,i) in dom IncAddr(q,k) by COMPOS_1:def 21; A10: q/.kk = q.IC Comput(P,s,i) by A8,PARTFUN1:def 6 .= P.IC Comput(P,s,i) by A8,A3,GRFUNC_1:2; reconsider kk = IC Comput(P,s,i) as Nat; A11: (IC Comput(P,s,i) +k) in dom Reloc(q,k) by A8,COMPOS_1:46; A12: CurInstr(P+*Reloc(q,k), Comput(P+*Reloc(q,k),s+*IncIC( p,k),i)) = (P+*Reloc(q,k)). IC Comput(P+*Reloc(q,k),s+*IncIC( p,k),i) by PBOOLE:143 .= Reloc(q,k).(IC Comput(P,s,i) +k) by A5,A7,A11,FUNCT_4:13 .= IncAddr(q,k).kk by A9,VALUED_1:def 12 .= IncAddr((q)/.kk,k) by A8,COMPOS_1:def 21 .= IncAddr (CurInstr(P,Comput(P,s,i)),k) by A10,PBOOLE:143; thus Comput(P+*Reloc(q,k), s+*IncIC( p,k),i+1) = Following(P+*Reloc(q,k), Comput(P+*Reloc(q,k),s+*IncIC( p,k),i)) by EXTPRO_1:3 .= IncIC(Following(P,Comput(P,s,i)),k) by A5,A12,Th4 .= IncIC(Comput(P,s,i+1),k) by EXTPRO_1:3; end; A13: IC p = IC s by A2,A1,GRFUNC_1:2; A14: DataPart p c= p by MEMSTR_0:12; Comput(P+*Reloc(q,k),s+*IncIC( p,k),0) = s +* (DataPart p +* Start-At ((IC p) +k,S)) by A1,MEMSTR_0:56 .= s +* DataPart p +* Start-At ((IC p) +k,S) by FUNCT_4:14 .= IncIC(Comput(P,s,0),k) by A13,A14,A2,FUNCT_4:98,XBOOLE_1:1; then A15: P[0]; thus for i being Nat holds P[i] from NAT_1:sch 2(A15,A4); end; theorem Th9: for k being Nat for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic FinPartState of S st IC S in dom p for s being State of S st IncIC(p,k) c= s holds for P being Instruction-Sequence of S st Reloc(q,k) c= P for i being Nat holds Comput(P,s,i) = IncIC(Comput(P+*q,s+* p,i),k) proof let k be Nat; let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be q-autonomic FinPartState of S such that A1: IC S in dom p; let s be State of S such that A2: IncIC(p,k) c= s; let P be Instruction-Sequence of S such that A3: Reloc(q,k) c= P; defpred Z[Nat] means Comput(P,s,$1) = IncIC(Comput(P+*q,s+* p,$1),k); A4: for i being Nat st Z[i] holds Z[i+1] proof let i be Nat such that A5: Comput(P,s,i) = IncIC(Comput(P+*q,s+* p,i),k); reconsider kk = IC Comput(P+*q,s+* p,i) as Nat; A6: IC S in dom (Start-At (IC Comput(P+*q,s+* p,i) +k,S)) by TARSKI:def 1; A7: p c= s+* p by FUNCT_4:25; A8: q c= P+*q by FUNCT_4:25; p is not empty by A1; then A9: IC Comput(P+*q,s+* p,i) in dom q by Def4,A7,A8; then A10: IC Comput(P+*q,s+* p,i) in dom IncAddr(q,k) by COMPOS_1:def 21; A11: (IC Comput(P+*q,s+* p,i) +k) in dom Reloc(q,k) by A9,COMPOS_1:46; reconsider kk = (IC Comput(P+*q,s+* p,i)) as Nat; A12: IC Comput(P,s,i) = IC(Start-At (IC Comput(P+*q,s+* p,i) +k,S)) by A5,A6,FUNCT_4:13 .= IC Comput(P+*q,s+* p,i) + k by FUNCOP_1:72; A13: q c= P+*q by FUNCT_4:25; A14: (q)/.kk = (q).kk by A9,PARTFUN1:def 6; A15: dom(P+*q) = NAT by PARTFUN1:def 2; dom P = NAT by PARTFUN1:def 2; then A16: CurInstr(P,Comput(P,s,i)) = P.IC Comput(P,s,i) by PARTFUN1:def 6 .= Reloc(q,k).IC Comput(P,s,i) by A3,A11,A12,GRFUNC_1:2 .= IncAddr(q,k).kk by A10,A12,VALUED_1:def 12 .= IncAddr((q)/.kk,k) by A9,COMPOS_1:def 21 .= IncAddr( (P+*q).IC Comput(P+*q,s+* p,i) ,k) by A9,A14,A13,GRFUNC_1:2 .= IncAddr( CurInstr(P+*q,Comput(P+*q,s+* p,i)) ,k) by A15,PARTFUN1:def 6; thus Comput(P,s,i+1) = Following(P,Comput(P,s,i)) by EXTPRO_1:3 .= IncIC(Following(P+*q, Comput(P+*q,s+* p,i)),k) by A5,A16,Th4 .