:: On the Decomposition of the States of SCM :: by Yasushi Tanaka environ vocabularies NUMBERS, AMI_3, SUBSET_1, AMI_2, AMI_1, STRUCT_0, XBOOLE_0, FSM_1, RELAT_1, FUNCT_1, TARSKI, FINSET_1, CARD_1, XXREAL_0, FINSEQ_1, GRAPHSP, ARYTM_3, ARYTM_1, INT_1, FUNCT_4, FUNCOP_1, CIRCUIT2, PARTFUN1, EXTPRO_1, RECDEF_2, CAT_1, AMISTD_5, COMPOS_1, NAT_1; notations TARSKI, XBOOLE_0, XTUPLE_0, SUBSET_1, ORDINAL1, CARD_1, XCMPLX_0, DOMAIN_1, RELAT_1, FUNCT_1, FUNCOP_1, PARTFUN1, FUNCT_4, NUMBERS, INT_1, NAT_1, RECDEF_2, STRUCT_0, FINSET_1, FINSEQ_1, MEMSTR_0, COMPOS_0, SCM_INST, COMPOS_1, EXTPRO_1, AMI_3, XXREAL_0, AMISTD_5; constructors DOMAIN_1, FINSEQ_4, AMI_3, PRE_POLY, AMISTD_5, FUNCT_7, RELSET_1; registrations XBOOLE_0, SETFAM_1, RELAT_1, FUNCT_1, ORDINAL1, XREAL_0, INT_1, AMI_3, FINSET_1, CARD_1, COMPOS_1, EXTPRO_1, FUNCT_4, FUNCOP_1, MEMSTR_0, COMPOS_0, XTUPLE_0, FACIRC_1; requirements NUMERALS, REAL, SUBSET, BOOLE, ARITHM; definitions EXTPRO_1, FUNCT_1, AMISTD_5; equalities EXTPRO_1, AMI_3, FUNCOP_1, AMI_2, MEMSTR_0, SCM_INST; theorems AMI_3, GRFUNC_1, TARSKI, FUNCOP_1, FUNCT_4, MEMSTR_0, FUNCT_1, ZFMISC_1, ENUMSET1, RELAT_1, XBOOLE_0, XBOOLE_1, PBOOLE, PARTFUN1, EXTPRO_1, AMISTD_5, AMI_2, COMPOS_1; begin reserve x,y for set; theorem Th1: for dl being Data-Location ex i being Nat st dl = dl.i proof let dl be Data-Location; dl in Data-Locations SCM by AMI_2:def 16,AMI_3:27; then consider x,y being object such that A1: x in {1} and A2: y in NAT and A3: dl = [x,y] by AMI_3:27,ZFMISC_1:84; reconsider k = y as Nat by A2; take k; thus thesis by A1,A3,TARSKI:def 1; end; theorem Th2: for dl being Data-Location holds dl <> IC SCM by Th1,AMI_3:13; theorem for il being Nat, dl being Data-Location holds il <> dl proof let il be Nat, dl be Data-Location; ex j being Nat st dl = dl.j by Th1; hence thesis; end; reserve i, j, k for Nat; theorem for s being State of SCM, d being Data-Location holds d in dom s proof let s be State of SCM, d be Data-Location; A1: dom s = the carrier of SCM by PARTFUN1:def 2; thus d in dom s by A1; end; registration cluster Data-Locations SCM -> infinite; coherence by AMI_3:27; end; reserve I,J,K for Element of Segm 9, a,a1 for Nat, b,b1,c for Element of Data-Locations SCM; Lm1: b is Data-Location proof b in Data-Locations SCM; then reconsider b as Object of SCM; b is Data-Location by AMI_2:def 16,AMI_3:27; hence thesis; end; theorem for l being Instruction of SCM holds InsCode(l) <= 8 proof let l be Instruction of SCM; l in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } or l in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } by AMI_3:27,XBOOLE_0:def 3; then A1: l in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } or l in { [K,<*a1*>,<*b1*>] : K in { 7,8 } } or l in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } by XBOOLE_0:def 3; per cases by A1,XBOOLE_0:def 3; suppose l in { [SCM-Halt,{},{}] }; then l = [SCM-Halt,{},{}] by TARSKI:def 1; then l`1_3 = 0; hence thesis; end; suppose l in { [J,<*a*>,{}] : J = 6 }; then ex J,a st l = [J,<*a*>,{}] & J = 6; then l`1_3 = 6; hence thesis; end; suppose l in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; then ex K,a1,b1 st l = [K,<*a1*>,<*b1*>] & K in { 7,8 }; then l`1_3 in { 7,8 }; then l`1_3 = 7 or l`1_3 = 8 by TARSKI:def 2; hence thesis; end; suppose l in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }; then ex I,b,c st l = [I,{},<*b,c*>] & I in { 1,2,3,4,5}; then l`1_3 in { 1,2,3,4,5}; then l`1_3 = 1 or l`1_3 = 2 or l`1_3 = 3 or l`1_3 = 4 or l`1_3 = 5 by ENUMSET1:def 3; hence thesis; end; end; reserve a, b for Data-Location, loc for Nat; reserve I,J,K for Element of Segm 9, a,a1 for Nat, b,b1,c for Element of Data-Locations SCM, da,db for Data-Location; ::$CT theorem for ins being Instruction of SCM st InsCode ins = 0 holds ins = halt SCM proof let ins be Instruction of SCM such that A1: InsCode ins = 0; A2: now assume ins in { [J,<*a*>,{}] : J = 6 }; then ex J,a st ins = [J,<*a*>,{}] & J = 6; then InsCode ins = 6; hence contradiction by A1; end; now assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }; then ex I,b,c st ins = [I,{},<*b,c*>] & I in { 1,2,3,4,5}; then InsCode ins in { 1,2,3,4,5}; hence contradiction by A1,ENUMSET1:def 3; end; then A3: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3; now assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; then ex K,a1,b1 st ins = [K,<*a1*>,<*b1*>] & K in { 7,8 }; then InsCode ins in {7,8}; hence contradiction by A1, TARSKI:def 2; end; then ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A3,XBOOLE_0:def 3; then ins in {[SCM-Halt,{},{}]} by A2,XBOOLE_0:def 3; then ins = [SCM-Halt,{},{}] by TARSKI:def 1; hence thesis by AMI_3:26; end; theorem for ins being Instruction of SCM st InsCode ins = 1 holds ex da, db st ins = da:=db proof let ins be Instruction of SCM such that A1: InsCode ins = 1; A2: now assume ins in { [J,<*a*>,{}] : J = 6 }; then ex J,a st ins = [J,<*a*>,{}] & J = 6; hence contradiction by A1; end; A3: now assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; then consider K,a1,b1 such that A4: ins = [K,<*a1*>,<*b1*>] and A5: K in { 7,8 }; InsCode ins = K by A4; hence contradiction by A1,A5,TARSKI:def 2; end; InsCode halt SCM = 0 by COMPOS_1:70; then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, XBOOLE_0:def 3; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3; then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } by AMI_3:27,XBOOLE_0:def 3; then consider I,b,c such that A6: ins = [I,{},<*b,c*>] and I in { 1,2,3,4,5}; reconsider da = b ,db = c as Data-Location by Lm1; take da,db; thus thesis by A1,A6; end; theorem for ins being Instruction of SCM st InsCode ins = 2 holds ex da, db st ins = AddTo(da,db) proof let ins be Instruction of SCM such that A1: InsCode ins = 2; A2: now assume ins in { [J,<*a*>,{}] : J = 6 }; then ex J,a st ins = [J,<*a*>,{}] & J = 6; hence contradiction by A1; end; A3: now assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; then consider K,a1,b1 such that A4: ins = [K,<*a1*>,<*b1*>] and A5: K in { 7,8 }; InsCode ins = K by A4; hence contradiction by A1,A5,TARSKI:def 2; end; InsCode halt SCM = 0 by COMPOS_1:70; then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, XBOOLE_0:def 3; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3; then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } by AMI_3:27,XBOOLE_0:def 3; then consider I,b,c such that A6: ins = [I,{},<*b,c*>] and I in { 1,2,3,4,5}; reconsider da = b ,db = c as Data-Location by Lm1; take da,db; thus thesis by A1,A6; end; theorem for ins being Instruction of SCM st InsCode ins = 3 holds ex da, db st ins = SubFrom(da,db) proof let ins be Instruction of SCM such that A1: InsCode ins = 3; A2: now assume ins in { [J,<*a*>,{}] : J = 6 }; then ex J,a st ins = [J,<*a*>,{}] & J = 6; hence contradiction by A1; end; A3: now assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; then consider K,a1,b1 such that A4: ins = [K,<*a1*>,<*b1*>] and A5: K in { 7,8 }; InsCode ins = K by A4; hence contradiction by A1,A5,TARSKI:def 2; end; InsCode halt SCM = 0 by COMPOS_1:70; then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, XBOOLE_0:def 3; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3; then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } by AMI_3:27,XBOOLE_0:def 3; then consider I,b,c such that A6: ins = [I,{},<*b,c*>] and I in { 1,2,3,4,5}; reconsider da = b ,db = c as Data-Location by Lm1; take da,db; thus thesis by A1,A6; end; theorem for ins being Instruction of SCM st InsCode ins = 4 holds ex da, db st ins = MultBy(da,db) proof let ins be Instruction of SCM such that A1: InsCode ins = 4; A2: now assume ins in { [J,<*a*>,{}] : J = 6 }; then ex J,a st ins = [J,<*a*>,{}] & J = 6; hence contradiction by A1; end; A3: now assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; then consider K,a1,b1 such that A4: ins = [K,<*a1*>,<*b1*>] and A5: K in { 7,8 }; InsCode ins = K by A4; hence contradiction by A1,A5,TARSKI:def 2; end; InsCode halt SCM = 0 by COMPOS_1:70; then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, XBOOLE_0:def 3; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3; then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } by AMI_3:27,XBOOLE_0:def 3; then consider I,b,c such that A6: ins = [I,{},<*b,c*>] and I in { 1,2,3,4,5}; reconsider da = b ,db = c as Data-Location by Lm1; take da,db; thus thesis by A1,A6; end; theorem for ins being Instruction of SCM st InsCode ins = 5 holds ex da, db st ins = Divide(da,db) proof let ins be Instruction of SCM such that A1: InsCode ins = 5; A2: now assume ins in { [J,<*a*>,{}] : J = 6 }; then ex J,a st ins = [J,<*a*>,{}] & J = 6; hence contradiction by A1; end; A3: now assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; then consider K,a1,b1 such