= IncIC(Comput(P+*q,s+* p,i+1),k) by EXTPRO_1:3; end; set IP = Start-At (IC p,S); A17: dom Start-At(IC p,S) = {IC S}; A18: Start-At (IC p + k,S) c= IncIC(p,k) by MEMSTR_0:55; A19: IC Comput(P+*q,s+* p,0) = IC p by A1,FUNCT_4:13; set DP = DataPart p; DataPart IncIC(p,k) c= IncIC(p,k) by RELAT_1:59; then DataPart IncIC(p,k) c= s by A2,XBOOLE_1:1; then A20: DataPart p c= s by MEMSTR_0:51; set PR = Reloc(q,k); set IS = Start-At (IC Comput(P+*q,s+* p,0) +k,S); A21: dom Start-At (IC Comput(P+*q,s+* p,0) +k,S) = {IC S}; Comput(P,s,0) = s +* IS by A19,A2,A18,FUNCT_4:98,XBOOLE_1:1 .= s +* DP +* IS by A20,FUNCT_4:98 .= s+* DP +* IP +* IS by A21,A17,FUNCT_4:74 .= s +*(DP +* IP) +* IS by FUNCT_4:14 .= IncIC(Comput(P+*q,s+* p,0),k) by A1,MEMSTR_0:26; then A22: Z[0]; thus for i being Nat holds Z[i] from NAT_1:sch 2 (A22,A4 ); end; reserve m,j for Nat; theorem Th10: for k being Nat for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being non empty FinPartState of S st IC S in dom p for s being State of S st p c= s & IncIC(p,k) is Reloc(q,k)-autonomic for P being Instruction-Sequence of S st q c= P for i being Nat holds Comput(P,s,i) = DecIC(Comput(P+*Reloc(q,k),s+*IncIC(p,k),i),k) proof let k be Nat; let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be non empty FinPartState of S; assume A1: IC S in dom p; then A2: Start-At (IC p,S) c= p by FUNCOP_1:84; let s be State of S such that A3: p c= s and A4: IncIC(p,k) is Reloc(q,k)-autonomic; let P be Instruction-Sequence of S such that A5: q c= P; defpred Z[Nat] means Comput(P,s,$1) = DecIC(Comput(P+*Reloc(q,k),s+*IncIC(p,k),$1),k); A6: for i being Nat st Z[i] holds Z[i+1] proof reconsider pp = q as preProgram of S; let i be Nat such that A7: Comput(P,s,i) = DecIC(Comput(P+*Reloc(q,k),s+*IncIC(p,k),i),k); reconsider kk = IC Comput(P+*Reloc(q,k),s+*IncIC(p,k), i) as Nat; reconsider jk = IC Comput(P+*Reloc(q,k),s+*IncIC(p,k), i) as Nat; A8: IncIC(p,k) c= s+*IncIC(p,k) by FUNCT_4:25; A9: Reloc(q,k) c= P+*Reloc(q,k) by FUNCT_4:25; A10: IC Comput(P+*Reloc(q,k),s+*IncIC(p,k),i) in dom Reloc(q,k) by A4,Def4,A8,A9; then A11: jk in { j+k where j is Nat : j in dom q } by COMPOS_1:33; A12: IC S in dom (Start-At (IC Comput(P+*Reloc(q,k),s+* IncIC(p,k),i) -'k,S)) by TARSKI:def 1; consider j being Nat such that A13: jk = j+k and A14: j in dom q by A11; A15: dom(P+*Reloc(q,k)) = NAT by PARTFUN1:def 2; A16: Reloc(q,k) c= P+*Reloc(q,k) by FUNCT_4:25; A17: Reloc(q,k) = IncAddr(Shift(q,k),k) by COMPOS_1:34; dom Shift(pp, k) = { m+k where m is Nat : m in dom pp} by VALUED_1:def 12; then A18: (j+k) in dom Shift(q, k) by A14; then A19: IncAddr(Shift(q, k)/.kk,k) = Reloc(q, k). IC Comput(P+*Reloc(q,k),s+*IncIC(p,k),i) by A13,A17,COMPOS_1:def 21 .= (P+*Reloc(q,k)). IC Comput(P+*Reloc(q,k),s+*IncIC(p,k),i) by A10,A16,GRFUNC_1:2 .= CurInstr(P+*Reloc(q,k), Comput(P+*Reloc(q,k),s+*IncIC(p,k),i)) by A15,PARTFUN1:def 6; A20: j+k -' k = j by NAT_D:34; A21: dom P = NAT by PARTFUN1:def 2; A22: IC ( DecIC(Comput(P+*Reloc(q,k),s+*IncIC(p,k),i),k) ) = (Start-At (IC Comput(P+*Reloc(q,k),s+*IncIC(p,k), i) -'k,S)).IC S by A12,FUNCT_4:13 .= IC Comput(P+*Reloc(q,k),s+*IncIC(p,k),i) -' k by FUNCOP_1:72; CurInstr(P,Comput(P,s,i)) = P.IC Comput(P,s,i) by A21,PARTFUN1:def 6 .= (q).IC Comput(P,s,i) by A7,A13,A14,A20,A5,A22,GRFUNC_1:2 .= Shift(q, k). (IC Comput(P+*Reloc(q,k),s+*IncIC(p,k),i)) by A13,A14,A20,A7,A22,VALUED_1:def 12 .