that A4: ins = [K,<*a1*>,<*b1*>] and A5: K in { 7,8 }; InsCode ins = K by A4; hence contradiction by A1,A5,TARSKI:def 2; end; InsCode halt SCM = 0 by COMPOS_1:70; then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, XBOOLE_0:def 3; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A3,XBOOLE_0:def 3; then ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} } by AMI_3:27,XBOOLE_0:def 3; then consider I,b,c such that A6: ins = [I,{},<*b,c*>] and I in { 1,2,3,4,5}; reconsider da = b ,db = c as Data-Location by Lm1; take da,db; thus thesis by A1,A6; end; theorem for ins being Instruction of SCM st InsCode ins = 6 holds ex loc st ins = SCM-goto loc proof let ins be Instruction of SCM such that A1: InsCode ins = 6; now assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }; then consider I,b,c such that A2: ins = [I,{},<*b,c*>] and A3: I in { 1,2,3,4,5}; InsCode ins = I by A2; hence contradiction by A1,A3,ENUMSET1:def 3; end; then A4: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3; now assume ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } }; then consider K,a1,b1 such that A5: ins = [K,<*a1*>,<*b1*>] and A6: K in { 7,8 }; InsCode ins = K by A5; hence contradiction by A1,A6,TARSKI:def 2; end; then A7: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A4,XBOOLE_0:def 3; InsCode halt SCM = 0 by COMPOS_1:70; then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; then ins in { [J,<*a*>,{}] : J = 6 } by A7,XBOOLE_0:def 3; then consider J,a such that A8: ins = [J,<*a*>,{}] & J = 6; reconsider loc = a as Nat; take loc; thus thesis by A8; end; theorem for ins being Instruction of SCM st InsCode ins = 7 holds ex loc ,da st ins = da=0_goto loc proof let ins be Instruction of SCM such that A1: InsCode ins = 7; A2: now assume ins in { [J,<*a*>,{}] : J = 6 }; then ex J,a st ins = [J,<*a*>,{}] & J = 6; hence contradiction by A1; end; now assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }; then consider I,b,c such that A3: ins = [I,{},<*b,c*>] and A4: I in { 1,2,3,4,5}; InsCode ins = I by A3; hence contradiction by A1,A4,ENUMSET1:def 3; end; then A5: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3; InsCode halt SCM = 0 by COMPOS_1:70; then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, XBOOLE_0:def 3; then ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A5,XBOOLE_0:def 3; then consider K,a1,b1 such that A6: ins = [K,<*a1*>,<*b1*>] and K in { 7,8 }; reconsider da = b1 as Data-Location by Lm1; reconsider loc = a1 as Nat; take loc,da; thus thesis by A1,A6; end; theorem for ins being Instruction of SCM st InsCode ins = 8 holds ex loc ,da st ins = da>0_goto loc proof let ins be Instruction of SCM such that A1: InsCode ins = 8; A2: now assume ins in { [J,<*a*>,{}] : J = 6 }; then ex J,a st ins = [J,<*a*>,{}] & J = 6; hence contradiction by A1; end; now assume ins in { [I,{},<*b,c*>] : I in { 1,2,3,4,5} }; then consider I,b,c such that A3: ins = [I,{},<*b,c*>] and A4: I in { 1,2,3,4,5}; InsCode ins = I by A3; hence contradiction by A1,A4,ENUMSET1:def 3; end; then A5: ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } \/ { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by AMI_3:27,XBOOLE_0:def 3; InsCode halt SCM = 0 by COMPOS_1:70; then not ins in { [SCM-Halt,{},{}] } by A1,AMI_3:26,TARSKI:def 1; then not ins in { [SCM-Halt,{},{}] } \/ { [J,<*a*>,{}] : J = 6 } by A2, XBOOLE_0:def 3; then ins in { [K,<*a1*>,<*b1*>] : K in { 7,8 } } by A5,XBOOLE_0:def 3; then consider K,a1,b1 such that A6: ins = [K,<*a1*>,<*b1*>] and K in { 7,8 }; reconsider da = b1 as Data-Location by Lm1; reconsider loc = a1 as Nat; take loc,da; thus thesis by A1,A6; end; begin :: Finite partial states of SCM theorem for s being State of SCM, iloc being Nat, a being Data-Location holds s.a = (s +* Start-At(iloc,SCM)).a proof let s be State of SCM, iloc be Nat, a be Data-Location; a in the carrier of SCM; then a in dom s by PARTFUN1:def 2; then A1: dom (Start-At(iloc,SCM)) = {IC SCM} & a in dom s \/ dom (Start-At(iloc,SCM)) by XBOOLE_0:def 3; a <> IC SCM by Th2; then not a in {IC SCM} by TARSKI:def 1; hence thesis by A1,FUNCT_4:def 1; end; begin :: Autonomic finite partial states of SCM registration cluster SCM -> IC-recognized; coherence proof for q being non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function for p being q-autonomic FinPartState of SCM st DataPart p <> {} holds IC SCM in