= Shift(q, k)/.kk by A13,A18,PARTFUN1:def 6; then A23: Comput(P+*Reloc(q,k),s+*IncIC(p,k),i+1) = Following(P+*Reloc(q,k), Comput(P+*Reloc(q,k),s+*IncIC(p,k),i)) & Exec(CurInstr(P,Comput(P,s,i)), DecIC(Comput(P+*Reloc(q,k),s+*IncIC(p,k),i),k)) = DecIC(Following(P+*Reloc(q,k), Comput(P+*Reloc(q,k),s +*IncIC(p,k),i)),k) by A13,A19,Th5,EXTPRO_1:3; thus Comput(P,s,i+1) = Following(P,Comput(P,s,i)) by EXTPRO_1:3 .= DecIC(Comput(P+*Reloc(q,k),s+*IncIC(p,k),i+1),k) by A7,A23; end; A24: IC S in dom IncIC(p,k) by MEMSTR_0:52; A25: IC Comput(P+*Reloc(q,k),s+*IncIC(p,k),0) = IC IncIC(p,k) by A24,FUNCT_4:13; A26: DataPart p c= p by RELAT_1:59; set DP = DataPart p; set IP = Start-At((IC p)+k,S); set PP = q; set IS = Start-At (IC Comput(P+*Reloc(q,k),s+*IncIC(p,k),0) -'k,S); A27: dom Start-At((IC p)+k,S) = {IC S}; set PR = Reloc(q,k); set SD = s|(dom Reloc(q,k)); A28: {IC S} misses dom DataPart p by MEMSTR_0:4; A29: dom Start-At (IC Comput(P+*Reloc(q,k),s+*IncIC(p,k),0 ) -'k,S) = {IC S}; A30: dom IP misses dom DP by A28; A31: IP +* DP = DP +* IP by A30,FUNCT_4:35 .= IncIC(p,k) by A1,MEMSTR_0:56; Comput(P,s,0) = s +* Start-At(IC p,S) by A3,A2,FUNCT_4:98,XBOOLE_1:1 .= s +* Start-At (IC p + k -'k,S) by NAT_D:34 .= s +* IS by A25,MEMSTR_0:53 .= s +* DP +* IS by A26,A3,FUNCT_4:98,XBOOLE_1:1 .= s +* DP +* IP +* IS by A29,A27,FUNCT_4:74 .= s +*(DP +* IP) +* IS by FUNCT_4:14 .= DecIC(Comput(P+*Reloc(q,k),s+*IncIC(p,k),0),k) by A31,A27,A28,FUNCT_4:35; then A32: Z[0]; thus for i being Nat holds Z[i] from NAT_1:sch 2 (A32, A6); end; theorem Th11: for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being non empty FinPartState of S st IC S in dom p for k being Nat holds p is q-autonomic iff IncIC(p,k) is Reloc(q,k)-autonomic proof let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be non empty FinPartState of S such that A1: IC S in dom p; let k be Nat; hereby assume A2: p is q-autonomic; thus IncIC(p,k) is Reloc(q,k)-autonomic proof let P,Q be Instruction-Sequence of S such that A3: Reloc(q,k) c= P and A4: Reloc(q,k) c= Q; let s1,s2 be State of S such that A5: IncIC(p,k) c= s1 and A6: IncIC(p,k) c= s2; let i be Nat; A7: dom (Start-At ((IC Comput(Q+*q,s2+* p,i))+k,S)) = {IC S}; A8: dom(DataPart p) misses dom (Start-At (IC Comput(Q+*q,s2+* p,i) +k,S)) by MEMSTR_0:4; A9: dom (Start-At ((IC Comput(P+*q,s1+* p,i))+k,S)) = {IC S}; A10: dom(DataPart p) misses dom (Start-At (IC Comput(P+*q,s1+* p,i) +k,S)) by MEMSTR_0:4; A11: q c= P+*q & q c= Q+*q by FUNCT_4:25; p c= s1 +* p & p c= s2 +* p by FUNCT_4:25; then A12: Comput(P+*q,s1+* p,i)|dom p = Comput(Q+*q,s2+* p,i) |dom p by A2,A11; A13: DataPart p c= p by MEMSTR_0:12; A14: Comput(P,s1,i)|dom (DataPart p) = IncIC(Comput(P+*q,s1+* p,i),k) | dom DataPart p by A1,A2,A5,Th9,A3 .= ( Comput(P+*q,s1+* p,i)) | dom (DataPart p) by A10,FUNCT_4:72 .= ( Comput(Q+*q,s2+* p,i)) | dom (DataPart p) by A12,A13,RELAT_1:11,153 .= ( IncIC(Comput(Q+*q,s2+* p,i),k))|dom DataPart p by A8,FUNCT_4:72 .= Comput(Q,s2,i)|dom DataPart p by A1,A2,A6,Th9,A4; A15: {IC S} c= dom p by A1,ZFMISC_1:31; A16: Start-At (IC Comput(P+*q,s1+* p,i),S) = Comput(P+*q,s1+* p,i)|{IC S} by MEMSTR_0:18 .= Comput(Q+*q,s2+* p,i)|{IC S} by A12,A15,RELAT_1:153 .= Start-At (IC Comput(Q+*q,s2+* p,i),S) by MEMSTR_0:18; A18: Comput(P,s1,i)|dom (Start-At((IC p)+k,S)) = IncIC(Comput(P+*q,s1+* p,i),k)| dom (Start-At((IC p)+k,S)) by A1,A2,A5,Th9,A3 .= Start-At (IC Comput(P+*q,s1+* p,i) +k,S) by A9 .