dom p proof let q be non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function; let p be q-autonomic FinPartState of SCM; assume DataPart p <> {}; then A1: dom DataPart p <> {}; assume A2: not IC SCM in dom p; then dom p misses {IC SCM} by ZFMISC_1:50; then A3: dom p /\ {IC SCM} = {} by XBOOLE_0:def 7; p is not q-autonomic proof set il = the Element of (NAT \ dom q); set d2 = the Element of Data-Locations SCM \ dom p; set d1 = the Element of dom DataPart p; A4: d1 in dom DataPart p by A1; DataPart p c= p by MEMSTR_0:12; then A5: dom DataPart p c= dom p by RELAT_1:11; dom DataPart p c= the carrier of SCM by RELAT_1:def 18; then reconsider d1 as Element of SCM by A4; not Data-Locations SCM c= dom p; then A6: Data-Locations SCM \ dom p <> {} by XBOOLE_1:37; then d2 in Data-Locations SCM by XBOOLE_0:def 5; then reconsider d2 as Data-Location by AMI_2:def 16,AMI_3:27; A7: not d2 in dom p by A6,XBOOLE_0:def 5; then A8: dom p misses {d2} by ZFMISC_1:50; not NAT c= dom q; then A9: (NAT) \ dom q <> {} by XBOOLE_1:37; then reconsider il as Element of NAT by XBOOLE_0:def 5; A10: not il in dom q by A9,XBOOLE_0:def 5; dom DataPart p c= Data-Locations SCM by RELAT_1:58; then reconsider d1 as Data-Location by A4,AMI_2:def 16,AMI_3:27; set p2 = p +* (( d2.--> 1) +* Start-At(il,SCM)); set p1 = p +* (( d2.--> 0) +* Start-At(il,SCM)); set q2 = q +* (il .--> (d1:=d2)); set q1 = q +* (il .--> (d1:=d2)); consider s1 being State of SCM such that A11: p1 c= s1 by PBOOLE:141; consider S1 being Instruction-Sequence of SCM such that A12: q1 c= S1 by PBOOLE:145; A13: dom p misses {d2} by A7,ZFMISC_1:50; A14: dom (( d2.--> 1) +* Start-At(il,SCM)) = dom ( d2.--> 1) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1; consider s2 being State of SCM such that A15: p2 c= s2 by PBOOLE:141; consider S2 being Instruction-Sequence of SCM such that A16: q2 c= S2 by PBOOLE:145; A17: dom p c= the carrier of SCM by RELAT_1:def 18; dom ( Comput(S2,s2,1)) = the carrier of SCM by PARTFUN1:def 2; then A18: dom ( Comput(S2,s2,1)|dom p) = dom p by A17,RELAT_1:62; A19: dom ( Comput(S1,s1,1)) = the carrier of SCM by PARTFUN1:def 2; A20: dom ( Comput(S1,s1,1)|dom p) = dom p by A17,A19,RELAT_1:62; A21: dom p2 = dom p \/ dom (( d2.--> 1) +* Start-At(il,SCM)) by FUNCT_4:def 1; A22: dom q2 = dom q \/ dom ((il .--> (d1:=d2))) by FUNCT_4:def 1; A24: IC SCM in dom (Start-At(il,SCM)) by TARSKI:def 1; then A25: IC SCM in dom (( d2.--> 1) +* Start-At(il,SCM)) by A14,XBOOLE_0:def 3; then IC SCM in dom p2 by A21,XBOOLE_0:def 3; then A26: IC s2 = p2.IC SCM by A15,GRFUNC_1:2 .= (( d2.--> 1) +* Start-At(il,SCM)).IC SCM by A25,FUNCT_4:13 .= (Start-At(il,SCM)).IC SCM by A24,FUNCT_4:13 .= il by FUNCOP_1:72; d2 <> IC SCM by Th2; then A27: not d2 in dom (Start-At(il,SCM)) by TARSKI:def 1; d2 in dom ( d2.--> 1) by TARSKI:def 1; then A28: d2 in dom (( d2.--> 1) +* Start-At(il,SCM)) by A14,XBOOLE_0:def 3; then d2 in dom p2 by A21,XBOOLE_0:def 3; then A29: s2.d2 = p2.d2 by A15,GRFUNC_1:2 .= (( d2.--> 1) +* Start-At(il,SCM)).d2 by A28,FUNCT_4:13 .= (( d2.--> 1)).d2 by A27,FUNCT_4:11 .= 1 by FUNCOP_1:72; A31: il in dom (il .--> (d1:=d2)) by TARSKI:def 1; then il in dom q2 by A22,XBOOLE_0:def 3; then A32: S2.il = q2.il by A16,GRFUNC_1:2 .= (il .--> (d1:=d2)).il by A31,FUNCT_4:13 .=(d1:=d2) by FUNCOP_1:72; A33: (S2)/.IC s2 = S2.IC s2 by PBOOLE:143; A34: Comput(S2,s2,0+1).d1 = (Following(S2,Comput(S2,s2,0))).d1 by EXTPRO_1:3 .= (Following(S2,s2)).d1 .= 1 by A26,A32,A29,A33,AMI_3:2; dom p misses {IC SCM} by A2,ZFMISC_1:50; then A35: dom p /\ {IC SCM} = {} by XBOOLE_0:def 7; take P = S1, Q = S2; dom (( d2.--> 0) +* Start-At(il,SCM)) = dom(( d2.--> 0)) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1 .= dom(( d2.--> 0)) \/ {IC SCM} .= {d2} \/ {IC SCM}; then dom p /\ dom (( d2.--> 0) +* Start-At(il,SCM)) = dom p /\ {d2} \/ {} by A35,XBOOLE_1:23 .= {} by A8,XBOOLE_0:def 7; then dom p misses dom (( d2.--> 0) +* Start-At(il,SCM)) by XBOOLE_0:def 7; then p c= p1 by FUNCT_4:32; then A36: p c= s1 by A11,XBOOLE_1:1; dom q misses dom (il .--> (d1:=d2)) by A10,ZFMISC_1:50; then q c= q1 by FUNCT_4:32; hence q c= P by A12,XBOOLE_1:1; A37: dom p1 = dom p \/ dom (( d2.--> 0) +* Start-At( il,SCM)) by FUNCT_4:def 1; dom ((d2.--> 1) +* Start-At(il,SCM)) = dom(( d2.--> 1)) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1 .= dom(( d2.--> 1)) \/ {IC SCM} .= {d2} \/ {IC SCM}; then dom p /\ dom (( d2.