= Start-At (IC Comput(Q+*q,s2+* p,i) +k,S) by A16,MEMSTR_0:21 .= ( IncIC(Comput(Q+*q,s2+* p,i),k))| dom (Start-At((IC p)+k,S)) by A7 .= Comput(Q,s2,i)|dom (Start-At((IC p)+k,S)) by A1,A2,A6,Th9,A4; A20: dom p = {IC S} \/ dom DataPart p by A1,MEMSTR_0:24; A21: Comput(P,s1,i)|dom p = Comput(P,s1,i)|{IC S} \/ Comput(P,s1,i)|dom DataPart p by A20,RELAT_1:78 .= Comput(Q,s2,i)|dom p by A20,A14,A18,RELAT_1:78; A22: dom IncIC( p,k) = dom p \/ dom Start-At((IC p)+k,S) by FUNCT_4:def 1; A23: Comput(P,s1,i)|dom IncIC( p,k) = Comput(P,s1,i)|dom p \/ Comput(P,s1,i)|dom Start-At((IC p)+k,S) by A22,RELAT_1:78 .= Comput(Q,s2,i)|dom IncIC( p,k) by A22,A18,A21,RELAT_1:78; thus Comput(P,s1,i)|dom IncIC(p,k) = Comput(Q,s2,i)|dom IncIC(p,k) by A23; end; end; assume A24: IncIC(p,k) is Reloc(q,k)-autonomic; A25: DataPart p c= IncIC(p,k) by MEMSTR_0:62; let P,Q be Instruction-Sequence of S such that A26: q c= P and A27: q c= Q; A28: Reloc(q,k) c= P +* Reloc(q,k) & Reloc(q,k) c= Q +* Reloc(q,k) by FUNCT_4:25; let s1,s2 be State of S such that A29: p c= s1 and A30: p c= s2; let i be Nat; IncIC(p,k) c= s1 +* IncIC(p,k) & IncIC(p,k) c= s2 +* IncIC(p,k) by FUNCT_4:25; then A31: Comput(P +* Reloc(q,k),s1+*IncIC(p,k),i)|dom IncIC(p,k) = Comput(Q +* Reloc(q,k),s2+*IncIC(p,k),i)|dom IncIC(p,k) by A24,A28; A32: dom (Start-At ((IC Comput(Q +* Reloc(q,k),s2+*IncIC(p,k),i)) -'k,S)) = {IC S}; A33: dom(DataPart p) misses dom(Start-At (IC Comput(Q+*Reloc(q,k),s2+*IncIC(p,k),i) -'k,S)) by MEMSTR_0:4; A34: dom (Start-At ((IC Comput(P +* Reloc(q,k),s1+*IncIC(p,k),i)) -'k,S)) = {IC S}; A35: dom(DataPart p) misses dom(Start-At (IC Comput(P+*Reloc(q,k),s1+*IncIC(p,k),i) -'k,S)) by MEMSTR_0:4; A36: Comput(P,s1,i)|dom (DataPart p) = ( DecIC(Comput(P+*Reloc(q,k),s1+*IncIC(p,k) ,i),k)) | dom(DataPart p) by A1,A24,A29,Th10,A26 .= ( Comput(P +* Reloc(q,k),s1+*IncIC(p,k),i)) | dom (DataPart p) by A35,FUNCT_4:72 .= ( Comput(Q +* Reloc(q,k),s2+*IncIC(p,k),i)) | dom (DataPart p) by A31,A25,RELAT_1:11,153 .= DecIC(Comput(Q +* Reloc(q,k),s2+*IncIC(p,k),i),k) | dom(DataPart p) by A33,FUNCT_4:72 .= Comput(Q,s2,i)|dom (DataPart p) by A1,A24,A30,Th10,A27; IC S in dom IncIC(p,k) by MEMSTR_0:52; then A37: {IC S} c= dom IncIC(p,k) by ZFMISC_1:31; A38: Start-At (IC Comput(P +* Reloc(q,k),s1+*IncIC(p,k),i), S) = Comput(P+*Reloc(q,k),s1+* IncIC(p,k),i)|{IC S} by MEMSTR_0:18 .= Comput(Q +* Reloc(q,k),s2+*IncIC(p,k),i)|{IC S} by A31,A37,RELAT_1:153 .= Start-At (IC Comput(Q +* Reloc(q,k),s2+*IncIC(p,k) ,i),S) by MEMSTR_0:18; A40: Comput(P,s1,i)|dom (Start-At(IC p,S)) = ( DecIC(Comput(P+*Reloc(q,k),s1+*IncIC(p,k),i),k)) |dom (Start-At(IC p,S)) by A1,A24,A29,Th10,A26 .= Start-At (IC Comput(P +* Reloc(q,k),s1+*IncIC(p,k) ,i) -'k,S) by A34 .= Start-At (IC Comput(Q +* Reloc(q,k),s2+*IncIC(p,k),i) -'k,S) by A38,MEMSTR_0:22 .= DecIC(Comput(Q +* Reloc(q,k),s2+*IncIC(p,k),i),k) |dom (Start-At(IC p,S)) by A32 .= Comput(Q,s2,i)|dom Start-At(IC p,S) by A1,A24,A30,Th10,A27; thus Comput(P,s1,i)|dom p = Comput(P,s1,i)|dom(Start-At(IC p,S) +* DataPart p ) by A1,MEMSTR_0:19 .= Comput(P,s1,i)|(dom (Start-At(IC p,S)) \/ dom (DataPart p)) by FUNCT_4:def 1 .= Comput(Q,s2,i)|dom (Start-At(IC p,S)) \/ Comput(Q,s2,i)|dom (DataPart p) by A36,A40,RELAT_1:78 .= Comput(Q,s2,i)|(dom (Start-At(IC p,S)) \/ dom DataPart p) by RELAT_1:78 .= Comput(Q,s2,i)|dom (Start-At(IC p,S) +* DataPart p) by FUNCT_4:def 1 .= Comput(Q,s2,i)|dom p by A1,MEMSTR_0:19; end; definition let N,S; attr S is relocable1 means :Def5: for k being Nat for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of S, s1, s2 being State of S st p c= s1 & IncIC( p,k) c= s2 for P1,P2 being Instruction-Sequence of S st q c= P1 & Reloc(q,k) c= P2 for i being Nat holds IncAddr(CurInstr(P1,Comput(P1,s1,i)),k) = CurInstr(P2,Comput(P2,s2,i)); attr S is relocable2 means :Def6: for k being Nat for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of S, s1, s2 being State of S st p c= s1 & IncIC( p,k) c= s2 for P1,P2 being Instruction-Sequence of S st q c= P1 & Reloc(q,k) c= P2 for i being Nat holds Comput(P1,s1,i)|dom DataPart p = Comput(P2,s2,i)|dom DataPart p; end; Lm1: for k being Nat for q be non halt-free finite (the InstructionsF of STC N)-valued NAT-defined Function for p being non empty q-autonomic FinPartState of STC N , s1, s2 being State of STC N st p c= s1 & IncIC( p,k) c= s2 for P1,P2 being Instruction-Sequence of STC N st q c= P1 & Reloc(q,k) c= P2 for i being Nat holds IC Comput(P1,s1,i) + k = IC Comput(P2,s2,i) & IncAddr(CurInstr(P1,Comput(P1,s1,i)), k) = CurInstr(P2,Comput(P2,s2,i)) proof let k be Nat; let q be non halt-free finite (the InstructionsF of STC N)-valued NAT-defined Function; let p be non empty q-autonomic FinPartState of STC N, s1,s2 be State of STC N such that A1: p c= s1 and A2: IncIC( p,k) c= s2; A3: IC STC N in dom p by Th6; let P1,P2 being Instruction-Sequence of STC N such that A4: q c= P1 & Reloc(q,k) c= P2; set s3 = s1 +* DataPart s2; defpred Z[Nat] means IC Comput(P1,s1,$1) + k = IC Comput(P2,s2,$1) & IncAddr(CurInstr(P1,Comput(P1,s1,$1)), k) = CurInstr(P2,Comput(P2,s2,$1)); A5: for i be Nat st Z[i] holds Z[i+1] proof set DPp = DataPart p; let i be Nat such that A6: IC Comput(P1,s1,i) + k = IC Comput(P2,s2,i) and A7: IncAddr (CurInstr(P1,Comput(P1,s1,i)), k) = CurInstr(P2,Comput(P2,s2,i)); set Cs2i1 = Comput(P2,s2,i+1); set Cs3i = Comput(P1,s3,i); set Cs2i = Comput(P2,s2,i); set Cs3i1 = Comput(P1,s3,i+1); set Cs1i1 = Comput(P1,s1,i+1); set Cs1i = Comput(P1,s1,i); A8: now reconsider loc = IC Cs1i1 as Nat; assume A9: IC Comput(P1,s1,i+1) + k = IC Comput(P2,s2,i+1); reconsider kk = loc as Nat; A10: loc in dom q by Def4,A4,A1; A11: loc + k in dom Reloc(q, k) by A10,COMPOS_1:46; A12: dom P2 = NAT by PARTFUN1:def 2; dom P1 = NAT by PARTFUN1:def 2; then CurInstr(P1, Cs1i1) = P1.loc by PARTFUN1:def 6 .= (q).loc by A10,A4,GRFUNC_1:2; hence IncAddr(CurInstr(P1,Comput(P1,s1,i+1)), k) = Reloc(q,k).(loc+k) by A10,COMPOS_1:35 .= P2.IC Comput(P2,s2,i+1) by A9,A11,A4,GRFUNC_1:2 .= CurInstr(P2,Comput(P2,s2,i+1)) by A12,PARTFUN1:def 6; end; set I = CurInstr(P1, Cs1i); A13: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2, Cs2i), Cs2i); reconsider j = IC Cs1i as Nat; A14: Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec (CurInstr(P1, Cs1i), Cs1i); A15: the InstructionsF of STC N = {[0,0,0],[1,0,0]} by AMISTD_1:def 7; per cases by A15,TARSKI:def 2; suppose I = [0,0,0]; then A16: I = halt STC N; thus IC Comput(P1,s1,i+1) + k = IC Cs1i + k by A14,A16,EXTPRO_1:def 3 .= IC Comput(P2,s2,i+1) by A6,A13,A16,A7,EXTPRO_1:def 3; hence IncAddr(CurInstr(P1,Comput(P1,s1,i+1)), k) = CurInstr(P2,Comput(P2,s2,i+1)) by A8; end; suppose I = [1,0,0]; then A17: InsCode I = 1; then A18: Exec(I,Cs2i) = IncIC(Cs2i,1) by AMISTD_1:20; thus IC Comput(P1,s1,i+1) + k = IC Cs1i + 1 + k by A14,A17,AMISTD_1:9 .