--> 1) +* Start-At(il,SCM)) = dom p /\ ({d2}) \/ {} by A3,XBOOLE_1:23 .= {} by A13,XBOOLE_0:def 7; then dom p misses dom (( d2.--> 1) +* Start-At(il,SCM)) by XBOOLE_0:def 7; then p c= p2 by FUNCT_4:32; then A38: p c= s2 by A15,XBOOLE_1:1; dom q misses dom (il .--> (d1:=d2)) by A10,ZFMISC_1:50; then q c= q2 by FUNCT_4:32; hence q c= Q by A16,XBOOLE_1:1; take s1,s2; thus p c= s1 by A36; thus p c= s2 by A38; take 1; A39: dom (( d2.--> 0) +* Start-At(il,SCM)) = dom (( d2.--> 0)) \/ dom(Start-At(il,SCM)) by FUNCT_4:def 1; A41: IC SCM in dom (Start-At(il,SCM)) by TARSKI:def 1; then A42: IC SCM in dom (( d2.--> 0) +* Start-At(il,SCM)) by A39,XBOOLE_0:def 3; then IC SCM in dom p1 by A37,XBOOLE_0:def 3; then A43: IC s1 = p1.IC SCM by A11,GRFUNC_1:2 .= (( d2.--> 0) +* Start-At(il,SCM)).IC SCM by A42,FUNCT_4:13 .= (Start-At(il,SCM)).IC SCM by A41,FUNCT_4:13 .= il by FUNCOP_1:72; d2 <> IC SCM by Th2; then A44: not d2 in dom (Start-At(il,SCM)) by TARSKI:def 1; d2 in dom ( d2.--> 0) by TARSKI:def 1; then A45: d2 in dom (( d2.--> 0) +* Start-At(il,SCM)) by A39,XBOOLE_0:def 3; then d2 in dom p1 by A37,XBOOLE_0:def 3; then A46: s1.d2 = p1.d2 by A11,GRFUNC_1:2 .= (( d2.--> 0) +* Start-At(il,SCM)).d2 by A45,FUNCT_4:13 .= (( d2.--> 0)).d2 by A44,FUNCT_4:11 .= 0 by FUNCOP_1:72; A47: il in dom(il .--> (d1:=d2)) by TARSKI:def 1; dom q1 = dom q \/ dom ((il .--> (d1:=d2))) by FUNCT_4:def 1; then il in dom q1 by A47,XBOOLE_0:def 3; then A48: S1.il = q1.il by A12,GRFUNC_1:2 .= (il .--> (d1:=d2)).il by A47,FUNCT_4:13 .=(d1:=d2) by FUNCOP_1:72; A49: (S1)/.IC s1 = S1.IC s1 by PBOOLE:143; Comput(S1,s1,0+1).d1 = (Following(S1,Comput(S1,s1,0))).d1 by EXTPRO_1:3 .= 0 by A43,A48,A46,A49,AMI_3:2; then (Comput(P,s1,1)|dom p).d1 = 0 by A4,A5,A20,FUNCT_1:47; hence Comput(P,s1,1)|dom p <> Comput(Q,s2,1)|dom p by A18,A34,A4,A5,FUNCT_1:47; end; hence contradiction; end; hence thesis by AMISTD_5:3; end; end; registration cluster SCM -> CurIns-recognized; coherence proof let q be non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of SCM, s be State of SCM such that A1: p c= s; let P be Instruction-Sequence of SCM such that A2: q c= P; let i be Nat; set Csi = Comput(P,s,i); set loc = IC Csi; assume A3: not IC Comput(P,s,i) in dom q; set I = dl.0 := dl.0; set q1 = q +* (loc .--> I); set q2 = q +* (loc .--> halt SCM); reconsider P1 = P +* (loc .--> I) as Instruction-Sequence of SCM; reconsider P2 = P +* (loc .--> halt SCM) as Instruction-Sequence of SCM; A5: loc in dom (loc .--> halt SCM) by TARSKI:def 1; A7: loc in dom (loc .--> I) by TARSKI:def 1; A8: dom q misses dom (loc .--> halt SCM) by A3,ZFMISC_1:50; A9: dom q misses dom (loc .--> I) by A3,ZFMISC_1:50; A10: q1 c= P1 by A2,FUNCT_4:123; A11: q2 c= P2 by A2,FUNCT_4:123; set Cs2i = Comput(P2,s,i), Cs1i = Comput(P1,s,i); p is not q-autonomic proof (loc .--> halt SCM).loc = halt SCM by FUNCOP_1:72; then A12: P2.loc = halt SCM by A5,FUNCT_4:13; A13: (loc .--> I).loc = I by FUNCOP_1:72; take P1, P2; q c= q1 by A9,FUNCT_4:32; hence A14: q c= P1 by A10,XBOOLE_1:1; q c= q2 by A8,FUNCT_4:32; hence A15: q c= P2 by A11,XBOOLE_1:1; take s, s; thus p c= s by A1; A16: (Cs1i|dom p) = (Csi|dom p) by A14,A2,A1,EXTPRO_1:def 10; thus p c= s by A1; A17: (Cs1i|dom p) = (Cs2i|dom p) by A14,A15,A1,EXTPRO_1:def 10; take k = i+1; set Cs1k = Comput(P1,s,k); A18: IC SCM in dom p by AMISTD_5:6; IC Csi = IC(Csi|dom p) by A18,FUNCT_1:49; then IC Cs1i = loc by A16,A18,FUNCT_1:49; then A19: CurInstr(P1,Cs1i) = P1.loc by PBOOLE:143 .= I by A13,A7,FUNCT_4:13; A20: Cs1k = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec(I,Cs1i) by A19; A21: IC Exec(I,Cs1i) = IC Cs1i + 1 by AMI_3:2; A22: IC SCM in dom p by AMISTD_5:6; A23: IC Csi = IC(Csi|dom p) by A22,FUNCT_1:49; then A24: IC Cs1k = loc+1 by A20,A21,A16,A22,FUNCT_1:49; set Cs2k = Comput(P2,s,k); A25: Cs2k = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2,Cs2i), Cs2i); A26: P2/.IC Cs2i = P2.IC Cs2i by PBOOLE:143; IC Cs2i = loc by A16,A23,A17,A22,FUNCT_1:49; then A27: IC Cs2k = loc by A25,A12,A26,EXTPRO_1:def 3; IC(Cs1k|dom p) = IC Cs1k & IC(Cs2k|dom p) = IC Cs2k by A22,FUNCT_1:49; hence thesis by A24,A27; end; hence contradiction; end; end; theorem for q being non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of SCM, s1, s2 being State of SCM st p c= s1 & p c= s2 for P1,P2 being Instruction-Sequence of SCM st q c= P1 & q c= P2 for i being Nat, da, db