= IC Exec(I,Cs2i) by A18,A6,MEMSTR_0:53 .= IC Comput(P2,s2,i+1) by A13,A7,COMPOS_0:4; hence IncAddr(CurInstr(P1,Comput(P1,s1,i+1)), k) = CurInstr(P2,Comput(P2,s2,i+1)) by A8; end; end; A19: IC STC N in dom IncIC( p,k) by MEMSTR_0:52; now thus IC Comput(P1,s1,0) + k = IC p + k by A1,A3,GRFUNC_1:2 .= IC IncIC(p,k) by MEMSTR_0:53 .= IC Comput(P2,s2,0) by A2,A19,GRFUNC_1:2; reconsider loc = IC p as Nat; A20: IC p = IC s1 by A1,A3,GRFUNC_1:2; IC p = IC Comput(P1,s1,0) by A1,A3,GRFUNC_1:2; then A21: loc in dom q by Def4,A4,A1; A22: (IC p) + k in dom Reloc(q,k) by A21,COMPOS_1:46; A23: IC STC N in dom IncIC( p,k) by MEMSTR_0:52; A24: (q).IC p = P1.IC s1 by A20,A21,A4,GRFUNC_1:2; dom P2 = NAT by PARTFUN1:def 2; then A25: CurInstr(P2,Comput(P2,s2,0)) = P2.IC Comput(P2,s2,0) by PARTFUN1:def 6 .= P2.IC IncIC( p,k) by A2,A23,GRFUNC_1:2 .= P2.((IC p) +k) by MEMSTR_0:53 .= (Reloc(q, k)).((IC p) +k) by A22,A4,GRFUNC_1:2; A26: dom P1 = NAT by PARTFUN1:def 2; CurInstr(P1,Comput(P1,s1,0)) = P1.IC s1 by A26,PARTFUN1:def 6; hence IncAddr(CurInstr(P1,Comput(P1,s1,0)), k) = CurInstr(P2,Comput(P2,s2,0)) by A25,A21,A24,COMPOS_1:35; end; then A27: Z[0]; thus for i being Nat holds Z[i] from NAT_1:sch 2(A27,A5); end; registration let N; cluster STC N -> relocable1 relocable2; coherence by Lm1; end; registration let N be with_zero set; cluster relocable1 relocable2 for relocable IC-recognized CurIns-recognized halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; existence proof take STC N; thus thesis; end; end; reserve S for relocable1 relocable2 relocable IC-recognized CurIns-recognized halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; theorem Th12: for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of S, k being Nat st IC S in dom p holds p is q-halted iff IncIC(p,k) is Reloc(q,k)-halted proof let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of S, k be Nat; assume IC S in dom p; hereby assume A1: p is q-halted; thus IncIC(p,k) is Reloc(q,k)-halted proof let t be State of S; assume A2: IncIC(p,k) c= t; let P be Instruction-Sequence of S such that A3: Reloc(q,k) c= P; reconsider Q = P +* q as Instruction-Sequence of S; set s = t +* p; A4: q c= Q by FUNCT_4:25; A5: p c= t +* p by FUNCT_4:25; then Q halts_on s by A1,A4; then consider u being Nat such that A6: CurInstr(Q,Comput(Q,s,u)) = halt S; take u; dom P = NAT by PARTFUN1:def 2; hence IC Comput(P,t,u) in dom P; CurInstr(P,Comput(P,t,u)) = IncAddr(halt S, k) by A2,A6,Def5,A3,A4,A5 .= halt S by COMPOS_0:4; hence thesis; end; end; assume A7: IncIC(p,k) is Reloc(q,k)-halted; let t be State of S; assume A8: p c= t; let P be Instruction-Sequence of S such that A9: q c= P; reconsider Q = P +* Reloc(q, k) as Instruction-Sequence of S; set s = t +* IncIC(p,k); A10: Reloc(q,k) c= Q by FUNCT_4:25; A11: IncIC(p,k) c= t +* IncIC(p,k) by FUNCT_4:25; then Q halts_on s by A7,A10; then consider u being Nat such that A12: CurInstr(Q,Comput(Q,s,u)) = halt S; take u; dom P = NAT by PARTFUN1:def 2; hence IC Comput(P,t,u) in dom P; IncAddr(CurInstr(P,Comput(P,t,u)), k) = halt S by A8,A12,Def5,A11,A9,A10 .= IncAddr(halt S,k) by COMPOS_0:4; hence CurInstr(P,Comput(P,t,u)) = halt S by COMPOS_0:6; end; theorem Th13: for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-halted q-autonomic non empty FinPartState of S st IC S in dom p for k being Nat holds DataPart(Result(q, p)) = DataPart Result(Reloc(q,k),IncIC( p,k)) proof let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be q-halted q-autonomic non empty FinPartState of S such that A1: IC S in dom p; let k be Nat; consider s being State of S such that A2: p c= s by PBOOLE:141; consider P being Instruction-Sequence of S such that A3: q c= P by PBOOLE:145; A4: IncIC(p,k) is Reloc(q,k)-halted Reloc(q,k)-autonomic by A1,Th12,Th11; A5: IncIC( p,k) is Autonomy of Reloc(q,k) by A4,EXTPRO_1:def 12; P halts_on s by A2,A3,EXTPRO_1:def 11; then consider j1 being Nat such that A6: Result(P,s) = Comput(P,s,j1) and A7: CurInstr(P, Result(P,s)) = halt S by EXTPRO_1:def 9; consider t being State of S such that A8: IncIC( p,k) c= t by PBOOLE:141; consider Q being Instruction-Sequence of S such that A9: Reloc(q,k) c= Q by PBOOLE:145; Q.(IC Comput(Q,t,j1)) = CurInstr(Q,Comput(Q,t,j1)) by PBOOLE:143 .= IncAddr(CurInstr(P,Comput(P,s,j1)), k) by Def5,A3,A9,A2,A8 .= halt S by A6,A7,COMPOS_0:4; then A10: Result(Q,t) = Comput(Q,t,j1) by EXTPRO_1:7; A11: Comput(Q,t,j1) | dom DataPart p = Comput(P,s,j1) | dom DataPart p by Def6,A9,A3,A8,A2; A12: DataPart p = DataPart IncIC( p,k) by MEMSTR_0:51; A13: p is Autonomy of q by EXTPRO_1:def 12; thus DataPart(Result(q, p)) = DataPart((Result(P,s)) | dom p) by A2,A3,A13,EXTPRO_1:def 13 .= (Result(P,s)) | (dom p /\ Data-Locations S) by RELAT_1:71 .= (Result(P,s)) | dom DataPart p by MEMSTR_0:14 .= (Result(Q,t))|(dom IncIC( p,k) /\ Data-Locations S) by A6,A10,A11,A12,MEMSTR_0:14 .= ((Result(Q,t)) | dom IncIC( p,k))|Data-Locations S by RELAT_1:71 .= DataPart Result(Reloc(q,k),IncIC( p,k)) by A5,A9,A8,EXTPRO_1:def 13; end; registration let N,S; let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be q-autonomic q-halted non empty FinPartState of S, k be Nat; cluster IncIC(p,k) -> Reloc(q,k)-halted; coherence proof IC S in dom p by Th6; hence thesis by Th12; end; end; theorem for F being data-only PartFunc of FinPartSt S, FinPartSt S, l being Nat for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function, p being q-autonomic q-halted non empty FinPartState of S st IC S in dom p for k being Nat holds q, p computes F iff Reloc(q,k), IncIC( p,k) computes F proof let F be data-only PartFunc of FinPartSt S ,FinPartSt S, l be Nat; let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function, p be q-autonomic q-halted non empty FinPartState of S such that A1: IC S in dom p; let k be Nat; hereby assume A2: q, p computes F; thus Reloc(q,k), IncIC( p,k) computes F proof let x be set; assume A3: x in dom F; then consider d1 being FinPartState of S such that A4: x = d1 and A5: p +* d1 is Autonomy of q and A6: F.d1 c= Result(q, p +* d1) by A2; dom F c= FinPartSt S by RELAT_1:def 18; then reconsider d = x as FinPartState of S by A3,MEMSTR_0:76; reconsider d as data-only FinPartState of S by A3,MEMSTR_0:def 17; dom(p +* d) = dom p \/ dom d by FUNCT_4:def 1; then A7: IC S in dom(p +* d) by A1,XBOOLE_0:def 3; A8: p+*d is q-autonomic by A4,A5,EXTPRO_1:def 12; then A9: IncIC((p +* d) ,k) is Reloc(q,k)-autonomic by A7,Th11; A10: p+*d is q-halted by A4,A5,EXTPRO_1:def 12; reconsider pd = p +* d as q-halted q-autonomic non empty FinPartState of S by A4,A5,EXTPRO_1:def 12; A11: DataPart(Result(q, pd)) = DataPart Result(Reloc(q,k),IncIC((p+*d),k)) by A7,Th13 .