being Data-Location, I being Instruction of SCM st I = CurInstr(P1,Comput(P1,s1,i)) holds I = da := db & da in dom p implies Comput(P1,s1,i).db = Comput(P2,s2,i).db proof let q be non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of SCM, s1, s2 be State of SCM such that A1: p c= s1 & p c= s2; let P1,P2 be Instruction-Sequence of SCM such that A2: q c= P1 & q c= P2; let i be Nat, da, db be Data-Location, I be Instruction of SCM such that A3: I = CurInstr(P1,Comput(P1,s1,i)); set Cs2i1 = Comput(P2,s2,i+1); set Cs2i = Comput(P2,s2,i); A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2,Cs2i), Cs2i); assume that A5: I = da := db and A6: da in dom p & Comput(P1,s1,i).db <> Comput(P2,s2, i).db; I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; then A7: Cs2i1.da = Cs2i.db by A4,A5,AMI_3:2; set Cs1i1 = Comput(P1,s1,i+1); set Cs1i = Comput(P1,s1,i); A8: da in dom p implies (Cs1i1|dom p).da = Cs1i1.da & (Cs2i1|dom p).da = Cs2i1.da by FUNCT_1:49; Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec (CurInstr(P1,Cs1i), Cs1i); then Cs1i1.da = Cs1i.db by A3,A5,AMI_3:2; hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10; end; theorem for q being non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of SCM, s1, s2 being State of SCM st p c= s1 & p c= s2 for P1,P2 being Instruction-Sequence of SCM st q c= P1 & q c= P2 for i being Nat, da, db being Data-Location, I being Instruction of SCM st I = CurInstr(P1,Comput(P1, s1,i)) holds I = AddTo(da, db) & da in dom p implies Comput(P1,s1,i).da + Comput(P1,s1,i).db = Comput(P2,s2,i).da + Comput( P2,s2,i).db proof let q be non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of SCM, s1, s2 be State of SCM such that A1: p c= s1 & p c= s2; let P1,P2 be Instruction-Sequence of SCM such that A2: q c= P1 & q c= P2; let i be Nat, da, db be Data-Location, I be Instruction of SCM such that A3: I = CurInstr(P1,Comput(P1,s1,i)); set Cs2i1 = Comput(P2,s2,i+1); set Cs2i = Comput(P2,s2,i); A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2,Cs2i), Cs2i); assume that A5: I = AddTo(da, db) and A6: da in dom p & Comput(P1,s1,i).da + Comput(P1,s1,i ).db <> Comput(P2,s2, i).da + Comput(P2,s2,i).db; I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; then A7: Cs2i1.da = Cs2i.da + Cs2i.db by A4,A5,AMI_3:3; set Cs1i1 = Comput(P1,s1,i+1); set Cs1i = Comput(P1,s1,i); A8: da in dom p implies (Cs1i1|dom p).da = Cs1i1.da & (Cs2i1|dom p).da = Cs2i1.da by FUNCT_1:49; Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec (CurInstr(P1,Cs1i), Cs1i); then Cs1i1.da = Cs1i.da + Cs1i.db by A3,A5,AMI_3:3; hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10; end; theorem for q being non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of SCM, s1, s2 being State of SCM st p c= s1 & p c= s2 for P1,P2 being Instruction-Sequence of SCM st q c= P1 & q c= P2 for i being Nat, da, db being Data-Location, I being Instruction of SCM st I = CurInstr(P1,Comput(P1, s1,i)) holds I = SubFrom(da, db) & da in dom p implies Comput(P1,s1,i). da - Comput(P1,s1,i).db = Comput(P2,s2,i).da - Comput( P2,s2,i).db proof let q be non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of SCM, s1, s2 be State of SCM such that A1: p c= s1 & p c= s2; let P1,P2 be Instruction-Sequence of SCM such that A2: q c= P1 & q c= P2; let i be Nat, da, db be Data-Location, I be Instruction of SCM such that A3: I = CurInstr(P1,Comput(P1,s1,i)); set Cs2i1 = Comput(P2,s2,i+1); set Cs2i = Comput(P2,s2,i); A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2,Cs2i), Cs2i); assume that A5: I = SubFrom(da, db) and A6: da in dom p & Comput(P1,s1,i).da - Comput(P1,s1,i ).db <> Comput(P2,s2, i).da - Comput(P2,s2,i).db; I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; then A7: Cs2i1.da = Cs2i.da - Cs2i.db by A4,A5,AMI_3:4; set Cs1i1 = Comput(P1,s1,i+1); set Cs1i = Comput(P1,s1,i); A8: da in dom p implies (Cs1i1|dom p).da = Cs1i1.da & (Cs2i1|dom p).da = Cs2i1.da by FUNCT_1:49; Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec (CurInstr(P1,Cs1i), Cs1i); then Cs1i1.da = Cs1i.da - Cs1i.db by A3,A5,AMI_3:4; hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10; end; theorem for q being non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of SCM, s1, s2 being State of SCM st p c= s1 & p c= s2 for P1,P2 being Instruction-Sequence of SCM st q c= P1 & q c= P2 for i being Nat, da, db being Data-Location, I being Instruction of SCM st I = CurInstr(P1,Comput(P1,s1,i)) holds I = MultBy(da, db) & da in dom p implies Comput(P1,s1,i). da * Comput(P1,s1,i).db = Comput(P2,s2,i).da * Comput(P2,s2,i).db proof let q be non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of SCM, s1, s2 be State of SCM such that A1: p c= s1 & p c= s2; let P1,P2 be Instruction-Sequence of SCM such that A2: q c= P1 & q c= P2; let i be Nat, da, db be Data-Location, I be Instruction of SCM such that A3: I = CurInstr(P1,Comput(P1,s1,i)); set Cs2i1 = Comput(P2,s2,i+1); set Cs2i = Comput(P2,s2,i); A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2,Cs2i), Cs2i); assume that A5: I = MultBy(da, db) and A6: da in dom p & Comput(P1,s1,i).da * Comput(P1,s1,i ).db <> Comput(P2,s2, i).da * Comput(P2,s2,i).db; I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; then A7: Cs2i1.da = Cs2i.da * Cs2i.db by A4,A5,AMI_3:5; set Cs1i1 = Comput(P1,s1,i+1); set Cs1i = Comput(P1,s1,i); A8: da in dom p implies (Cs1i1|dom p).da = Cs1i1.da & (Cs2i1|dom p).da = Cs2i1.da by FUNCT_1:49; Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec (CurInstr(P1,Cs1i), Cs1i); then Cs1i1.da = Cs1i.da * Cs1i.db by A3,A5,AMI_3:5; hence contradiction by A8,A6,A7,A2,A1,EXTPRO_1:def 10; end; theorem for q being non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of SCM, s1, s2 being State of SCM st p c= s1 & p c= s2 for P1,P2 being Instruction-Sequence of SCM st q c= P1 & q c= P2 for i being Nat, da, db being Data-Location, I being Instruction of SCM st I = CurInstr(P1,Comput(P1,s1,i)) holds I = Divide(da, db) & da in dom p & da <> db implies Comput(P1,s1 ,i).da div Comput(P1,s1,i).db = Comput(P2,s2,i).da div Comput(P2,s2,i).db proof let q be non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of SCM, s1, s2 be State of SCM such that A1: p c= s1 & p c= s2; let P1,P2 be Instruction-Sequence of SCM such that A2: q c= P1 & q c= P2; let i be Nat, da, db be Data-Location, I be Instruction of SCM such that A3: I = CurInstr(P1,Comput(P1,s1,i)); set Cs2i1 = Comput(P2,s2,i+1); set Cs2i = Comput(P2,s2,i); A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2,Cs2i), Cs2i); assume that A5: I = Divide(da, db) and A6: da in dom p and A7: da <> db and A8: Comput(P1,s1,i).da div Comput(P1,s1,i).db <> Comput(P2,s2,i). da div Comput(P2,s2,i).db; I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; then A9: Cs2i1.da = Cs2i.da div Cs2i.db by A4,A5,A7,AMI_3:6; set Cs1i1 = Comput(P1,s1,i+1); set Cs1i = Comput(P1,s1,i); A10: da in dom p implies (Cs1i1|dom p).da = Cs1i1.da & (Cs2i1|dom p).da = Cs2i1.da by FUNCT_1:49; Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec (CurInstr(P1,Cs1i), Cs1i); then Cs1i1.da = Cs1i.da div Cs1i.db by A3,A5,A7,AMI_3:6; hence contradiction by A10,A8,A9,A2,A6,A1,EXTPRO_1:def 10; end; theorem for q being non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of SCM, s1, s2 being State of SCM st p c= s1 & p c= s2 for P1,P2 being Instruction-Sequence of SCM st q c= P1 & q c= P2 for i being Nat, da, db being Data-Location, I being Instruction of SCM st I = CurInstr(P1,Comput(P1,s1,i)) holds I = Divide(da, db) & db in dom p implies Comput(P1,s1,i). da mod Comput(P1,s1,i).db = Comput(P2,s2,i).da mod Comput(P2,s2,i).db proof let q be non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of SCM, s1, s2 be State of SCM such that A1: p c= s1 & p c= s2; let P1,P2 be Instruction-Sequence of SCM such that A2: q c= P1 & q c= P2; let i be Nat, da, db be Data-Location, I be Instruction of SCM such that A3: I = CurInstr(P1,Comput(P1,s1,i)); set Cs1i1 = Comput(P1,s1,i+1); set Cs1i = Comput(P1,s1,i); set Cs2i1 = Comput(P2,s2,i+1); set Cs2i = Comput(P2,s2,i); A4: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2,Cs2i), Cs2i); assume that A5: I = Divide(da, db) and A6: db in dom p and A7: Comput(P1,s1,i).da mod Comput(P1,s1,i).db <> Comput(P2,s2,i). da mod Comput(P2,s2,i).db; A8: (Cs1i1|dom p).db = Cs1i1.db & (Cs2i1|dom p).db = Cs2i1.db by A6,FUNCT_1:49; I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; then A9: Cs2i1.db = Cs2i.da mod Cs2i.db by A4,A5,AMI_3:6; Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec (CurInstr(P1,Cs1i), Cs1i); then Cs1i1.db = Cs1i.da mod Cs1i.db by A3,A5,AMI_3:6; hence contradiction by A7,A8,A9,A2,A1,EXTPRO_1:def 10; end; theorem for q being non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of SCM, s1, s2 being State of