= DataPart Result(Reloc(q,k),IncIC(p,k) +* d) by MEMSTR_0:54; reconsider Fs1 = F.d1 as FinPartState of S by A6; take d; thus x=d; IncIC(p,k) +* d = IncIC(p+*d ,k) by MEMSTR_0:54; hence IncIC( p,k) +* d is Autonomy of Reloc(q,k) by A8,A10,A9,EXTPRO_1:def 12; A12: Fs1 is data-only by A3,A4,MEMSTR_0:def 17; F.d1 c= DataPart Result(Reloc(q,k),IncIC(p,k) +* d) by A6,A12,A4,A11,MEMSTR_0:5; hence F.d c= Result(Reloc(q,k),IncIC( p,k) +* d) by A4,A12,MEMSTR_0:5; end; end; assume A13: Reloc(q,k), IncIC( p,k) computes F; let x be set; assume A14: x in dom F; then consider d1 being FinPartState of S such that A15: x = d1 and A16: IncIC(p,k) +* d1 is Autonomy of Reloc(q,k) and A17: F.d1 c= Result(Reloc(q,k),IncIC(p,k) +* d1) by A13; dom F c= FinPartSt S by RELAT_1:def 18; then reconsider d = x as FinPartState of S by A14,MEMSTR_0:76; reconsider d as data-only FinPartState of S by A14,MEMSTR_0:def 17; A18: dom(p +* d) = dom p \/ dom d by FUNCT_4:def 1; then A19: IC S in dom(p +* d) by A1,XBOOLE_0:def 3; A20: IncIC(p,k) +* d = IncIC((p +* d),k) by MEMSTR_0:54; IncIC(p+*d,k) is Reloc(q,k)-autonomic by A15,A16,A20,EXTPRO_1:def 12; then A21: p +* d is q-autonomic by A19,Th11; A22: IncIC(p+*d,k) is Reloc(q,k)-halted by A15,A16,A20,EXTPRO_1:def 12; A23: p +* d is q-halted by A19,Th12,A21,A22; reconsider pd = p +* d as q-halted q-autonomic non empty FinPartState of S by A19,Th12,A21,A22; A24: IC S in dom pd by A18,A1,XBOOLE_0:def 3; A25: DataPart Result(Reloc(q,k),IncIC(p,k) +* d1) = DataPart Result(Reloc(q,k),IncIC(p +* d,k)) by A15,MEMSTR_0:54 .= DataPart(Result(q, p+*d)) by Th13,A24; take d; thus x=d; thus p +* d is Autonomy of q by A21,A23,EXTPRO_1:def 12; reconsider Fs1 = F.d1 as FinPartState of S by A17; A26: Fs1 is data-only by A14,A15,MEMSTR_0:def 17; then F.d1 c= DataPart Result(q, p +* d) by A25,A17,MEMSTR_0:5; hence thesis by A15,A26,MEMSTR_0:5; end; reserve S for IC-recognized CurIns-recognized halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; theorem for q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function for p being q-autonomic FinPartState of S st IC S in dom p holds IC p in dom q proof let q be non halt-free finite (the InstructionsF of S)-valued NAT-defined Function; let p be q-autonomic FinPartState of S; assume A1: IC S in dom p; then A2: p is non empty; consider s being State of S such that A3: p c= s by PBOOLE:141; set P = (the Instruction-Sequence of S) +* q; A4: q c= P by FUNCT_4:25; IC Comput(P,s,0) in dom q by A4,Def4,A2,A3; hence IC p in dom q by A3,A1,GRFUNC_1:2; end; definition let N be with_zero set; let S be halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; let k be Nat; let F be NAT-defined (the InstructionsF of S)-valued Function; attr F is k-halting means for s being k-started State of S for P being Instruction-Sequence of S st F c= P holds P halts_on s; end; registration let N be with_zero set; let S be halting IC-Ins-separated non empty with_non-empty_values AMI-Struct over N; cluster parahalting -> 0-halting for NAT-defined (the InstructionsF of S)-valued Function; coherence; cluster 0-halting -> parahalting for NAT-defined (the InstructionsF of S)-valued Function; coherence; end;