SCM st p c= s1 & p c= s2 for P1,P2 being Instruction-Sequence of SCM st q c= P1 & q c= P2 for i being Nat, da being Data-Location, loc being Nat, I being Instruction of SCM st I = CurInstr(P1,Comput(P1,s1,i)) holds I = da=0_goto loc & loc <> (IC Comput(P1,s1,i)) + 1 implies ( Comput(P1,s1,i).da = 0 iff Comput(P2,s2,i) .da = 0) proof let q be non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of SCM, s1, s2 be State of SCM such that A1: p c= s1 & p c= s2; let P1,P2 be Instruction-Sequence of SCM such that A2: q c= P1 & q c= P2; let i be Nat, da be Data-Location, loc be Nat , I be Instruction of SCM such that A3: I = CurInstr(P1,Comput(P1,s1,i)); set Cs2i1 = Comput(P2,s2,i+1); set Cs1i1 = Comput(P1,s1,i+1); set Cs2i = Comput(P2,s2,i); set Cs1i = Comput(P1,s1,i); A4: Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec (CurInstr(P1,Cs1i), Cs1i); A5: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2,Cs2i), Cs2i); IC SCM in dom p by AMISTD_5:6; then A6: (Cs1i1|dom p).IC SCM = IC Cs1i1 & (Cs2i1|dom p).IC SCM = IC Cs2i1 by FUNCT_1:49; assume that A7: I = da=0_goto loc and A8: loc <> (IC Comput(P1,s1,i)) + 1; A9: I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; A10: now assume Comput(P2,s2,i).da = 0 & Comput(P1,s1,i).da <> 0; then Cs2i1.IC SCM = loc & Cs1i1.IC SCM = IC Cs1i + 1 by A3,A9,A4,A5,A7, AMI_3:8; hence contradiction by A6,A8,A2,A1,EXTPRO_1:def 10; end; A11: (Cs1i1|dom p) = (Cs2i1|dom p) by A2,A1,EXTPRO_1:def 10; now assume Comput(P1,s1,i).da = 0 & Comput(P2,s2,i).da <> 0; then Cs1i1.IC SCM = loc & Cs2i1.IC SCM = IC Cs2i + 1 by A3,A9,A4,A5,A7, AMI_3:8; hence contradiction by A6,A11,A8,A2,A1,AMISTD_5:7; end; hence thesis by A10; end; theorem for q being non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function for p being q-autonomic non empty FinPartState of SCM, s1, s2 being State of SCM st p c= s1 & p c= s2 for P1,P2 being Instruction-Sequence of SCM st q c= P1 & q c= P2 for i being Nat, da being Data-Location, loc being Nat, I being Instruction of SCM st I = CurInstr(P1,Comput(P1,s1,i)) holds I = da>0_goto loc & loc <> (IC Comput(P1,s1,i)) + 1 implies ( Comput(P1,s1,i).da > 0 iff Comput(P2,s2,i) .da > 0) proof let q being non halt-free finite (the InstructionsF of SCM)-valued NAT-defined Function; let p be q-autonomic non empty FinPartState of SCM, s1, s2 be State of SCM such that A1: p c= s1 & p c= s2; let P1,P2 be Instruction-Sequence of SCM such that A2: q c= P1 & q c= P2; let i be Nat, da be Data-Location, loc be Nat , I be Instruction of SCM such that A3: I = CurInstr(P1,Comput(P1,s1,i)); set Cs2i1 = Comput(P2,s2,i+1); set Cs1i1 = Comput(P1,s1,i+1); A4: Cs1i1|dom p = Cs2i1|dom p by A2,A1,EXTPRO_1:def 10; set Cs2i = Comput(P2,s2,i); set Cs1i = Comput(P1,s1,i); A5: Cs1i1 = Following(P1,Cs1i) by EXTPRO_1:3 .= Exec (CurInstr(P1,Cs1i), Cs1i); IC SCM in dom p by AMISTD_5:6; then A6: (Cs1i1|dom p).IC SCM = IC Cs1i1 & (Cs2i1|dom p).IC SCM = IC Cs2i1 by FUNCT_1:49; A7: Cs2i1 = Following(P2,Cs2i) by EXTPRO_1:3 .= Exec (CurInstr(P2,Cs2i), Cs2i); assume that A8: I = da>0_goto loc and A9: loc <> (IC Comput(P1,s1,i)) + 1; A10: I = CurInstr(P2,Comput(P2,s2,i)) by A3,A2,A1,AMISTD_5:7; A11: now assume that A12: Comput(P2,s2,i).da > 0 and A13: Comput(P1,s1,i).da <= 0; Cs2i1.IC SCM = loc by A10,A7,A8,A12,AMI_3:9; hence contradiction by A3,A5,A6,A4,A8,A9,A13,AMI_3:9; end; A14: IC Cs1i = IC Cs2i by A2,A1,AMISTD_5:7; now assume that A15: Comput(P1,s1,i).da > 0 and A16: Comput(P2,s2,i).da <= 0; Cs1i1.IC SCM = loc by A3,A5,A8,A15,AMI_3:9; hence contradiction by A14,A10,A7,A6,A4,A8,A9,A16,AMI_3:9; end; hence thesis by A11; end; theorem for s1,s2 being State of SCM st IC(s1) = IC(s2) & (for a being Data-Location holds s1.a = s2.a) holds s1 = s2 proof let s1,s2 be State of SCM such that A1: IC(s1) = IC(s2); IC SCM in dom s1 & IC SCM in dom s2 by MEMSTR_0:2; then A2: s1 = DataPart s1 +* Start-At (IC s1,SCM) & s2 = DataPart s2 +* Start-At (IC s2,SCM) by MEMSTR_0:26; assume A3: for a being Data-Location holds s1.a = s2.a; DataPart s1 = DataPart s2 proof A4: dom DataPart s1 = Data-Locations SCM by MEMSTR_0:9; hence dom DataPart s1 = dom DataPart s2 by MEMSTR_0:9; let x be object; assume A5: x in dom DataPart s1; then A6: x is Data-Location by A4,AMI_2:def 16,AMI_3:27; thus (DataPart s1).x = s1.x by A5,A4,FUNCT_1:49 .= s2.x by A6,A3 .= (DataPart s2).x by A5,A4,FUNCT_1:49; end; hence thesis by A1,A2; end;